This study sought to improve the comprehension of wave propagation in thermo-elastic materials according to Lord-Shulman (L-S) theory by developing precise wave solutions for the governing equations that take into consideration temperature-dependent material features. The research utilized the improved simple equation method (ISEM) to analyze the interrelated thermal and mechanical properties of these materials, allowing the creation of analytical solutions that exactly characterize intricate wave processes. The ISEM facilitates the development of various wave shapes. These solutions, defined by configurable free parameters, offer a flexible framework for examining diverse physical circumstances in thermo-elasticity. The work includes detailed graphical representations of crucial discoveries such as temperature distributions, stress tensors, and displacement which provide amazing visual insights into the complex interactions that occur within thermo-elastic systems.
Citation: Mohamed F. Ismail, Hamdy M. Ahmed, Alaa A. El-Bary, Hamdy M. Youssef, Islam Samir. Exploration of exact wave solutions for the Lord-Shulman thermo-elasticity theory with temperature dependence using advanced techniques[J]. AIMS Mathematics, 2025, 10(5): 10806-10830. doi: 10.3934/math.2025491
This study sought to improve the comprehension of wave propagation in thermo-elastic materials according to Lord-Shulman (L-S) theory by developing precise wave solutions for the governing equations that take into consideration temperature-dependent material features. The research utilized the improved simple equation method (ISEM) to analyze the interrelated thermal and mechanical properties of these materials, allowing the creation of analytical solutions that exactly characterize intricate wave processes. The ISEM facilitates the development of various wave shapes. These solutions, defined by configurable free parameters, offer a flexible framework for examining diverse physical circumstances in thermo-elasticity. The work includes detailed graphical representations of crucial discoveries such as temperature distributions, stress tensors, and displacement which provide amazing visual insights into the complex interactions that occur within thermo-elastic systems.
| [1] |
M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956), 240–253. https://doi.org/10.1063/1.1722737 doi: 10.1063/1.1722737
|
| [2] |
H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
|
| [3] |
Z. Y. Ai, Z. K. Ye, J. J. Yang, Thermo-mechanical behaviour of multi-layered media based on the Lord–Shulman model, Comput. Geotech., 129 (2021), 103897. https://doi.org/10.1016/j.compgeo.2020.103897 doi: 10.1016/j.compgeo.2020.103897
|
| [4] |
Y. Kiani, M. R. Eslami, Nonlinear generalized thermoelasticity of an isotropic layer based on Lord–Shulman theory, Eur. J. Mech. A Solids, 61 (2017), 245–253. https://doi.org/10.1016/j.euromechsol.2016.10.004 doi: 10.1016/j.euromechsol.2016.10.004
|
| [5] |
M. Alesemi, Plane waves in magneto-thermoelastic anisotropic medium based on (LS) theory under the effect of Coriolis and centrifugal forces, IOP Conf. Ser.: Mater. Sci. Eng., 48 (2018), 012018. https://doi.org/10.1088/1757-899X/348/1/012018 doi: 10.1088/1757-899X/348/1/012018
|
| [6] |
A. A. Kilany, S. M. Abo-Dahab, A. M. Abd-Alla, A. N. Abd-alla, Photothermal and void effect of a semiconductor rotational medium based on Lord–Shulman theory, Mech. Based Des. Struct. Mach., 50 (2022), 2555–2568. https://doi.org/10.1080/15397734.2020.1780926 doi: 10.1080/15397734.2020.1780926
|
| [7] |
I. A. Abbas, Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity, Forsch. Ingenieurwes., 71 (2007), 215–222. https://doi.org/10.1007/s10010-007-0060-x doi: 10.1007/s10010-007-0060-x
|
| [8] |
H. M. Youssef, A. A. El-Bary, Characterization of the photothermal interaction due to ramp-type heat on a semiconducting two-dimensional solid cylinder based on the Lord–Shulman model using double Laplace transform, Mech. Based Des. Struct. Mach., 50 (2022), 4331–4347. https://doi.org/10.1080/15397734.2020.1833740 doi: 10.1080/15397734.2020.1833740
|
| [9] |
K. Lotfy, S. El-Sapa, A. Ahmed, A. A. El-Bary, R. S. Tantawi, M. H. Ahmed, et al., Stochastic wave propagation in magneto-thermoelastic materials subjected to the change in electrical and thermal conductivity, AIP Adv., 14 (2024), 015003. https://doi.org/10.1063/5.0178497 doi: 10.1063/5.0178497
|
| [10] |
W. S. Hassanin, K. Lotfy, M. A. Seddeek, A. El-Dali, M. R. Eid, E. M. Elsaid, A novel approach to analyzing the stability of physical fields in semiconductor materials under photothermal excitation, Chin. J. Phys., 91 (2024), 1027–1038. https://doi.org/10.1016/j.cjph.2024.07.011 doi: 10.1016/j.cjph.2024.07.011
|
| [11] |
M. I. A. Othman, M. F. Ismail, The gravitational field effect on a micro-elongated thermoelastic layer under a fluid load with two theories, Multidiscip. Model. Mater. Struct., 18 (2022), 757–771. https://doi.org/10.1108/MMMS-04-2022-0072 doi: 10.1108/MMMS-04-2022-0072
|
| [12] |
M. I. A. Othman, E. E. M. Eraki, M. F. Ismail, Study of micro‐elongated thermoelastic medium loaded with a piezoelectric layer under the influence of gravity using the dual‐phase‐lag model, Int. J. Mech. Syst. Dyn., 3 (2023), 136–145. https://doi.org/10.1002/msd2.12075 doi: 10.1002/msd2.12075
|
| [13] |
N. Althobaiti, S. M. Abo-Dahab, A. A. Kilany, A. M. Abd-Aalla, Solution of a Half-Space in Generalized Thermoelastic Problem in the Context of Two Models Using the Homotopy Perturbation Method, Axioms, 12 (2023), 827. https://doi.org/10.3390/axioms12090827 doi: 10.3390/axioms12090827
|
| [14] |
D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl. Mech. Rev., 51 (1998), 705–729. https://doi.org/10.1115/1.3098984 doi: 10.1115/1.3098984
|
| [15] | R. Kumar, S. Devi, Deformation in porous thermoelastic material with temperature dependent properties, Appl. Math. Inf. Sci., 5 (2011), 132–147. Available from: https://www.naturalspublishing.com/files/published/kr3t7gl6m2u303.pdf. |
| [16] |
M. I. A. Othman, E. E. M. Eraki, M. F. Ismail, A comparative study of temperature-dependent characteristics and non-local behavior in a submerged microstretch thermoelastic medium using two models, Sci. Rep., 14 (2024), 27096. https://doi.org/10.1038/s41598-024-77233-9 doi: 10.1038/s41598-024-77233-9
|
| [17] |
I. A. Abbas, H. M. Youssef, A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method, Int. J. Thermophys., 33 (2012), 1302–1313. https://doi.org/10.1007/s10765-012-1272-3 doi: 10.1007/s10765-012-1272-3
|
| [18] |
T. He, S. Shi, Effect of temperature-dependent properties on thermoelastic problems with thermal relaxations, Acta Mech. Solida Sin., 27 (2014), 412–419. https://doi.org/10.1016/S0894-9166(14)60049-5 doi: 10.1016/S0894-9166(14)60049-5
|
| [19] |
Z. Zhang, W. Zhao, Y. Sun, Z. Gu, W. Qian, H. Gong, Thermoelastic behaviors of temperature-dependent multilayer arches under thermomechanical loadings, Buildings, 13 (2023), 2607. https://doi.org/10.3390/buildings13102607 doi: 10.3390/buildings13102607
|
| [20] |
O. El-shamy, R. El-barkoki, H. M. Ahmed, W. Abbas, I. Samir, Exploration of new solitons in optical medium with higher-order dispersive and nonlinear effects via improved modified extended tanh function method, Alex. Eng. J., 68 (2023), 611–618. https://doi.org/10.1016/j.aej.2023.01.053 doi: 10.1016/j.aej.2023.01.053
|
| [21] |
W. B. Rabie, H. M. Ahmed, Construction cubic-quartic solitons in optical metamaterials for the perturbed twin-core couplers with Kudryashov's sextic power law using extended F-expansion method, Chaos Soliton. Fract., 160 (2022), 112289. https://doi.org/10.1016/j.chaos.2022.112289 doi: 10.1016/j.chaos.2022.112289
|
| [22] |
K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, M. Mirzazadeh, M. Eslami, et al., Investigation of solitons in magneto-optic waveguides with Kudryashov's law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger's equations using modified extended mapping method, Nonlinear Anal.-Model., 29 (2024), 205–223. https://doi.org/10.15388/namc.2024.29.34070 doi: 10.15388/namc.2024.29.34070
|
| [23] | A. M. Wazwaz, Partial differential equations and solitary waves theory, Springer, 2010. |
| [24] |
T. A. Nofal, Simple equation method for nonlinear partial differential equations and its applications, J. Egypt. Math. Soc., 24 (2016), 204–209. https://doi.org/10.1016/j.joems.2015.05.006 doi: 10.1016/j.joems.2015.05.006
|
| [25] |
A. Irshad, S. T. Mohyud-Din, N. Ahmed, U. Khan, A new modification in simple equation method and its applications on nonlinear equations of physical nature, Results Phys., 7 (2017), 4232–4240. https://doi.org/10.1016/j.rinp.2017.10.048 doi: 10.1016/j.rinp.2017.10.048
|
| [26] |
D. Lu, A. Seadawy, M. Arshad, Applications of extended simple equation method on unstable nonlinear Schrödinger equations, Optik, 140 (2017), 136–144. https://doi.org/10.1016/j.ijleo.2017.04.032 doi: 10.1016/j.ijleo.2017.04.032
|
| [27] |
M. Arshad, A. R. Seadawy, D. Lu, Study of soliton solutions of higher-order nonlinear Schrödinger dynamical model with derivative non-Kerr nonlinear terms and modulation instability analysis, Results Phys., 13 (2019), 102305. https://doi.org/10.1016/j.rinp.2019.102305 doi: 10.1016/j.rinp.2019.102305
|
| [28] |
M. Arshad, A. R. Seadawy, D. C. Lu, A. Ali, Dispersive solitary wave solutions of strain wave dynamical model and its stability, Commun. Theor. Phys., 71 (2019), 1155. https://doi.org/10.1088/0253-6102/71/10/1155 doi: 10.1088/0253-6102/71/10/1155
|
| [29] |
A. Ali, A. R. Seadawy, D. Lu, Dispersive solitary wave soliton solutions of (2+1)-dimensional Boussinesq dynamical equation via extended simple equation method, J. King Saud Univ. Sci., 31 (2019), 653–658. https://doi.org/10.1016/j.jksus.2017.12.015 doi: 10.1016/j.jksus.2017.12.015
|
| [30] |
M. I. A. Othman, E. E. M. Eraki, S. Y. Atwa, M. F. Ismail, A model of thermo-microstretch rotating poroelastic medium immersed in an infinite inviscid fluid with memory-dependent derivative, J. Eng. Mech., 149 (2023), 04023104. https://doi.org/10.1061/JENMDT.EMENG-7360 doi: 10.1061/JENMDT.EMENG-7360
|
| [31] |
A. Bagri, M. R. Eslami, Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord–Shulman theory, Compos. Struct., 83 (2008), 168–179. https://doi.org/10.1016/j.compstruct.2007.04.024 doi: 10.1016/j.compstruct.2007.04.024
|
| [32] |
J. Alihemmati, Y. T. Beni, Generalized thermoelasticity of microstructures: Lord–Shulman theory with modified strain gradient theory, Mech. Mater., 172 (2022), 104412. https://doi.org/10.1016/j.mechmat.2022.104412 doi: 10.1016/j.mechmat.2022.104412
|
| [33] |
W. B. Rabie, H. M. Ahmed, M. Marin, A. A. Syied, A. Abd-Elmonem, N. S. E. Abdalla, et al., Thorough investigation of exact wave solutions in nonlinear thermoelasticity theory under the influence of gravity using advanced analytical methods, Acta Mech., 2025, 1–34. https://doi.org/10.1007/s00707-025-04229-5 doi: 10.1007/s00707-025-04229-5
|
| [34] |
I. Samir, N. Badra, H. M. Ahmed, A. H. Arnous, Solitary wave solutions for generalized Boiti–Leon–Manna–Pempinelli equation by using improved simple equation method, Int. J. Appl. Comput. Math., 8 (2022), 102. https://doi.org/10.1007/s40819-022-01308-2 doi: 10.1007/s40819-022-01308-2
|
| [35] |
W. B. Rabie, H. M. Ahmed, A. A. Syied, A. Abd-Elmonem, N. A. Suoliman, M. F. Ismail, Influence of a laser pulse on thermoelasticity with temperature dependence under the dual-phase-lag model using improved modified extended tanh function method, Results Phys., 67 (2024), 108029. https://doi.org/10.1016/j.rinp.2024.108029 doi: 10.1016/j.rinp.2024.108029
|
| [36] |
S. Liu, J. Sun, M. Shao, S. Cong, L. Zhang, C. Sun, et al., Analytical solutions for instantaneous power of heaving-buoy wave energy converters in irregular waves, Appl. Ocean Res., 153 (2025), 104381. https://doi.org/10.1016/j.apor.2024.104381 doi: 10.1016/j.apor.2024.104381
|
| [37] |
C. Zhi, S. Xu, S. Cong, Fission dynamics and post-slope evolution of nonlinear internal waves over gentle continental shelves, Phys. Fluids, 37 (2025), 026601. https://doi.org/10.1063/5.0253501 doi: 10.1063/5.0253501
|