Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Viscoelastic Pasternak foundation analysis of a thermoelastic microbeam using Moore–Gibson–Thompson heat conduction under Klein–Gordon (KG) nonlocality

  • Received: 10 December 2024 Revised: 19 April 2025 Accepted: 29 April 2025 Published: 06 May 2025
  • MSC : 74-10, 74B05, 74F05, 74H15

  • This study sought to examine the behavior of thermoelastic microbeams supported by a viscoelastic Pasternak foundation via the Moore–Gibson–Thompson heat conduction equation within the framework of Klein–Gordon nonlocality, a novel approach for analyzing heat transfer in elastic materials. This model facilitates a more precise comprehension of the thermoelastic vibrations in microbeams. We wanted to examine the impact of foundation characteristics and thermal relaxation durations on the vibration frequency and stability of the microbeam. The Laplace transform technique was used. A graphic representation of the computed temperature, bending displacement, and moment is shown. The results provide significant insights into the design and enhancement of microbeams in advanced engineering applications, including microelectromechanical systems and nanoscale structures, where temperature effects and foundational interactions are critical. Furthermore, the fluctuation of waves is somewhat reduced in the examined model.

    Citation: Ahmed Yahya, Adam Zakria, Ibrahim-Elkhalil Ahmed, Shams A. Ahmed, Husam E. Dargail, Abdelgabar Adam Hassan, Eshraga Salih. Viscoelastic Pasternak foundation analysis of a thermoelastic microbeam using Moore–Gibson–Thompson heat conduction under Klein–Gordon (KG) nonlocality[J]. AIMS Mathematics, 2025, 10(5): 10340-10358. doi: 10.3934/math.2025471

    Related Papers:

    [1] Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112
    [2] Kangqun Zhang . Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators. AIMS Mathematics, 2024, 9(1): 1358-1372. doi: 10.3934/math.2024067
    [3] Dumitru Baleanu, Babak Shiri . Nonlinear higher order fractional terminal value problems. AIMS Mathematics, 2022, 7(5): 7489-7506. doi: 10.3934/math.2022420
    [4] Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
    [5] Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793
    [6] Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550
    [7] Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Significant results in the pth moment for Hilfer fractional stochastic delay differential equations. AIMS Mathematics, 2025, 10(4): 9852-9881. doi: 10.3934/math.2025451
    [8] Jun Moon . The Pontryagin type maximum principle for Caputo fractional optimal control problems with terminal and running state constraints. AIMS Mathematics, 2025, 10(1): 884-920. doi: 10.3934/math.2025042
    [9] Wei Zhang, Jifeng Zhang, Jinbo Ni . New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative. AIMS Mathematics, 2022, 7(1): 1074-1094. doi: 10.3934/math.2022064
    [10] Dehong Ji, Weigao Ge . A nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations. AIMS Mathematics, 2020, 5(6): 7175-7190. doi: 10.3934/math.2020459
  • This study sought to examine the behavior of thermoelastic microbeams supported by a viscoelastic Pasternak foundation via the Moore–Gibson–Thompson heat conduction equation within the framework of Klein–Gordon nonlocality, a novel approach for analyzing heat transfer in elastic materials. This model facilitates a more precise comprehension of the thermoelastic vibrations in microbeams. We wanted to examine the impact of foundation characteristics and thermal relaxation durations on the vibration frequency and stability of the microbeam. The Laplace transform technique was used. A graphic representation of the computed temperature, bending displacement, and moment is shown. The results provide significant insights into the design and enhancement of microbeams in advanced engineering applications, including microelectromechanical systems and nanoscale structures, where temperature effects and foundational interactions are critical. Furthermore, the fluctuation of waves is somewhat reduced in the examined model.



    In 1998, Kahlig and Matkowski [1] proved in particular that every homogeneous bivariable mean M in (0,) can be represented in the form

    M(x,y)=A(x,y)fM,A(xyx+y),

    where A is the arithmetic mean and fM,A: (1,1)(0,2) is a unique single variable function (with the graph laying in a set of a butterfly shape), called an A-index of M.

    In this paper we consider Seiffert function f:(0,1)R which fulfils the following condition

    t1+tf(t)t1t.

    According to the results of Witkowski [2] we introduce the mean Mf of the form

    Mf(x,y)={|xy|2f(|xy|x+y)xy,xx=y. (1.1)

    In this paper a mean Mf:R2+R is the function that is symmetric, positively homogeneous and internal in sense [2]. Basic result of Witkowski is correspondence between a mean Mf and Seiffert function f of Mf is given by the following formula

    f(t)=tMf(1t,1+t),  (1.2)

    where

    t=|xy|x+y. (1.3)

    Therefore, f and Mf form a one-to-one correspondence via (1.1) and (1.2). For this reason, in the following we can rewrite f=:fM.

    Throughout this article, we say xy, that is, t(0,1). For convenience, we note that M1<M2 means M1(x,y)<M2(x,y) holds for two means M1 and M2 with xy. Then there is a fact that the inequality fM1(t)>fM2(t) holds if and only if M1<M2. That is to say,

    1fM1<1fM2M1<M2. (1.4)

    The above relationship (1.4) inspires us to ask a question: Can we transform the means inequality problem into the reciprocal inequality problem of the corresponding Seiffert functions? Witkowski [2] answers this question from the perspective of one-to-one correspondence. We find that these two kinds of inequalities are equivalent in similar linear inequalities. We describe this result in Lemma 2.1 as a support of this paper.

    As we know, the study of inequalities for mean values has always been a hot topic in the field of inequalities. For example, two common means can be used to define some new means. The recent success in this respect can be seen in references [3,4,5,6,7,8]. In [2], Witkowski introduced the following two new means, one called sine mean

    Msin(x,y)={|xy|2sin(|xy|x+y)xyxx=y, (1.5)

    and the other called hyperbolic tangent mean

    Mtanh(x,y)={|xy|2tanh(|xy|x+y)xyxx=y. (1.6)

    Recently, Nowicka and Witkowski [9] determined various optimal bounds for the Msin(x,y) and Mtanh(x,y) by the arithmetic mean A(x,y)=(x+y)/2 and centroidal mean

    Ce(x,y)=23x2+xy+y2x+y

    as follows:

    Proposition 1.1. The double inequality

    (1α)A+αCe<Msin<(1β)A+βCe

    holds if and only if α 1/2 and β(3/sin1)30.5652.

    Proposition 1.2. The double inequality

    (1α)A+αCe<Mtanh<(1β)A+βCe

    holds if and only if α (3/tanh1)30.9391 and β1.

    Proposition 1.3. The double inequality

    (1α)C1e+αA1<M1sin<(1β)C1e+βA1

    holds if and only if α 4sin130.3659 and β1/2.

    Proposition 1.4. The double inequality

    (1α)C1e+αA1<M1tanh<(1β)C1e+βA1

    holds if and only if α 0 and β4tanh130.0464.

    Proposition 1.5. The double inequality

    (1α)A2+αC2e<M2sin<(1β)A2+βC2e

    holds if and only if α 1/2 and β(9cot21)/70.5301.

    Proposition 1.6. The double inequality

    (1α)A2+αC2e<M2tanh<(1β)A2+βC2e

    holds if and only if α (9(coth211))/70.9309 and β1.

    Proposition 1.7. The double inequality

    (1α)C2e+αA2<M2sin<(1β)C2e+βA2

    holds if and only if α(16sin219)/70.3327 and β1/2.

    Proposition 1.8. The double inequality

    (1α)C2e+αA2<M2tanh<(1β)C2e+βA2

    holds if and only if α0 and β(16tanh219)/70.0401.

    In essence, the above results are how the two new means Msin and Mtanh are expressed linearly, harmoniously, squarely, and harmoniously in square by the two classical means Ce(x,y) and A(x,y). In this paper, we study the following two-sided inequalities in exponential form for nonzero number pR

    (1αp)Ap+αpCep<Mpsin<(1βp)Ap+βpCep, (1.7)
    (1λp)Ap+λpCep<Mptanh<(1μp)Ap+μpCep (1.8)

    in order to reach a broader conclusion including all the above properties. The main conclusions of this paper are as follows:

    Theorem 1.1. Let x,y>0, xy, p0 and

    p=3cos2+sin2+13sin2cos234.588.

    Then the following are considered.

    (i) If pp, the double inequality

    (1αp)Ap+αpCep<Mpsin<(1βp)Ap+βpCep (1.9)

    holds if and only if αp3p(1sinp1)/[(sinp1)(4p3p)] and βp1/2.

    (ii) If 0<p12/5, the double inequality

    (1αp)Ap+αpCep<Mpsin<(1βp)Ap+βpCep (1.10)

    holds if and only if αp1/2 and βp3p(1sinp1)/[(sinp1)(4p3p)].

    (iii) If p<0, the double inequality

    (1βp)Ap+βpCep<Mpsin<(1αp)Ap+αpCep (1.11)

    holds if and only if αp1/2 and βp3p(1sinp1)/[(sinp1)(4p3p)].

    Theorem 1.2. Let x,y>0, xy, p0 and

    p=16cosh23cosh4+4sinh2+3cosh412sinh2+153.4776.

    Then the following are considered:

    (i) If p>0, the double inequality

    (1λp)Ap+λpCep<Mptanh<(1μp)Ap+μpCep (1.12)

    holds if and only if λp((coth1)p1)/((4/3)p1) and μp1.

    (ii) If pp<0,

    (1μp)Ap+μpλpCep<Mptanh<(1λp)Ap+λpCep (1.13)

    holds if and only if λp((coth1)p1)/((4/3)p1) and μp1.

    We first introduce a theoretical support of this paper.

    Lemma 2.1. ([10]) Let K(x,y),R(x,y), and N(x,y) be three means with two positive distinct parameters x and y; fK(t), fR(t), and fN(t) be the corresponding Seiffert functions of the former, ϑ1,ϑ2,θ1,θ2,pR, and p0. Then

    ϑ1Kp(x,y)+ϑ2Np(x,y)Rp(x,y)θ1Kp(x,y)+θ2Np(x,y) (2.1)
    ϑ1fpK(t)+ϑ2fpN(t)1fpR(t)θ1fpK(t)+θ2fpN(t). (2.2)

    It must be mentioned that the key steps to prove the above results are following:

    Mf(u,v)=Mf(λ2xx+y,λ2yx+y)=λMf(2xx+y,2yx+y)=λMf(1t,1+t)=λtfM(t), (2.3)

    where

    {u=λ2xx+yv=λ2yx+y, 0<x<y, λ>0.

    and 0<t<1,

    t=yxx+y.

    In order to prove the main conclusions, we shall introduce some very suitable methods which are called the monotone form of L'Hospital's rule (see Lemma 2.2) and the criterion for the monotonicity of the quotient of power series (see Lemma 2.3).

    Lemma 2.2. ([11,12]) For <a<b<, let f,g:[a,b]R be continuous functions that are differentiable on (a,b), with f(a)=g(a)=0 or f(b)=g(b)=0. Assume that g(t)0 for each x in (a,b). If f/g is increasing (decreasing) on (a,b), then so is f/g.

    Lemma 2.3. ([13]) Let an and bn (n=0,1,2,) be real numbers, and let the power series A(x)=n=0anxn and B(x)=n=0bnxn be convergent for |x|<R (R+). If bn>0 for n=0,1,2,, and if εn=an/bn is strictly increasing (or decreasing) for n=0,1,2,, then the function A(x)/B(x) is strictly increasing (or decreasing) on (0,R) (R+).

    Lemma 2.4. ([14,15]) Let B2n be the even-indexed Bernoulli numbers. Then we have the following power series expansions

    cotx=1xn=122n(2n)!|B2n|x2n1, 0<|x|<π, (2.4)
    1sin2x=csc2x=(cotx)=1x2+n=122n(2n1)(2n)!|B2n|x2n2, 0<|x|<π.  (2.5)

    Lemma 2.5. ([16,17,18,19,20]) Let B2n the even-indexed Bernoulli numbers, n=1,2,. Then

    22n1122n+11(2n+2)(2n+1)π2<|B2n+2||B2n|<22n122n+21(2n+2)(2n+1)π2.

    Lemma 2.6. Let l1(t) be defined by

    l1(t)=s1(t)r1(t),

    where

    s1(t)=6t2+2t412sin2t2t3costsint+6tcostsintsin2t,r1(t)=8t2sin2t+2t4sin2t6t22t46sin2t+12tcostsintsin2t.

    Then the double inequality

    125<l1(t)<p=3cos2+sin2+13sin2cos234.588 (2.6)

    holds for all t(0,1), where the constants 12/5 and (3cos2+sin2+1)/(3sin2cos23)4.588 are the best possible in (2.6).

    Proof. Since

    1l1(t)=r1(t)s1(t),

    and

    r1(t)=8t2sin2t+2t4sin2t6t22t46sin2t+12tcostsintsin2t=8t22t41sin2t6t21sin2t+2t4+12tcostsint6=8t22t4[1t2+n=122n(2n1)(2n)!|B2n|t2n2]6t2[1t2+n=122n(2n1)(2n)!|B2n|t2n2]+2t4+12t[1tn=122n(2n)!|B2n|t2n1]6=23t4n=3[22n1(2n3)(2n2)!|B2n2|+622n(2n+1)(2n)!|B2n|]t2n=:n=2ant2n,

    where

    a2=23,an=[22n1(2n3)(2n2)!|B2n2|+622n(2n+1)(2n)!|B2n|], n=3,4,,
    s1(t)=6t2+2t412sin2t2t3costsint+6tcostsintsin2t=6t21sin2t+2t41sin2t+6tcostsint2t3costsint12=6t2[1t2+n=122n(2n1)(2n)!|B2n|t2n2]+2t4[1t2+n=122n(2n1)(2n)!|B2n|t2n2]+6t[1tn=122n(2n)!|B2n|t2n1]2t3[1tn=122n(2n)!|B2n|t2n1]12=n=21222n(n1)(2n)!|B2n|t2n+n=14n22n(2n)!|B2n|t2n+2=n=21222n(n1)(2n)!|B2n|t2n+n=2(n1)22n(2n2)!|B2n2|t2n=n=2[1222n(n1)(2n)!|B2n|+(n1)22n(2n2)!|B2n2|]t2n=85t4+n=3[1222n(n1)(2n)!|B2n|+(n1)22n(2n2)!|B2n2|]t2n=:n=2bnt2n,

    where

    b2=85,bn=1222n(n1)(2n)!|B2n|+(n1)22n(2n2)!|B2n2|>0, n=3,4,.

    Setting

    qn=anbn, n=2,3,,

    we have

    q2=512=0.41667,qn=22n1(2n3)(2n2)!|B2n2|+622n(2n+1)(2n)!|B2n|1222n(n1)(2n)!|B2n|+(n1)22n(2n2)!|B2n2|, n=3,4,.

    Here we prove that the sequence {qn}n2 decreases monotonously. Obviously, q2>0>q3. We shall prove that for n3,

    qn>qn+122n1(2n3)(2n2)!|B2n2|+622n(2n+1)(2n)!|B2n|1222n(n1)(2n)!|B2n|+(n1)22n(2n2)!|B2n2|>22n+1(2n1)(2n)!|B2n|+622n+2(2n+3)(2n+2)!|B2n+2|1222n+2n(2n+2)!|B2n+2|+n22n+2(2n)!|B2n|22n1(2n3)(2n2)!|B2n2|+622n(2n+1)(2n)!|B2n|1222n(n1)(2n)!|B2n|+(n1)22n(2n2)!|B2n2|<22n+1(2n1)(2n)!|B2n|+622n+2(2n+3)(2n+2)!|B2n+2|1222n+2n(2n+2)!|B2n+2|+n22n+2(2n)!|B2n|,

    that is,

    2(2n)!(2n2)!|B2n2||B2n|+24(4n3)(2n2)!(2n+2)!|B2n+2||B2n2||B2n||B2n|>24(4n1)((2n)!)2+864(2n)!(2n+2)!|B2n+2||B2n|. (2.7)

    By Lemma 2.5 we have

    2(2n)!(2n2)!|B2n2||B2n|+24(4n3)(2n2)!(2n+2)!|B2n+2||B2n2||B2n||B2n|>2(2n)!(2n2)!22n122n21π2(2n)(2n1)+24(4n3)(2n2)!(2n+2)!22n1122n+11(2n+2)(2n+1)π222n122n21π2(2n)(2n1)=2π2(2n)!(2n)!22n122n21+24(4n3)(2n)!(2n)!22n1122n+1122n122n21,

    and

    24(4n1)(2n)!2+864(2n)!(2n+2)!|B2n+2||B2n|<24(4n1)(2n)!2+864(2n)!(2n+2)!22n122n+21(2n+2)(2n+1)π2=24(4n1)(2n)!2+864(2n)!(2n)!22n122n+211π2.

    So we can complete the prove (2.7) when proving

    2π2(2n)!(2n)!22n122n21+24(4n3)(2n)!(2n)!22n1122n+1122n122n21>24(4n1)((2n)!)2+864(2n)!(2n)!22n122n+211π2

    or

    2π2(22n1)22n21+24(4n3)22n1122n+1122n122n21>24(4n1)+22n122n+21864π2.

    In fact,

    2π2(22n1)22n21+24(4n3)22n1122n+1122n122n21[24(4n1)+22n122n+21864π2]=:8H(n)π2(22n+21)(22n4)(22n+11),

    where

    H(n)=826n(π+3)(π3)(π2+3)+224n(72π2n+60π27π4+594)22n(36π2n+123π27π4+1404)+(24π2π4+432)>0

    for all n3.

    So the sequence {qn}n2 decreases monotonously. By Lemma 2.3 we obtain that r1(t)/s1(t) is decreasing on (0,1), which means that the function l1(t) is increasing on (0,1). In view of

    lim

    the proof of this lemma is complete.

    Lemma 2.7. Let l_{2}(t) be defined by

    \begin{equation*} l_{2}\left( t\right) = 2\cdot \frac{ 3\cosh 4t-12t^{2}\cosh 2t-4t^{4}\cosh 2t+2 t^{3}\sinh 2t-6t\sinh 2t-3}{ t^{2}\cosh 4t-3\cosh 4t+24t\sinh 2t-25t^{2}- 8t^{4}+3} = :2\frac{ B(t)}{A(t)}, \text{ }0 < t < \infty , \end{equation*}

    where

    \begin{eqnarray*} A(t) & = & t^{2}\cosh 4t-3\cosh 4t+24t\sinh 2t-25t^{2}- 8t^{4}+3 , \\ B(t) & = &3\cosh 4t-12t^{2}\cosh 2t-4t^{4}\cosh 2t+2 t^{3}\sinh 2t-6t\sinh 2t-3. \end{eqnarray*}

    Then l_{2}(t) is strictly decreasing on \left(0, \infty \right) .

    Proof. Let's take the power series expansions

    \begin{equation*} \sinh kt = \sum\limits_{n = 0}^{\infty }\frac{k^{2n+1}}{\left( 2n+1\right) !}t^{2n+1}, \text{ }\cosh kt = \sum\limits_{n = 0}^{\infty }\frac{k^{2n}}{\left( 2n\right) !}t^{2n} \end{equation*}

    into A(t) and B(t) , and get

    \begin{equation*} A(t) = \sum\limits_{n = 2}^{\infty }c_{n}t^{2n+2}, \text{ }B(t) = \sum\limits_{n = 2}^{\infty }d_{n}t^{2n+2}, \end{equation*}

    where

    \begin{eqnarray*} c_{2} & = &0, \\ c_{n} & = &\left[ \frac{ 2\left( 3n+2n^{2}-23\right) 2^{2n}+48\left( 2n+2\right) }{\left( 2n+2\right) !}\right] 2^{2n}, \text{ } n = 3, 4, \ldots , \\ d_{n} & = &\left[ \frac{48\cdot 2^{2n} -8\left( n+1\right) \left( 5n-n^{2}+2n^{3}+6\right) }{\left( 2n+2\right) !}\right] 2^{2n}, \text{ } n = 2, 3, \ldots , \end{eqnarray*}

    Setting

    \begin{equation*} k_{n} = \frac{c_{n}}{d_{n}} = \frac{ 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) }{ 4\left( 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6\right) }, \text{ }n = 2, 3, \ldots , \end{equation*}

    Here we prove that the sequence \{k_{n}\}_{n\geq 2} decreases monotonously. Obviously, k_{2} = 0 < k_{3} . For n\geq 3,

    \begin{eqnarray*} k_{n} & < &k_{n+1} \\ &\Longleftrightarrow & \\ &&\frac{ 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) }{ 4\left( 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6\right) } \\ & < &\frac{ 48\left( n+2\right) + 2^{2n+2}\left( 3\left( n+1\right) +2\left( n+1\right) ^{2}-23\right) }{ 4\left( 6\cdot 2^{2n+2}-11\left( n+1\right) -4\left( n+1\right) ^{2}-\left( n+1\right) ^{3}-2\left( n+1\right) ^{4}-6\right) } \\ &\Longleftrightarrow & \\ &&\frac{ 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) }{ 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6} \\ & < & \frac{48n+96+ 2^{2n+2}\left( 7n+2n^{2}-18\right) }{ 6\cdot 2^{2n+2}-30n-19n^{2}-9n^{3}-2n^{4}-24} \end{eqnarray*}

    follows from \Delta (n) > 0 for all n\geq 2 , where

    \begin{eqnarray*} \Delta (n) & = &\left( 48n+96+ 2^{2n+2}\left( 7n+2n^{2}-18\right) \right) \left( 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6\right) \\ &&-\left( 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) \right) \left( 6\cdot 2^{2n+2}-30n-19n^{2}-9n^{3}-2n^{4}-24\right) \\ & = & 24\cdot 2^{4n}\left( 4n+5\right) -2^{2n}\left( 858n+367n^{2}+218n^{3}-103n^{4}+40n^{5}+12n^{6}+696\right) \\ &&+1248n+1440n^{2}+1056n^{3}+288 n^{4}+576 \\ & = :&2^{2n}\left[ j(n)2^{2n}- i(n)\right] +w(n) \end{eqnarray*}

    with

    \begin{eqnarray*} j(n) & = & 24\left( 4n+5\right) , \\ i(n) & = &858n+367n^{2}+218n^{3}-103n^{4}+40n^{5}+12n^{6}+696, \\ w(n) & = &1248n+1440n^{2}+1056n^{3}+288 n^{4}+576 > 0. \end{eqnarray*}

    We have that \Delta (2) = 5376 > 0 and shall prove that

    \begin{eqnarray} j(n)2^{2n}- i(n) & > &0\Longleftrightarrow \\ 2^{2n} & > &\frac{ i(n)}{j(n)} \end{eqnarray} (2.8)

    holds for all n\geq 3 . Now we use mathematical induction to prove (2.8) . When n = 3 , the left-hand side and right-hand side of (2.8) are 2^{6} = 64 and i(3)/j(3) = 941/17\thickapprox 55.\, 353 , which implies (2.8) holds for n = 3 . Assuming that (2.8) holds for n = m , that is,

    \begin{equation} 2^{2m} > \frac{i(m)}{j(m)}. \end{equation} (2.9)

    Next, we prove that (2.8) is valid for n = m+1 . By (2.9) we have

    \begin{equation*} 2^{2\left( m+1\right) } = 4\cdot 2^{2m} > 4\frac{i(m)}{j(m)}, \end{equation*}

    in order to complete the proof of (2.8) it suffices to show that

    \begin{equation*} 4\frac{i(m)}{j(m)} > \frac{i(m+1)}{j(m+1)}\Longleftrightarrow 4i(m)j(m+1)-i(m+1)j(m) > 0. \end{equation*}

    In fact,

    \begin{eqnarray*} &&4i(m)j(m+1)-i(m+1)j(m) \\ & = & 17\, 280m^{7}+90\, 720m^{6}-60\, 000m^{5}-97\, 176m^{4}+ 1169\, 232m^{3}+2266\, 104m^{2} \\ &&+3581\, 136m+2154\, 816 \\ & = &146\, 337\, 408+234\, 401\, 616\left( m-3\right) +189\, 746\, 328 \left( m-3\right) ^{2}+92\, 580\, 720\left( m-3\right) ^{3} \\ &&+27\, 579\, 624\left( m-3\right) ^{4}+ 4838\, 880\left( m-3\right) ^{5}+453\, 600\left( m-3\right) ^{6}+17\, 280 \left( m-3\right) ^{7} \\ & > &0 \end{eqnarray*}

    for m\geq 3 due to the coefficients of the power square of \left(m-1\right) are positive.

    By Lemma 2.3 we get that A(t)/B(t) is strictly increasing on \left(0, \infty \right). So the function l_{2}(x) is strictly decreasing on \left(0, \infty \right) .

    The proof of Lemma 2.7 is complete.

    Via (1.3) and (1.2) we can obtain

    \begin{eqnarray*} f_{\mathbf{A}}(t) & = &t, \\ f_{\mathbf{C}_{e}}(t) & = &\frac{3t}{3+t^{2}}, \\ f_{\mathbf{M}_{\sin }}(t) & = &\sin t, \\ f_{\mathbf{M}_{\tanh }}(t) & = &\tanh t. \end{eqnarray*}

    Then by Lemma 2.1 and \left(2.3\right) we have

    \begin{eqnarray*} \alpha _{p} & < &\frac{\mathbf{M}_{\sin }^{p}-\mathbf{A}^{p}}{\mathbf{Ce}^{p}- \mathbf{A}^{p}} < \beta _{p}\Longleftrightarrow \alpha _{p} < \frac{\left( \frac{ 1}{\sin t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{3+t^{2}}{ 3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} < \beta _{p}, \\ \lambda _{p} & < &\frac{\mathbf{M}_{\tanh }^{p}-\mathbf{A}^{p}}{\mathbf{Ce} ^{p}-\mathbf{A}^{p}} < \mu _{p}\Longleftrightarrow \lambda _{p} < \frac{\left( \frac{1}{\tanh t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{ 3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} < \mu _{p}. \end{eqnarray*}

    So we turn to the proof of the following two theorems.

    Theorem 3.1. Let t\in (0, 1) and

    \begin{equation*} p^{\clubsuit } = \frac{3\cos 2+\sin 2+1}{3\sin 2-\cos 2-3}\thickapprox 4.\, 588. \end{equation*}

    Then,

    (i) if p\geq p^{\clubsuit } , the double inequality

    \begin{equation} \alpha _{p} < \frac{\left( \frac{1}{\sin t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}} < \beta _{p} \end{equation} (3.1)

    holds if and only if \alpha _{p}\leq 3^{p}\left(1-\sin ^{p}1\right) /\left[\left(\sin ^{p}1\right) \left(4^{p}-3^{p}\right) \right] and \beta _{p}\geq 1/2 ;

    (ii) if 0\neq p\leq 12/5 = 2.\, 4 and p\neq 0 the double inequality

    \begin{equation} \beta _{p} < \frac{\left( \frac{1}{\sin t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}} < \alpha _{p} \end{equation} (3.2)

    holds if and only if \alpha _{p}\leq 1/2 and \beta \geq 3^{p}\left(1-\sin ^{p}1\right) /\left[\left(\sin ^{p}1\right) \left(4^{p}-3^{p}\right) \right].

    Theorem 3.2. Let t\in (0, 1) and

    \begin{equation*} p^{\ast } = -\frac{16\cosh 2-3\cosh 4+4\sinh 2+3}{\cosh 4-12\sinh 2+15} \thickapprox - 3.\, 477\, 6. \end{equation*}

    If 0\neq p\geq - 3.\, 477\, 6 , the double inequality

    \begin{equation} \lambda _{p} < \frac{\left( \frac{1}{\tanh t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}} < \mu _{p} \end{equation} (3.3)

    holds if and only if \lambda _{p}\leq \left(\left(\coth 1\right) ^{p}-1\right) /\left(\left(4/3\right) ^{p}-1\right) and \mu _{p}\geq 1 .

    Let

    \begin{eqnarray*} F(t) & = &\frac{\left( \frac{1}{\sin t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} = \frac{\left( \frac{t}{\sin t}\right) ^{p}-1}{\left( \frac{3+t^{2}}{3}\right) ^{p}-1} \\ & = :&\frac{f(t)}{g(t)} = \frac{f(t)-f(0^{+})}{g(t)-g(0^{+})}, \end{eqnarray*}

    where

    \begin{eqnarray*} f(t) & = &\left( \frac{t}{\sin t}\right) ^{p}-1, \\ g(t) & = &\left( \frac{3+t^{2}}{3}\right) ^{p}-1. \end{eqnarray*}

    Then

    \begin{eqnarray*} f^{\prime }(t) & = & \frac{p}{\sin ^{2}t}\left( \sin t-t\cos t\right) \left( \frac{t}{\sin t}\right) ^{p-1}, \\ g^{\prime }(t) & = & \frac{2}{3}\left( \frac{1}{3}\right) ^{p-1}pt\left( t^{2}+3\right) ^{p-1}, \end{eqnarray*}
    \begin{equation*} \frac{f^{\prime }(t)}{g^{\prime }(t)} = \frac{3^{p}}{2}\frac{1}{ t\sin ^{2}t}\left( \sin t-t\cos t\right) \left( \frac{t}{\left( t^{2}+3\right) \sin t}\right) ^{p-1} , \end{equation*}

    and

    \begin{eqnarray*} \left( \frac{f^{\prime }(t)}{g^{\prime }(t)}\right) ^{\prime } & = &\frac{1}{4} \left( \frac{3t}{\left( \sin t\right) \left( t^{2}+3\right) }\right) ^{p} \frac{r_{1}(t)}{t^{3}\sin ^{2}t}\left[ \frac{s_{1}(t)}{r_{1}(t)}-p\right] \\ & = :&\frac{1}{4}\left( \frac{3t}{\left( \sin t\right) \left( t^{2}+3\right) } \right) ^{p}\frac{r_{1}(t)}{t^{3}\sin ^{2}t}\left[ l_{1}(t)-p\right] , \end{eqnarray*}

    where the three functions s_{1}(t) , r_{1}(t) , and l_{1}(t) are shown in Lemma 2.6 .

    By Lemma 2.6 we can obtain the following results:

    (a) When p\geq \max_{t\in (0, 1)}l_{1}(t) = :p^{\clubsuit } = \left(3\cos 2+\sin 2+1\right) /\left(3\sin 2-\cos 2-3\right) \thickapprox 4.\, 588 ,

    \begin{equation*} \left( \frac{f^{\prime }(t)}{g^{\prime }(t)}\right) ^{\prime }\leq 0\Longrightarrow \frac{f^{\prime }(t)}{g^{\prime }(t)}~\text{ is decreasing on }~(0, 1)\text{, } \end{equation*}

    this leads to F(t) = f(t)/g(t) is decreasing on (0, 1) by Lemma 2.1 . In view of

    \begin{equation} F(0^{+}) = \frac{1}{2}, \text{ }F(1^{-}) = \frac{3^{p}\left( 1-\sin ^{p}1\right) }{\left( \sin ^{p}1\right) \left( 4^{p}-3^{p}\right) }, \end{equation} (3.4)

    we have that \left(3.1\right) holds.

    (b) When 0\neq p\leq 12/5 = \min_{t\in (0, 1)}l_{1}(t),

    \begin{equation*} \left( \frac{f^{\prime }(t)}{g^{\prime }(t)}\right) ^{\prime }\geq 0\Longrightarrow \frac{f^{\prime }(t)}{g^{\prime }(t)}\text{ is increasing on }(0, 1)\text{, } \end{equation*}

    this leads to F(t) = f(t)/g(t) is increasing on (0, 1) by Lemma 2.2 . In view of \left(3.4\right) we have that \left(3.2\right) holds.

    The proof of Theorem 3.1 is complete.

    Let

    \begin{eqnarray*} G(t) & = &\frac{\left( \frac{1}{\tanh t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} = \frac{\left( \frac{t}{\tanh t}\right) ^{p}-1}{\left( \frac{3+t^{2}}{3} \right) ^{p}-1} \\ & = :&\frac{u(t)}{v(t)} = \frac{u(t)-u(0^{+})}{v(t)-v(0^{+})}. \end{eqnarray*}

    Then

    \begin{eqnarray*} u^{\prime }(t) & = & \frac{p}{\tanh ^{2}t}\left( \frac{t}{\tanh t} \right) ^{p-1}\left( t\tanh ^{2}t+\tanh t-t\right) , \\ v^{\prime }(t) & = & \frac{2}{3}pt\left( \frac{t^{2}+3}{3}\right) ^{p-1}, \end{eqnarray*}
    \begin{equation*} \frac{u^{\prime }(t)}{v^{\prime }(t)} = \frac{3}{2}\frac{t\tanh ^{2}t+\tanh t-t }{t\tanh ^{2}t}\left[ \frac{3t}{\left( t^{2}+3\right) \tanh t}\right] ^{p-1} , \end{equation*}

    and

    \begin{eqnarray*} \left( \frac{u^{\prime }(t)}{v^{\prime }(t)}\right) ^{\prime } & = &-\frac{1}{ 16}\left[ \frac{3t\cosh t}{\left( 3+t^{2}\right) \sinh t}\right] ^{p}\frac{ A(t)}{t^{3}\cosh ^{2}t\sinh ^{2}t}\left[ p+\frac{2B(t)}{A(t)}\right] \\ & = :&-\frac{1}{16}\left[ \frac{3t\cosh t}{\left( 3+t^{2}\right) \sinh t} \right] ^{p}\frac{A(t)}{t^{3}\cosh ^{2}t\sinh ^{2}t}\left[ p+l_{2}\left( t\right) \right] , \end{eqnarray*}

    where the three functions A(t) , B(t) , and l_{2}(t) are shown in Lemma 2.7 . By Lemma 2.7 we see that l_{2}(x) is strictly decreasing on \left(0, 1\right) . Since

    \begin{eqnarray*} \lim\limits_{t\rightarrow 0^{+}}l_{2}(t) & = &\infty , \\ \lim\limits_{t\rightarrow 1^{-}}l_{2}(t) & = &\frac{16\cosh 2-3\cosh 4+4\sinh 2+3}{ \cosh 4-12\sinh 2+15} = :p_{\#}\thickapprox 3.\, 477\, 6, \end{eqnarray*}

    we obtain the following result:

    When p\geq \max_{t\in \left(0, 1\right) }\left\{ -l_{2}(t)\right\} = -p_{\#} = :p^{\ast }\thickapprox -3.\, 477\, 6,

    \begin{equation*} \left( \frac{u^{\prime }(t)}{v^{\prime }(t)}\right) ^{\prime }\leq 0\Longrightarrow \frac{u^{\prime }(t)}{v^{\prime }(t)}~\text{ is decreasing on }~(0, 1)\text{, } \end{equation*}

    this leads to G(t) = u(t)/v(t) is decreasing on (0, 1) by Lemma 2.2 . Since

    \begin{equation*} G(0^{+}) = 1, G(1^{-}) = \frac{\left( \frac{\cosh 1}{\sinh 1}\right) ^{p}-1}{ \left( \frac{4}{3}\right) ^{p}-1}, \end{equation*}

    we have

    \begin{equation*} G(1^{-}) < G(t) < G(0^{+}), \end{equation*}

    which completes the proof of Theorem 3.2.

    Remark 4.1. Letting p = 1, -1, 2, -2 in Theorems 1.1 and 1.2 respectively, one can obtain Propositions 1.1–1.8.

    From Theorems 1.1 and 1.2, we can also get the following important conclusions:

    Corollary 4.1. Let x, y > 0 , x\neq y , and

    \begin{eqnarray*} p^{\clubsuit } & = &\frac{3\cos 2+\sin 2+1}{3\sin 2-\cos 2-3}\thickapprox 4.\, 588, \\ \alpha & = &\frac{3^{p^{\clubsuit }}\left( 1-\sin ^{p^{\clubsuit }}1\right) }{ \left( \sin ^{p^{\clubsuit }}1\right) \left( 4^{p^{\clubsuit }}-3^{p^{\clubsuit }}\right) }\thickapprox 0.440\, 25, \\ \beta & = &\frac{1}{2}. \end{eqnarray*}

    Then the double inequality

    \begin{equation} (1-\alpha )\mathbf{A}^{p^{\clubsuit }}+\alpha \mathbf{Ce}^{p^{\clubsuit }} < \mathbf{M}_{\sin }^{p^{\clubsuit }} < (1-\beta )\mathbf{A}^{p^{\clubsuit }}+\beta \mathbf{Ce}^{p^{\clubsuit }} \end{equation} (4.1)

    holds, where the constants \alpha and \beta are the best possible in (4.1).

    Corollary 4.2. Let x, y > 0 , x\neq y , and

    \begin{eqnarray*} \theta & = &\frac{1}{2}, \\ \vartheta & = &\frac{3^{12/5}\left( 1-\sin ^{12/5}1\right) }{\left( \sin ^{12/5}1\right) \left( 4^{12/5}-3^{12/5}\right) }\thickapprox 0.516\, 03. \end{eqnarray*}

    Then the double inequality

    \begin{equation} (1-\theta )\mathbf{A}^{12/5}+\theta \mathbf{Ce}^{12/5} < \mathbf{M}_{\sin }^{12/5} < (1-\vartheta )\mathbf{A}^{12/5}+\vartheta \mathbf{Ce}^{12/5} \end{equation} (4.2)

    holds, where the constants \theta and \vartheta are the best possible in (4.2).

    Corollary 4.3. Let x, y > 0 , x\neq y , and

    \begin{eqnarray*} p^{\ast } & = &-\frac{16\cosh 2-3\cosh 4+4\sinh 2+3}{\cosh 4-12\sinh 2+15} \thickapprox - 3.\, 477\, 6, \\ \lambda & = &\frac{\left( \coth 1\right) ^{p^{\ast }}-1}{\left( 4/3\right) ^{p^{\ast }}-1}\thickapprox 0.968\, 13, \\ \mu & = &1. \end{eqnarray*}

    Then the double inequality

    \begin{equation} (1-\mu)\mathbf{A}^{p^{\ast }}+\mu\mathbf{Ce}^{p^{\ast }} < \mathbf{M}_{\tanh }^{p^{\ast }} < (1-\lambda)\mathbf{A}^{p^{\ast }}+\lambda\mathbf{Ce}^{p^{\ast }} \end{equation} (4.3)

    holds, where the constants \lambda and \mu are the best possible in (4.3).

    In this paper, we have studied exponential type inequalities for \mathbf{M} _{\sin } and \mathbf{M}_{\tanh } in term of \mathbf{A} and \mathbf{Ce} for nonzero number p\in \mathbb{R} :

    \begin{eqnarray*} (1-\alpha _{p})\mathbf{A}^{p}+\alpha _{p}\mathbf{Ce}^{p} & < &\mathbf{M}_{\sin }^{p} < (1-\beta _{p})\mathbf{A}^{p}+\beta _{p}\mathbf{Ce}^{p}, \\ (1-\lambda _{p})\mathbf{A}^{p}+\lambda _{p}\mathbf{Ce}^{p} & < &\mathbf{M} _{\tanh }^{p} < (1-\mu _{p})\mathbf{A}^{p}+\mu _{p}\mathbf{Ce}^{p}, \end{eqnarray*}

    obtained a lot of interesting conclusions which include the ones of the previous similar literature. In fact, we can consider similar inequalities for dual means of the two means \mathbf{M}_{\sin } and \mathbf{M}_{\tanh } , and we can replace \mathbf{A} and \mathbf{Ce} by other famous means. Therefore, the content of this research is very extensive.

    The authors are grateful to editor and anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

    The first author was supported by the National Natural Science Foundation of China (no. 61772025). The second author was supported in part by the Serbian Ministry of Education, Science and Technological Development, under projects ON 174032 and III 44006.

    The authors declare that they have no conflict of interest.



    [1] X. Zhao, W. D. Zhu, Y. H. Li, Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions, J. Sound Vib., 481 (2020), 115407. https://doi.org/10.1016/j.jsv.2020.115407 doi: 10.1016/j.jsv.2020.115407
    [2] Z. Adam, A. Yahya, A. E. Abouelregal, M. Suhail, Vibration analysis of thermoelastic microbeams on a Pasternak foundation with two parameters using the Moore–Gibson–Thompson heat conduction model, Continuum Mech. Thermodyn., 37 (2025), 27. https://doi.org/10.1007/s00161-025-01358-z doi: 10.1007/s00161-025-01358-z
    [3] Y. Sun, D. Fang, A. K. Soh, Thermoelastic damping in micro-beam resonators, Int. J. Solids Struct., 43 (2006), 3213–3229. https://doi.org/10.1016/j.ijsolstr.2005.08.011 doi: 10.1016/j.ijsolstr.2005.08.011
    [4] K. Ramachandran, V. Boopalan, J. C. Bear, R. Subramani, Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: a review, J. Mater. Sci., 57 (2022), 3923–3953. https://doi.org/10.1007/s10853-021-06760-x doi: 10.1007/s10853-021-06760-x
    [5] P. Zahedinejad, C. Zhang, H. Zhang, S. Ju, A comprehensive review on vibration analysis of functionally graded beams, Int. J. Struct. Stab. Dyn., 20 (2020), 2030002. https://doi.org/10.1142/S0219455420300025 doi: 10.1142/S0219455420300025
    [6] M. Kandaz, H. Dal, A comparative study of modified strain gradient theory and modified couple stress theory for gold microbeams, Arch. Appl. Mech., 88 (2018), 2051–2070. https://doi.org/10.1007/s00419-018-1436-0 doi: 10.1007/s00419-018-1436-0
    [7] B. Zhao, T. Liu, J. Chen, X. Peng, Z. Song, A new Bernoulli–Euler beam model based on modified gradient elasticity, Arch. Appl. Mech., 89 (2019), 277–289. https://doi.org/10.1007/s00419-018-1464-9 doi: 10.1007/s00419-018-1464-9
    [8] X. Liang, S. Hu, S. Shen, A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications, Compos. Struct., 111 (2014), 317–323. https://doi.org/10.1016/j.compstruct.2014.01.019 doi: 10.1016/j.compstruct.2014.01.019
    [9] O. Doeva, P. K. Masjedi, P. M. Weaver, Closed form solutions for an anisotropic composite beam on a two-parameter elastic foundation, Eur. J. Mech.-A/Solids, 88 (2021), 104245. https://doi.org/10.1016/j.euromechsol.2021.104245 doi: 10.1016/j.euromechsol.2021.104245
    [10] U. Bhattiprolu, A. K. Bajaj, P. Davies, An efficient solution methodology to study the response of a beam on viscoelastic and nonlinear unilateral foundation: static response, Int. J. Solids Struct., 50 (2013), 2328–2339. https://doi.org/10.1016/j.ijsolstr.2013.03.014 doi: 10.1016/j.ijsolstr.2013.03.014
    [11] A. E. Abouelregal, I. Dassios, O. Moaaz, Moore–Gibson–Thompson thermoelastic model effect of laser-induced microstructures of a microbeam sitting on Visco-Pasternak foundations, Appl. Sci., 12 (2022), 9206. https://doi.org/10.3390/app12189206 doi: 10.3390/app12189206
    [12] S. Pradhan, T. Murmu, Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method, J. Sound Vib., 321 (2009), 342–362. https://doi.org/10.1016/j.jsv.2008.09.018 doi: 10.1016/j.jsv.2008.09.018
    [13] M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956), 240–253. https://doi.org/10.1063/1.1722351 doi: 10.1063/1.1722351
    [14] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
    [15] A. E. Green, K. Lindsay, Thermoelasticity, J. Elast., 2 (1972), 1–7. https://doi.org/10.1007/BF00045689 doi: 10.1007/BF00045689
    [16] A. Green, P. Naghdi, Thermoelasticity without energy dissipation, J. Elast., 31 (1993), 189–208. https://doi.org/10.1007/BF00044969 doi: 10.1007/BF00044969
    [17] M. A. Biot, D. G. Willis, The elastic coefficients of the theory of consolidation, J. Appl. Mech., 24 (1957), 594–601. https://doi.org/10.1115/1.4011606 doi: 10.1115/1.4011606
    [18] D. Y. Tzou, The generalized lagging response in small-scale and high-rate heating, Int. J. Heat Mass Tran., 38 (1995), 3231–3240. https://doi.org/10.1016/0017-9310(95)00052-B doi: 10.1016/0017-9310(95)00052-B
    [19] A. E. Green, P. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. R. Soc. Lond. Ser. A, 432 (1991), 171–194. https://doi.org/10.1098/rspa.1991.0012 doi: 10.1098/rspa.1991.0012
    [20] A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136
    [21] B. Kaltenbacher, I. Lasiecka, R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybern., 40 (2011), 971–988.
    [22] F. Dell'Oro, I. Lasiecka, V. Pata, The Moore–Gibson–Thompson equation with memory in the critical case, J. Differ. Equations, 261 (2016), 4188–4222. https://doi.org/10.1016/j.jde.2016.06.025 doi: 10.1016/j.jde.2016.06.025
    [23] I. Lasiecka, X. Wang, Moore–Gibson–Thompson equation with memory, part Ⅱ: general decay of energy, J. Differ. Equations, 259 (2015), 7610–7635. https://doi.org/10.1016/j.jde.2015.08.052 doi: 10.1016/j.jde.2015.08.052
    [24] M. Conti, V. Pata, R. Quintanilla, Thermoelasticity of Moore–Gibson–Thompson type with history dependence in the temperature, Asymptotic Anal., 120 (2020), 1–21. https://doi.org/10.3233/ASY-191576 doi: 10.3233/ASY-191576
    [25] R. Quintanilla, Moore–Gibson–Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020–4031. https://doi.org/10.1177/1081286519862007 doi: 10.1177/1081286519862007
    [26] N. Bazarra, J. R. Fernández, R. Quintanilla, Analysis of a Moore–Gibson–Thompson thermoelastic problem, J. Comput. Appl. Math., 382 (2021), 113058. https://doi.org/10.1016/j.cam.2020.113058 doi: 10.1016/j.cam.2020.113058
    [27] D. G. B. Edelen, N. Laws, On the thermodynamics of systems with nonlocality, Arch. Rational Mech. Anal., 43 (1971), 24–35. https://doi.org/10.1007/BF00251543 doi: 10.1007/BF00251543
    [28] D. G. B. Edelen, A. E. Green, N. Laws, Nonlocal continuum mechanics, Arch. Rational Mech. Anal., 43 (1971), 36–44. https://doi.org/10.1007/BF00251544 doi: 10.1007/BF00251544
    [29] H. Zhou, X. Song, P. Li, Generalized thermoelastic dissipation in micro/nano-beams with two-dimensional heat conduction, Int. J. Mech. Sci., 252 (2023), 108371. https://doi.org/10.1016/j.ijmecsci.2023.108371 doi: 10.1016/j.ijmecsci.2023.108371
    [30] X. Song, P. Li, H. Zhou, Generalized frequency shift and attenuation in simply-supported micro/nano-beam resonators with thermoelastic dissipation, J. Therm. Stresses, 47 (2024), 395–417. https://doi.org/10.1080/01495739.2023.2301609 doi: 10.1080/01495739.2023.2301609
    [31] A. C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., 10 (1972), 425–435. https://doi.org/10.1016/0020-7225(72)90050-X doi: 10.1016/0020-7225(72)90050-X
    [32] D. Singh, G. Kaur, S. K. Tomar, Waves in nonlocal elastic solid with voids, J. Elast., 128 (2017), 85–114. https://doi.org/10.1007/s10659-016-9618-x doi: 10.1007/s10659-016-9618-x
    [33] A. C. Eringen, Theory of nonlocal thermoelasticity, Int. J. Eng. Sci., 12 (1974), 1063–1077. https://doi.org/10.1016/0020-7225(74)90033-0 doi: 10.1016/0020-7225(74)90033-0
    [34] F. Balta, E. S. Şuhubi, Theory of nonlocal generalized thermoelasticity, Int. J. Eng. Sci., 15 (1977), 579–588. https://doi.org/10.1016/0020-7225(77)90054-4 doi: 10.1016/0020-7225(77)90054-4
    [35] S. Biswas, Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space, Acta Mech., 231 (2020), 4129–4144. https://doi.org/10.1007/s00707-020-02751-2 doi: 10.1007/s00707-020-02751-2
    [36] P. Lata, S. Singh, Rayleigh wave propagation in a nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer, Int. J. Geomath., 13 (2022), 5. https://doi.org/10.1007/s13137-022-00195-5 doi: 10.1007/s13137-022-00195-5
    [37] A. M. Abd-Alla, S. M. Abo-Dahab, S. M. Ahmed, M. M. Rashid, Effect of magnetic field and voids on Rayleigh waves in a nonlocal thermoelastic half-space, J. Strain Anal. Eng. Des., 57 (2021), 61–72. https://doi.org/10.1177/03093247211001243 doi: 10.1177/03093247211001243
    [38] K. Jangid, M. Gupta, S. Mukhopadhyay, On propagation of harmonic plane waves under the Moore–Gibson–Thompson thermoelasticity theory, Waves Random Complex Media, 34 (2021), 1976–1999. https://doi.org/10.1080/17455030.2021.1949071 doi: 10.1080/17455030.2021.1949071
    [39] R. Quintanilla, Moore–Gibson–Thompson thermoelasticity with two temperatures, Appl. Eng. Sci., 1 (2020), 100006. https://doi.org/10.1016/j.apples.2020.100006 doi: 10.1016/j.apples.2020.100006
    [40] M. Lazer, E Agiasofal, Nonlocal elasticity of Klein–Gordon type: fundamentals and wave propagation, Wave Motion, 114 (2022), 103038. https://doi.org/10.1016/j.wavemoti.2022.103038 doi: 10.1016/j.wavemoti.2022.103038
    [41] O. A. Bauchau, J. I. Craig, Euler–Bernoulli beam theory, In: O. A. Bauchau, J. I. Craig, Structural analysis, Solid Mechanics and Its Applications, Springer, 163 (2009), 173–221. https://doi.org/10.1007/978-90-481-2516-6_5
    [42] O. Aldraihem, R. Wetherhold, T. Singh, Intelligent beam structures: Timoshenko theory vs. Euler-Bernoulli theory, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro, 1996,976–981. https://doi.org/10.1109/CCA.1996.559047
    [43] X. Wang, R. Therefore, Y. Liu, Flow-induced vibration of an Euler–Bernoulli beam, J. Sound Vib., 243 (2001), 241–268. https://doi.org/10.1006/jsvi.2000.3342 doi: 10.1006/jsvi.2000.3342
    [44] A. D. Kerr, A study of a new foundation model, Acta Mech., 1 (1965), 135–147. https://doi.org/10.1007/BF01174308 doi: 10.1007/BF01174308
    [45] A. Zakria, O. A. A. Osman, M. Suhail, M. N. A. Rabih, Fractional Moore–Gibson–Thompson heat conduction for vibration analysis of non-local thermoelastic Micro-Beams on a viscoelastic Pasternak foundation, Fractal Fract., 9 (2025), 118. https://doi.org/10.3390/fractalfract9020118 doi: 10.3390/fractalfract9020118
  • This article has been cited by:

    1. Miao-Kun Wang, Zai-Yin He, Tie-Hong Zhao, Qi Bao, Sharp weighted Hölder mean bounds for the complete elliptic integral of the second kind, 2022, 1065-2469, 1, 10.1080/10652469.2022.2155819
    2. Ling Zhu, New Bounds for Arithmetic Mean by the Seiffert-like Means, 2022, 10, 2227-7390, 1789, 10.3390/math10111789
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(218) PDF downloads(47) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog