This study investigates boundary value problems for nonlinear fractional-order differential equations. The differential operator is interpreted in the Riemann-Liouville sense and is coupled with a non-linearrrrr term that involves the fractional derivative of the unknown function. Using the Schauder fixed point theorem, the Banach fixed point theorem, and the Leray-Schauder continuation theorem, we establish results regarding the existence and uniqueness of solutions within suitable function spaces. Additionally, we provide concrete examples of various boundary value problems involving fractional-order differential equations to demonstrate the applicability of the theory developed.
Citation: Yujun Cui, Chunyu Liang, Yumei Zou. Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence[J]. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
This study investigates boundary value problems for nonlinear fractional-order differential equations. The differential operator is interpreted in the Riemann-Liouville sense and is coupled with a non-linearrrrr term that involves the fractional derivative of the unknown function. Using the Schauder fixed point theorem, the Banach fixed point theorem, and the Leray-Schauder continuation theorem, we establish results regarding the existence and uniqueness of solutions within suitable function spaces. Additionally, we provide concrete examples of various boundary value problems involving fractional-order differential equations to demonstrate the applicability of the theory developed.
| [1] |
J. M. Gallardo, Second order differential operators with integral boundary conditions and generation of semigroups, Rocky Mountain J. Math., 30 (2000), 1265–1292. http://doi.org/10.1216/rmjm/1021477351 doi: 10.1216/rmjm/1021477351
|
| [2] |
G. L. Karakostas, P. Ch. Tsamatos, Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. Differential Equation, 30 (2002), 1–17. http://doi.org/10.1023/A:1013391904853 doi: 10.1023/A:1013391904853
|
| [3] |
A. Lomtatidze, L. Malaguti, On a nonlocal boundary-value problems for second order nonlinear singular differential equations, Georgian Math., 7 (2000), 133–154. http://doi.org/10.1515/GMJ.2000.133 doi: 10.1515/GMJ.2000.133
|
| [4] | C. Corduneanu, Integral Equations and Applications, Cambridge: Cambridge University Press, 1991. http://doi.org/10.1017/CBO9780511569395 |
| [5] | H. O. Fattorini, Second order linear differential equations in Banach spaces, North-Holland, 1985. http://doi.org/10.2140/pjm.1990.142.175 |
| [6] |
A. A. Kilbas, J. J. Trujillo, Differential equations of fractional order: Methods, results and problems—Ⅰ, Appl. Anal., 78 (2001), 153–192. http://doi.org/10.1080/00036810108840931 doi: 10.1080/00036810108840931
|
| [7] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. http://doi.org/10.1016/S0304-0208(06)80001-0 |
| [8] |
I. Bachar, H. Maagli, H. Eltayeb, Existence and iterative method for some Riemann fractional nonlinear boundary value problems, Mathematics, 7 (2019), 961. http://doi.org/10.3390/math7100961 doi: 10.3390/math7100961
|
| [9] |
Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
|
| [10] |
X. Xu, D. Jiang, C. Yuan, Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Anal. Theory Methods Appl., 71 (2009), 4676–4688. http://doi.org/10.1016/j.na.2009.03.030 doi: 10.1016/j.na.2009.03.030
|
| [11] |
N. Kosmatov, A singular boundary value problem for nonlinear differential equations of fractional order, J. Appl. Math. Comput., 29 (2009), 125–135. http://doi.org/10.1007/s12190-008-0104-x doi: 10.1007/s12190-008-0104-x
|
| [12] |
X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 22 (2009), 64–69. http://doi.org/10.1016/j.aml.2008.03.001 doi: 10.1016/j.aml.2008.03.001
|
| [13] |
C. Zhai, M. Hao, Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems, Nonlinear Anal. Theory Methods Appl., 75 (2012), 2542–2551. http://doi.org/10.1016/j.na.2011.10.048 doi: 10.1016/j.na.2011.10.048
|
| [14] |
Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 51 (2016), 48–54. http://doi.org/10.1016/j.aml.2015.07.002 doi: 10.1016/j.aml.2015.07.002
|
| [15] |
I. Bachar, H. Maagli, H. Eltayeb, Existence and uniqueness of solutions for a class of fractional nonlinear boundary value problems under mild assumptions, Adv. Differ. Equ., 2021 (2021), 22. http://doi.org/10.1186/s13662-020-03176-w doi: 10.1186/s13662-020-03176-w
|
| [16] | S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Equations., 2006 (2006), 1–12. |
| [17] |
Y. Wang, Necessary conditions for the existence of positive solutions to fractional boundary value problems at resonance, Appl. Math. Lett., 97 (2019), 34–40. http://doi.org/10.1016/j.aml.2019.05.007 doi: 10.1016/j.aml.2019.05.007
|
| [18] |
J. Mawhin, Leray-Schauder continuation theorems in the absence of a priori bounds, Topol. Methods Nonlinear Anal., 4 (1997), 179–200. http://doi.org/10.12775/TMNA.1997.008 doi: 10.12775/TMNA.1997.008
|
| [19] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer. http://doi.org/10.1007/978-0-387-21593-8 |