
The primary goal of this study is to create a novel mathematical model based on the time-stepping boundary element method (BEM) scheme for solving three-dimensional coupled dynamic thermoelastic fracture issues in anisotropic functionally graded materials (FGMs). The crack tip opening displacement determines the dynamic stress intensity factor (SIF). The effects of anisotropy, graded parameters, and angle locations on the SIF were studied for three-dimensional coupled dynamic thermoelastic fracture situations. The results show that the novel method is exceptionally exact and efficient at assessing the fracture mechanics of fractured thermoelastic anisotropic FGMs. In addition, this paper provides a theoretical framework for analyzing a wide range of real engineering applications.
Citation: Mohamed Abdelsabour Fahmy, Ahmad Almutlg. A time-stepping BEM for three-dimensional thermoelastic fracture problems of anisotropic functionally graded materials[J]. AIMS Mathematics, 2025, 10(2): 4268-4285. doi: 10.3934/math.2025197
[1] | Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451 |
[2] | Oussama Melkemi, Mohammed S. Abdo, Wafa Shammakh, Hadeel Z. Alzumi . Yudovich type solution for the two dimensional Euler-Boussinesq system with critical dissipation and general source term. AIMS Mathematics, 2023, 8(8): 18566-18580. doi: 10.3934/math.2023944 |
[3] | Xinli Wang, Haiyang Yu, Tianfeng Wu . Global well-posedness and optimal decay rates for the n-D incompressible Boussinesq equations with fractional dissipation and thermal diffusion. AIMS Mathematics, 2024, 9(12): 34863-34885. doi: 10.3934/math.20241660 |
[4] | Wei Zhang . A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion. AIMS Mathematics, 2023, 8(3): 6074-6094. doi: 10.3934/math.2023307 |
[5] | Muhammad Shakeel, Amna Mumtaz, Abdul Manan, Marouan Kouki, Nehad Ali Shah . Soliton solutions of the nonlinear dynamics in the Boussinesq equation with bifurcation analysis and chaos. AIMS Mathematics, 2025, 10(5): 10626-10649. doi: 10.3934/math.2025484 |
[6] | Shang Mengmeng . Large time behavior framework for the time-increasing weak solutions of bipolar hydrodynamic model of semiconductors. AIMS Mathematics, 2017, 2(1): 102-110. doi: 10.3934/Math.2017.1.102 |
[7] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
[8] | Hamood-Ur-Rahman, Muhammad Imran Asjad, Nayab Munawar, Foroud parvaneh, Taseer Muhammad, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Hooshmand Azizi, Masoumeh Khademi . Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique. AIMS Mathematics, 2022, 7(6): 11134-11149. doi: 10.3934/math.2022623 |
[9] | Ruihong Ji, Ling Tian . Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain. AIMS Mathematics, 2021, 6(11): 11837-11849. doi: 10.3934/math.2021687 |
[10] | Ali Althobaiti . Novel wave solutions for the sixth-order Boussinesq equation arising in nonlinear lattice dynamics. AIMS Mathematics, 2024, 9(11): 30972-30988. doi: 10.3934/math.20241494 |
The primary goal of this study is to create a novel mathematical model based on the time-stepping boundary element method (BEM) scheme for solving three-dimensional coupled dynamic thermoelastic fracture issues in anisotropic functionally graded materials (FGMs). The crack tip opening displacement determines the dynamic stress intensity factor (SIF). The effects of anisotropy, graded parameters, and angle locations on the SIF were studied for three-dimensional coupled dynamic thermoelastic fracture situations. The results show that the novel method is exceptionally exact and efficient at assessing the fracture mechanics of fractured thermoelastic anisotropic FGMs. In addition, this paper provides a theoretical framework for analyzing a wide range of real engineering applications.
Probability distributions are very important in modeling and fitting random phenomena in all areas of life. In the literature on distribution theory, there are various probability distributions for analyzing and predicting multiple kinds of data in many sectors, including life, biology, medical science, insurance, finance, engineering, and industry [1,2,3,4,5,6,7,8,9]. Based on existing findings, industrial data often exhibits a thick right tail, and many authors have developed several well-known right-skewed families. Afify et al. [10] defined the power-modified Kies-exponential distribution. Coşkun et al. [11] introduced the modified-Lindley distribution, and Gómez et al. [12] proposed the power piecewise exponential model. In addition, Dhungana and Kumar [13] proposed an exponentiated odd Lomax exponential distribution, while Hassan et al. [14] introduced the alpha power transformed extended exponential distribution. In the same line, Karakaya et al. [15], presented a unit-Lindley distribution, and Tung et al. [16] developed the Arcsine-X family of distributions.
To bring further flexibility to these generated distributions, various approaches of well-known models have been defined and used in several applied sciences to allow the smoothing parameter to vary across different locations in the data space. One of the new model-generating techniques is the error function (EF) transformation, which was first proposed by Fernández and De Andrade [17]. The cumulative distribution function (CDF) and the corresponding probability distribution function (PDF) of the EF transformation are as follows:
Δ(y)=erf(H(y)1−H(y)),y∈R, | (1.1) |
and
δ(y)=2h(y)√π(1−H(y))2 exp{−(H(y)1−H(y))2}. | (1.2) |
The EF transformation is a novel method for generalizing a given model, which transforms a distribution without adding any parameters. It is a modified version of traditional probability distributions for the relative importance or worth of data points. This strategy improves flexibility, allowing analysts to better explain real-world scenarios in which traditional random sampling fails to capture the underlying data structure. The derivation of the new attractive EF transformation to modify the existing distribution helps the fitting power of the existing distributions. The proposed method has many applications that extend to fitting, especially in industrial domains. However, recent works considering the EF technique, such as [18,19].
The inverse Weibull (IW) distribution is widely used in reliability and lifetime modeling for mortality rates, especially when studying extreme events. Since it captures tail behavior effectively, it is effective in understanding the upper quantiles of life expectancy or survival time. The CDF of the IW distribution, denoted as G(x), is defined as follows:
G(x)=e−θx−β,; x, θ,β>0. | (1.3) |
In reference to G(x) as stated in Eq (1.3), the PDF g(x) is formulated as:
g(x)=θβ x−(β+1) e−θx−β. | (1.4) |
The IW model has undoubtedly established itself as a crucial tool for data modeling across nearly all sectors. However, despite its widespread use and advantages, the IW distribution is constrained by its inherent limitations. One of the primary constraints of the IW distribution is its capacity to represent solely monotonic forms of hazard functions, as it can only model situations where the hazard rate increases or decreases consistently over time. More papers have used the IW model for many different statistical models, such as the following : Alzeley et al. [20] discussed statistical inference under censored data for IW model, Hussam et al. [21] discussed fuzzy vs. traditional reliability models, Ahmad et al. [22] derived the new cotangent IW model, Mohamed et al. [23] discussed Bayesian and E-Bayesian estimation for an odd generalized exponential IW model. Abdelall et al. [24] introduced a new extension of the odd IW model. Al Mutairi et al. [25] obtained Bayesian and non-Bayesian inference based on a jointly type-Ⅱ hybrid censoring model. Hassan et al. [26] discussed the statistical analysis of IW based on step-stress partially accelerated life testing. Alsadat et al. [27] presented novel Kumaraswamy power IW distribution with data analysis related to diverse scientific areas.
In this paper, we focus on providing a new form of the IW distribution for analyzing the datasets of different areas and highlighting specific characteristics. We extend this distribution by using the approach discussed in equation (1.1), and the resultant distribution is named the error function inverse Weibull (EF-IW) model. This heightened flexibility allows for a better fit to datasets with diverse kurtotic characteristics, enhancing the model's applicability across various scenarios. Further, the key objectives of the current study are as follows.
(1) The primary objective was extending the EF-IW distribution using the error function method, allowing for the derivation and investigation of its essential mathematical characteristics.
(2) The second main goal was to estimate the models' parameters using two different estimation methods, such as the maximum likelihood estimator (MLE) and Bayesian estimator, under different loss functions via Metropolis-Hastings (MH) algorithms. We conduct a detailed simulation study to demonstrate the behavior of derived estimators and pinpoint the most efficient estimation method.
(3) Two data sets from the industry field are utilized to illustrate the applicability and utilization of the proposed distribution.
The following is the organization of the study. Section 2 introduces the model description and the extension distribution, while Section 3 discusses various statistical properties such as moments, quantiles, and moment-generating functions. In Section 4, parameters are estimated using two different estimation methods. The performance of the EF-IW distribution using simulation is carried out and illustrated using three real industrial data sets in Sections 5 and 6, respectively. Finally, Section 7 presents the concluding remark of the paper.
Here, we provide the inverse Weibull distribution as a classical distribution. Plugging Eqs (1.3) and (1.4) into Eqs (1.1) and (1.2) gives the CDF and PDF of the new EF-IW model:
Ξ(z)=erf(e−θz−β1−e−θz−β),z,θ,β>0, | (2.1) |
and
ξ(z)=2θβ z−(β+1) e−θz−β√π(1−e−θz−β)2 exp{−(e−θz−β1−e−θz−β)2}, | (2.2) |
where erf(x)=2√π∫x0e−z2dz. The plots of the EF-IW PDF for some parameter values given in Figure 1 reveal that this function can be decreasing, unimodal, and skewed depending on the parameter values.
Suppose the random variable Z has a CDF denoted by Ξ(z). Then, its survival function (SF) and hazard rate function (HRF) can then be expressed as
S(z)=1−erf(e−θz−β1−e−θz−β), | (2.3) |
and
h(z)=2θβ z−(β+1) e−θz−β√π(1−e−θz−β)2[1−erf(t)] exp{−t}, | (2.4) |
with t=(e−θz−β1−e−θz−β)2.
Next, the cumulative hazard rate function (CHRF) and reversed hazard rate function (RHRF) of the random variable Z can be expressed as
H(z)=−log[1−erf(e−θz−β1−e−θz−β)], | (2.5) |
and
R(z)=2θβ z−(β+1) e−θz−β√π(1−e−θz−β)2 erf(e−θz−β1−e−θz−β). | (2.6) |
Figure 2 shows HRF plots of EF-IW for different sets of parameter values. It has increasing, unimodal, and decreasing shapes.
The quantile function Ξ−1(u) holds significant importance in simulation studies across various disciplines due to its ability to generate random variables with desired distribution characteristics.The quantile function of the new EF-IW model can be expressed as
Ξ−1(u)=[−1θlog(erf−1(u)1+erf−1(u))]−1/β,0≤u≤1, | (3.1) |
where erf−1(x)=Φ−1(x) is the standard normal quantile function.
Proof. By setting the Eq (2.1) equal u, we get
erf(e−θz−β1−e−θz−β)=u,e−θz−β1−e−θz−β=erf−1(u),e−θz−β(1+erf−1(u))=erf−1(u),e−θz−β=erf−1(u)1+erf−1(u),θz−β=−log(erf−1(u)1+erf−1(u)),z=[−1θlog(erf−1(u)1+erf−1(u))]−1/β. |
The quantile function can be used to compute the first, second, and third quantiles by replacing u with 14, 12, and 34.
Additionally, the Bowleys skewness (N) and Moors kurtosis (M) of the EF-IW model are described as
N=Ξ−1(1/4)+Ξ−1(3/4)−2Ξ−1(1/2)Ξ−1(3/4)−Ξ−1(1/4), |
and
M=Ξ−1(7/8)−Ξ−1(5/8)+Ξ−1(3/8)−Ξ−1(1/8)Ξ−1(6/8)−Ξ−1(2/8). |
In this part, we provide a series representation of the EF-IW CDF and PDF by employing the erf series, see Fernández and De Andrade [17] and Ajongba et al. [18],
erf(t)=2√(π)∞∑l=0(−1)lt2l+1l!(2l+1), |
and by applying the expansion
t1−t=∞∑j=0tj, |t|<1, |
the corresponding CDF of the EF-IW distribution can be rewritten as:
Ξ(z)=2√(π)∞∑l=0(−1)ll!(2l+1) [∞∑j=0 e−θz−β]2l+1. |
Now, consider the series expansion
[∞∑j=0ajtj]k=∞∑n=0Dk,n tn, |
where Dk,0=ak0 and Dk,n=1n a0n∑s=1 (sk−n+s) as Dk,n−s, n≥1.
Consequently, the EF-IW CDF takes the expression
Ξ(z)=2√π∞∑l=0∞∑n=0(−1)lD2l+1,nl!(2l+1) e−θ(n+2l+1)z−β=∞∑l=0∞∑n=0Cl,n e−θ(n+2l+1)z−β, |
with Cl,n=2(−1)lD2l+1,n√πl!(2l+1), D2l+1,n=1nn∑s=1[2s(l+1)−n] D2l+1,n−s and D2l+1,0=1.
Similarly, the density of the recommended EF-IW model becomes
ξ(z)=θβ∞∑l=0∞∑n=0 Hl,n z−β−1 e−θ(n+2l)z−β, |
with Hl,n=Cl,n(n+2l+1).
One of the efficient statistical criteria that can calculate symmetry, spread-ness, and asymmetry is the ordinary moment. The r-th moment of the EF-IW distribution, whose PDF is given in Eq (2.2), can be determined as follows:
μ′r=θ∞∑l=0∞∑n=0Hl,n Γ(1−rβ)[θ(2l+n)]1−rβ, | (3.2) |
where Γ(.) represents the gamma function.
Thus, for r=1 and r=2, the mean (μ′1) and second moment (μ′2) of the EF-IW distribution are defined, respectively, as
μ′1=θ∞∑l=0∞∑n=0Hl,n Γ(1−1β)[θ(2l+n)]1−1β, |
and
μ′2=θ∞∑l=0∞∑n=0Hl,n Γ(1−2β)[θ(2l+n)]1−2β. |
The variance (Varz) with a corresponding coefficient of variation (CV) for the EF-IW model are obtained to be
VarZ=μ′2−μ′21, |
and
CV=VarZμ′1. |
Table 1 defined various proposed mathematical characteristics of the suggested EF-IW. In addition, Figure 3 shows the 3D plots of these statistical properties.
β | μ1 | VarZ | CV | N | M | |
θ=0.4 | 0.3 | 0.0874 | 0.0234 | 1.7508 | 4.3227 | 30.106 |
0.6 | 0.2287 | 0.0351 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 0.3488 | 0.0369 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 0.4412 | 0.034 | 0.4179 | 0.5665 | 0.0143 | |
θ=0.6 | 0.3 | 0.3375 | 0.3492 | 1.7508 | 4.3227 | 30.106 |
0.6 | 0.4495 | 0.1355 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 0.5473 | 0.0908 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 0.6186 | 0.0668 | 0.4179 | 0.5665 | 0.0143 | |
θ=0.8 | 0.3 | 0.8806 | 2.3770 | 1.7508 | 4.3227 | 30.106 |
0.6 | 0.7260 | 0.3535 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 0.7534 | 0.1721 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 0.7862 | 0.1080 | 0.4179 | 0.5665 | 0.0143 | |
θ=1.2 | 0.3 | 3.4022 | 35.479 | 1.7508 | 4.3227 | 30.106 |
0.6 | 1.4270 | 1.3659 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 1.1822 | 0.4238 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 1.1022 | 0.2122 | 0.4179 | 0.5665 | 0.0143 | |
θ=1.5 | 0.3 | 7.1581 | 157.05 | 1.7508 | 4.3227 | 30.106 |
0.6 | 2.0699 | 2.8737 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 1.5149 | 0.6958 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 1.3274 | 0.3078 | 0.4179 | 0.5665 | 0.0143 |
The moment generating function (MGF), M(t) of the KMIW model is derived as
M(t)=θ∞∑l=0∞∑n=0∞∑r=0Hl,n trr! Γ(1−rβ)[θ(2l+n)]1−rβ. |
The PDF of the rth-order statistics for a sample of size m taken from the EF-IW model is expressed as follows:
k(r)(z)=m!ξ(z)(r−1)!(m−r)![Ξ(z)]r−1[1−Ξ(z)]m−r=m!(r−1)!(m−r)! θβ∞∑l=0∞∑n=0 Hl,n z−β−1 e−θ(n+2l)z−β [∞∑l=0∞∑n=0Cl,n e−θ(n+2l+1)z−β]r−1×[1−∞∑l=0∞∑n=0Cl,n e−θ(n+2l+1)z−β]m−r. |
In a special case, the PDF of the minimum 1th and maximum mth order statistics of the EF-IW distribution can be given below as
k(1)(z)=mθβ∞∑l=0∞∑n=0 Hl,n z−β−1 e−θ(n+2l)z−β [1−∞∑l=0∞∑n=0Cl,n e−θ(n+2l+1)z−β]1−r, |
and
k(m)(z)=mθβ∞∑l=0∞∑n=0 Hl,n z−β−1 e−θ(n+2l)z−β [∞∑l=0∞∑n=0Cl,n e−θ(n+2l+1)z−β]m−1. |
The corresponding CDF of the EF-IW model can be written as
K(r)(z)=m∑k=0Ξk(z)[1−Ξ(z)]m−k=m∑k=0[∞∑l=0∞∑n=0Cl,n e−θ(n+2l+1)z−β]k [1−∞∑l=0∞∑n=0Cl,n e−θ(n+2l+1)z−β]m−k. |
In this part of the study, we estimate the models' parameters η=(β,θ) using two different estimation methods. For this purpose, the maximum likelihood and Bayesian estimators are the estimation methods used.
Assuming {z1,z2,…,zm} are the observed values of a random sample {Z1,Z2,…,Zm} from the EF-IW distribution with vector of parameters η=(β,θ), the log-likelihood function can be obtained to be
LL(z)=m∑i=1logξ(z)=m∑i=1log(2θβ z−(β+1) e−θz−β√π(1−e−θz−β)2 exp{−(e−θz−β1−e−θz−β)2})∝mlogθ+mlogβ−2m∑i=1log(1−e−θz−βi)−θm∑i=1z−βi−(β+1)m∑i=1logzi−m∑i=1(e−θz−βi1−e−θz−βi)2. | (4.1) |
With the vector of the parameters η=(β,θ), the corresponding partial derivatives of Eq (4.1) are obtained as:
∂LL(z;ϑ)∂θ=mθ−2m∑i=1z−βie−θz−βi1−e−θz−βi−m∑i=1z−βi+2[m∑i=1z−βi e−3θz−βi(1−e−θz−βi)3+m∑i=1z−βi e−2θz−βi(1−e−θz−βi)2], | (4.2) |
and
∂LL(z;ϑ)∂β=mβ−m∑i=1logz−βi−θm∑i=1z−βilogzi+2θ[m∑i=1z−βilogzi e−3θz−βi(1−e−θz−βi)3+m∑i=1z−βilogzi e−2θz−βi(1−e−θz−βi)2]. | (4.3) |
The parameter estimates for the parameters η=(β,θ) can be obtained by solving the above non-linear equations with respect to the parameters. It might be difficult to obtain a precise solution to the derived equations, and thus one option to optimize them is to use techniques like the Newton-Raphson algorithm. We used the R software's optimize function in this case.
We proceed based on the information available on the unknown parameters obtained from the opinions of the researchers. The interpretation of the informative prior is rarely precise enough to determine a single prior distribution. However, there are laws calibrated according to the distribution of observations, called the conjugate prior or the gamma prior. For more details, see Xu [28] and Zhuang [29]. Assuming that the unknown parameters β and θ are random variables that have a Gamma distribution with PDF expressed as
π1(θ)=ba11Γ(a1) θa1−1 e−b1θ, θ,a1,b1>0, |
and
π1(β)=ba22Γ(a2s) βa2−1 e−b2β, β,a2,b2>0. |
Henceforth, the joint prior PDF of η=(β,θ) can be derived as
π(ϑ)∝θa1−1 βa2−1 e−b1θ−b2β. |
Next, the joint posterior PDF of η=(β,θ) is
π∗(ϑ∣z)=L(ϑ))π(ϑ)∣z)∝θm+a1−1 βm+a2−1 eb1θ−b2βm∏i=1=z−(β+1)i e−θz−βi(1−e−θz−βi)2 exp{−(e−θz−βi1−e−θz−βi)2}. |
The Bayes estimates of the parametric function η=(β,θ) under the assumption of the square error loss function (BSE) is the posterior mean of η. The BSE is
ˆfSE=∫ηf π∗(ϑ∣z)dη. | (4.4) |
Now, the Bayes estimator under linear exponential loss function (BLI), can be written f=eδ(η−ˆη)−δ(η−ˆη). The BLI is
ˆfLI=−1δlog(∫ηe−δf π∗(η∣z)dη). | (4.5) |
In the end, the Bayes estimator under general entropy loss function (BGE), defined as f=(ˆηη)δ−δlog(ˆηη)−1, is
ˆfGE=(∫ηf−δ π∗(η∣z)dη)−1/δ, | (4.6) |
with δ≠0. It is difficult to obtain analytical expressions of Eqs (4.4)–(4.6). To solve this issue, we have considered the Metropolis Hasting (MH) algorithm for this purpose.
In this section, a detailed simulation study is carried out to examine the behavior of two derived estimators using the R software to evaluate the efficiency of the recommended estimators. The results are presented for various sample sizes m={30,60,80,100} from the proposed EF-IW distribution and several parameter values of η=(β,θ) (Set 1: (0.5, 0.75), Set 2: (0.8, 1.25), and Set 3: (1.2, 1.5)) to provide more accurate and comprehensive results. The Monte Carlo simulations are repeated 1000 times, and the estimates are assessed based on the mean estimate (AEs) and mean squared errors (MSEs). The empirical results are illustrated in Tables (2)–(4), and in this simulation, we choose δ=1.5 to compute the BLI and BGE. To check that the iterative non-linear method converges to the MLEs, we have applied the Newton Raphson technique with some other initial estimates, and it converges to the same set of estimates, which ensures that the estimates obtained via the suggested Newton Raphson method converges to the MLEs. The following conclusions are drawn from these tables.
m | MLE | BSE | BLI | BGE | |||||
Mean | MSE | Mean | MSE | Mean | MSE | Mean | MSE | ||
30 | θ | 0.4919 | 0.0039 | 0.4502 | 0.0035 | 0.4505 | 0.0037 | 0.4496 | 0.0039 |
β | 0.7802 | 0.0115 | 0.7496 | 0.0008 | 0.7497 | 0.0101 | 0.7494 | 0.0103 | |
60 | θ | 0.4928 | 0.0018 | 0.5093 | 0.0010 | 0.5093 | 0.0013 | 0.5085 | 0.0015 |
β | 0.7681 | 0.0051 | 0.7395 | 0.0007 | 0.7396 | 0.0009 | 0.7393 | 0.0101 | |
80 | θ | 0.5007 | 0.0011 | 0.4888 | 0.0006 | 0.4888 | 0.0008 | 0.4886 | 0.0010 |
β | 0.7586 | 0.0034 | 0.7882 | 0.0005 | 0.7883 | 0.0008 | 0.7880 | 0.0009 | |
100 | θ | 0.4943 | 0.0010 | 0.5091 | 0.0004 | 0.5093 | 0.0005 | 0.5087 | 0.0008 |
β | 0.7591 | 0.0024 | 0.7577 | 0.0004 | 0.7581 | 0.0006 | 0.7573 | 0.0008 |
m | MLE | BSE | BLI | BGE | |||||
Mean | MSE | Mean | MSE | Mean | MSE | Mean | MSE | ||
30 | θ | 0.7998 | 0.0055 | 0.8643 | 0.0039 | 0.8645 | 0.0041 | 0.4816 | 0.0043 |
β | 1.2981 | 0.0309 | 1.3373 | 0.0121 | 1.3384 | 0.0123 | 1.3364 | 0.0125 | |
60 | θ | 0.8001 | 0.0024 | 0.8358 | 0.0015 | 0.8359 | 0.0017 | 0.8357 | 0.0019 |
β | 1.2646 | 0.0148 | 1.1742 | 0.0075 | 1.1746 | 0.0078 | 1.1738 | 0.0079 | |
80 | θ | 0.7993 | 0.0023 | 0.7856 | 0.0014 | 0.7859 | 0.0016 | 0.7852 | 0.0018 |
β | 1.2641 | 0.0075 | 1.2241 | 0.0017 | 1.2244 | 0.0020 | 1.2239 | 0.0021 | |
100 | θ | 0.7948 | 0.0014 | 0.8046 | 0.0007 | 0.8048 | 0.0009 | 0.8044 | 0.0011 |
β | 1.2673 | 0.0072 | 1.2320 | 0.0011 | 1.2322 | 0.0013 | 1.2319 | 0.0015 |
m | MLE | BSE | BLI | BGE | ||||||
Mean | MSE | Mean | MSE | Mean | MSE | Mean | MSE | |||
30 | θ | 1.2240 | 0.0188 | 1.2206 | 0.0051 | 1.2217 | 0.0053 | 1.2196 | 0.0055 | |
β | 1.5799 | 0.0559 | 1.6200 | 0.0245 | 1.6225 | 0.0248 | 1.6184 | 0.0249 | ||
60 | θ | 1.2049 | 0.0065 | 1.2310 | 0.0032 | 1.2316 | 0.0034 | 1.2306 | 0.0036 | |
β | 1.5556 | 0.0215 | 1.5530 | 0.0058 | 1.5538 | 0.0061 | 1.5526 | 0.0062 | ||
80 | θ | 1.2035 | 0.0040 | 1.2276 | 0.0023 | 1.2280 | 0.0025 | 1.2272 | 0.0028 | |
β | 1.5524 | 0.0159 | 1.4679 | 0.0032 | 1.4685 | 0.0034 | 1.4676 | 0.0035 | ||
100 | θ | 1.2139 | 0.0041 | 1.2160 | 0.0019 | 1.2165 | 0.0022 | 1.2157 | 0.0024 | |
β | 1.5158 | 0.0113 | 1.4818 | 0.0022 | 1.4822 | 0.0023 | 1.4815 | 0.0025 |
(1) All estimation approaches produce estimates that converge toward the true parameter values as the sample size increases, which confirm that they are consistent and asymptotically unbiased.
(2) In most cases, the value of MSEs decreases as the value of m increases.
(3) As m increases, the Bayes estimates tends to perform efficiently based on MSE as an optimal criterion. On the contrary, BSE is more appropriate than BLI and BGE.
(4) Figure (4) ensures the same conclusion.
In this section, we utilized two data sets from the industrial field to show the EF-IW model introduced in Section 2. We demonstrate the flexibility of this new distribution by analyzing two real-world datasets drawn from industrial areas in the Kingdom of Saudi Arabia (KSA).
The data set represents the quarterly evolution of the number of foreign licenses in the construction sector in KSA. It was obtained from https://datasaudi.sa/en/sector/construction#real-sector-indicators. The values of the data set are summarized in Table (5).
8 | 6 | 8 | 16 | 23 | 20 | 28 | 40 |
43 | 50 | 54 | 32 | 52 | 29 | 33 | 42 |
41 | 52 | 56 | 79 | 155 | 84 | 95 | 111 |
136 | 161 | 204 | 241 |
The second application introduced the scale efficiency of the construction industry in KSA between 2013 and 2022. The suggested data set was considered by Yu et al. [30], and the values are presented in Table (6).
Zone | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Mecca | 9.39 | 9.71 | 9.83 | 9.96 | 9.97 | 9.95 | 9.98 | 9.97 | 10.005 | 9.96 |
Eastern | 8.92 | 9.23 | 9.43 | 9.56 | 9.58 | 9.71 | 9.78 | 9.72 | 9.82 | 9.87 |
Al-Madinah | 7.46 | 7.47 | 7.81 | 8.52 | 8.62 | 8.61 | 8.73 | 8.43 | 8.74 | 8.77 |
Jizan | 6.66 | 6.69 | 6.84 | 7.64 | 7.71 | 7.75 | 7.75 | 7.68 | 7.82 | 7.82 |
Al-Qassim | 6.6 | 6.62 | 6.67 | 7.47 | 7.51 | 7.53 | 7.67 | 7.6 | 7.73 | 7.73 |
Tabuk | 5.31 | 5.46 | 5.66 | 6.41 | 6.54 | 6.52 | 6.54 | 6.43 | 6.67 | 6.6 |
Ha'il | 4.23 | 4.27 | 4.29 | 5.31 | 5.47 | 5.47 | 5.59 | 5.14 | 5.62 | 5.72 |
This recommended data set is about the efficiency of the pure technical construction industry between 2013 and 2022 in the KSA. The proposed data was considered by Yu et al. [30], and its records can be reported in Table 7.
Zone | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Eastern | 2.55 | 3.90 | 4.59 | 6.37 | 7.11 | 7.38 | 7.55 | 7.17 | 7.89 | 8.54 |
Al Madinah | 3.26 | 3.46 | 3.47 | 4.99 | 6.38 | 6.42 | 6.81 | 6.16 | 6.77 | 7.21 |
Asir | 3.41 | 3.81 | 3.98 | 4.65 | 5.47 | 5.74 | 5.92 | 6.17 | 6.13 | 6.53 |
Jizan | 3.42 | 3.39 | 3.62 | 4.46 | 5.37 | 5.71 | 5.56 | 5.49 | 5.64 | 5.80 |
Al-Qassim | 3.43 | 3.45 | 3.37 | 4.11 | 4.46 | 4.81 | 5.10 | 5.07 | 5.24 | 5.45 |
Tabuk | 2.99 | 2.78 | 2.96 | 3.96 | 4.48 | 4.96 | 4.82 | 4.75 | 4.89 | 5.13 |
Ha'il | 2.89 | 2.59 | 2.73 | 3.59 | 4.19 | 4.59 | 4.52 | 4.50 | 4.70 | 4.75 |
Al Jawf | 2.29 | 2.75 | 2.48 | 3.35 | 4.22 | 4.42 | 4.55 | 4.44 | 4.63 | 4.71 |
Najran | 2.83 | 2.92 | 2.62 | 3.33 | 4.02 | 4.38 | 4.47 | 4.44 | 4.61 | 4.8 |
Northern Borders | 1.51 | 1.51 | 1.6 | 2.79 | 3.95 | 4.04 | 3.99 | 4.08 | 4.4 | 4.48 |
Table (8) presents a statistical summary of the three data sets. Furthermore, Figure 5 shows several significant plots (scaled total time on test (TTT), quantile-quantile (Q-Q), and box plots) derived from the three industrial datasets. These plots help analyze the historical performance of the industrial sectors.
Data | Q1 | Q2 | μ′1 | Q3 | CV | N | M |
1 | 28.75 | 46.50 | 67.82 | 27.60 | 54.57 | 1.31 | 0.83 |
2 | 6.55 | 7.72 | 7.67 | 9.35 | 0.35 | -0.18 | -0.96 |
3 | 3.445 | 4.475 | 4.521 | 5.39 | 0.35 | 0.3589 | -0.0846 |
Additionally, we would like to select the more appropriate fitting model for the two proposed data sets. We consider several renowned competitive probability distributions to compare with the results of EF-IW, including the inverse Weibull (IW), error function Weibull (EF-W), error function exponential (EF-E), power Burr X (PBX), and generalized exponential (GE) models.
Akaike information criterion (A), Bayesian information criterion (B), Hannan-Quin information criterion (C), correction Akaike information criterion (D), Kolmogorov-Smirnov (KS) statistics with its associated P-values are considered when comparing the model and recommending the best model. By calculating and comparing the proposed measures, we gain a clear understanding of the relative performance of each model. Models with the lowest values for these statistics will be considered for the best fit of the given data set. This approach reflects the strengths of the new distribution in terms of its suitability for different data structures and ensures that the model selection process takes into account both the complexity of the model and the goodness of fit across multiple aspects of the data distribution. Table (9) summarizes the final estimates of the unknown parameters with their corresponding log-likelihood (LL). Consequently, the recommended EF-IW model emerges as the most favorable distribution for modeling the three data sets. Henceforth, the empirical v.s. the fitted (PDF and CDF) plots for the proposed model with its competitors are generated and reported in Figures (6)–(8) using the two data sets. These visual plots demonstrate that the EF-IW distribution works well with the three data sets.
Data | Model | ˆθ | ˆβ | KS | P-value | LL | A | B | C | D |
EF-IW | 10.609 | 0.5686 | 0.1425 | 0.6197 | -144.601 | 293.202 | 295.866 | 294.016 | 293.682 | |
IW | 8.5601 | 0.6934 | 0.2135 | 0.1557 | -152.624 | 309.269 | 311.934 | 300.958 | 300.624 | |
1 | EF-W | 224.821 | 0.7022 | 0.1961 | 0.2316 | -147.318 | 298.637 | 301.301 | 299.451 | 299.117 |
EF-E | 0.0047 | 0.3475 | 0.0023 | -149.955 | 301.911 | 303.243 | 302.318 | 302.064 | ||
PBX | 0.0771 | 0.5983 | 0.1575 | 0.4901 | -145.356 | 294.713 | 297.378 | 295.603 | 295.269 | |
GE | 0.0188 | 1.4887 | 0.1495 | 0.5582 | -145.041 | 294.082 | 296.746 | 294.897 | 294.562 | |
EF-IW | 169.011 | 2.4633 | 0.1114 | 0.3500 | -132.473 | 268.947 | 273.444 | 270.734 | 269.126 | |
IW | 2168.36 | 4.0579 | 0.1697 | 0.0354 | -146.885 | 297.771 | 302.268 | 299.557 | 297.950 | |
2 | EF-W | 10.415 | 3.6140 | 0.1468 | 0.0978 | -132.736 | 269.472 | 273.969 | 271.259 | 269.651 |
EF-E | 0.0709 | 0.4251 | <0.0001 | -179.247 | 360.494 | 362.743 | 361.387 | 360.553 | ||
PBX | 0.0407 | 1.5378 | 0.2102 | 0.0041 | -146.950 | 297.936 | 302.433 | 299.723 | 298.115 | |
GE | 0.6226 | 69.883 | 0.1399 | 0.1290 | -139.298 | 282.596 | 287.093 | 284.382 | 282.775 | |
EF-IW | 11.193 | 1.5481 | 0.0756 | 0.6168 | -177.432 | 358.864 | 364.074 | 360.973 | 358.988 | |
IW | 25.075 | 2.5284 | 0.1395 | 0.0408 | -198.317 | 400.634 | 405.845 | 402.743 | 400.758 | |
3 | EF-W | 1.9167 | 7.5766 | 0.1301 | 0.0676 | -185.737 | 375.475 | 380.686 | 377.584 | 375.599 |
EF-E | 0.1131 | 0.3139 | <0.0001 | -210.347 | 422.694 | 425.300 | 423.749 | 422.735 | ||
PBX | 0.0639 | 1.7021 | 0.0909 | 0.3791 | -177.673 | 359.347 | 364.557 | 361.455 | 359.470 | |
GE | 0.7435 | 16.358 | 0.1060 | 0.2107 | -180.239 | 364.478 | 69.688 | 366.587 | 364.602 |
Finally, the estimates of the model parameters using the Bayesian technique under several loss functions of the EF-IW distribution by applying the three data sets are computed and reported in Table (10). Also, Figures (9)–(11) show the histogram and trace plots of MH results.
Data | Par | Bayes | ||
BSE | BLI | BGE | ||
1 | θ | 10.468 | 10.470 | 10.468 |
β | 0.5765 | 0.5766 | 0.5764 | |
2 | θ | 168.989 | 168.990 | 168.989 |
β | 2.457 | 2.457 | 2.457 | |
3 | θ | 11.692 | 11.689 | 11.694 |
β | 1.5635 | 1.5637 | 1.5634 |
This study introduces a new probability distribution, and its mathematical properties are thoroughly explored. The new model is named the error function inverse Weibull distribution. The model parameters are estimated using two different estimation methods, and extensive simulation studies are conducted to identify the most efficient estimation technique. To demonstrate the versatility and practical usefulness of the EF-IW distribution, the new distribution is applied to three datasets, demonstrating its ability to adapt to varied data properties. The findings of these applications show that the EF-IW distribution surpasses considered competitive probability distributions previously studied in the literature, giving more accurate and efficient outcomes in terms of fit and prediction. These findings show the novel distribution's potential as a robust tool for modeling data across several domains, providing a promising alternative to established models.
Future work on the EF-IW distribution may include expanding modifications, estimation, and applications. Some potential directions include the following
(1) New extended forms of the EF-IW distribution can be proposed, such as truncation, zero-inflation, and Neutrosophic extension for imprecise datasets.
(2) The progressive censoring type may also be used to obtain the model parameter estimations.
(3) Future studies should focus on the utilization of the EF-IW distribution to handle ranked set sampling data, which is frequently seen in survival and reliability analysis studies. Enhancing the distribution applicability and usefulness will require developing parameter estimation approaches for censored and uncensored data with a cure fraction.
All authors contributed equally to this paper. Badr Aloraini and Abdulaziz S. Alghamdi did the writing and mathematics, Mohammad Zaid Alaskar and Maryam Ibrahim Habadi did the revising, editing, and validating.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2025/R/1446).
All authors declare no conflicts of interest in this paper.
[1] | S. Zghal, F. Dammak, Functionally Graded Materials: Analysis and Applications to FGM, FG-CNTRC and FG Porous Structures, Boca Raton, Florida: CRC press, 2024. https://doi.org/10.1201/9781003483786 |
[2] |
S. Zghal, D. Ataoui, F. Dammak, Free vibration analysis of porous beams with gradually varying mechanical properties. Proceedings of the Institution of Mechanical Engineers, P. I. Mech. Eng. M. -J. Eng., 236 (2022), 800–812. https://doi.org/10.1177/14750902211047746 doi: 10.1177/14750902211047746
![]() |
[3] |
S. Trabelsi, S. Zghal, F. Dammak, Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures, J. Braz. Soc. Mech. Sci. Eng., 42 (2020), 233. https://doi.org/10.1007/s40430-020-02314-5 doi: 10.1007/s40430-020-02314-5
![]() |
[4] |
N. Joueid, S. Zghal, M. Chrigui, F. Dammak, Thermoelastic buckling analysis of plates and shells of temperature and porosity dependent functionally graded materials, Mech. Time-Depend. Mater., 28 (2024), 817–859. https://doi.org/10.1007/s11043-023-09644-6 doi: 10.1007/s11043-023-09644-6
![]() |
[5] |
M. A. Fahmy, M. Toujani, A New Fractional Boundary Element Model for the 3D Thermal Stress Wave Propagation Problems in Anisotropic Materials, Math. Comput. Appl., 30 (2025), 6. https://doi.org/10.3390/mca30010006 doi: 10.3390/mca30010006
![]() |
[6] | M. A. Fahmy, Three-dimensional boundary element sensitivity analysis of anisotropic thermoelastic materials, J. Umm Al-Qura Univ. Appl. Sci., (2025). https://doi.org/10.1007/s43994-024-00210-5 |
[7] |
F. Delale, F. Erdogan, The crack problem for a nonhomogeneous plane, J. Appl. Mech., 50 (1983), 609–614. https://doi.org/10.1115/1.3167098 doi: 10.1115/1.3167098
![]() |
[8] |
L. C. Guo, N. Noda, Modeling method for a crack problem of functionally graded materials with arbitrary properties piecewise-exponential model, Int. J. Solids Struct., 44 (2007), 6768–6790. https://doi.org/10.1016/j.ijsolstr.2007.03.012 doi: 10.1016/j.ijsolstr.2007.03.012
![]() |
[9] |
F. Erdogan, B. H. Wu, Crack problems in FGM layers under thermal stresses, J. Therm. Stresses, 19 (1996), 237–265. https://doi.org/10.1080/01495739608946172 doi: 10.1080/01495739608946172
![]() |
[10] |
N. Noda, Z. H. Jin, Thermal stresses intensity factors for a crack in a strip of a functionally graded material, Int. J. Solids Struct., 30 (1993), 1039–1056. https://doi.org/10.1016/0020-7683(93)90002-O doi: 10.1016/0020-7683(93)90002-O
![]() |
[11] |
N. Noda, Z. H. Jin, Thermal stresses around a crack in the nonhomogeneous interfacial layer between two dissimilar elastic half-planes, Int. J. Solids Struct., 41 (2004), 923–945. https://doi.org/10.1016/j.ijsolstr.2003.09.056 doi: 10.1016/j.ijsolstr.2003.09.056
![]() |
[12] |
Z. H. Jin, N. Noda, Crack-tip singular fields in non-homogeneous body with crack in thermal stress fields, J. Appl. Mech., 61 (1994), 738–740. https://doi.org/10.1115/1.2901529 doi: 10.1115/1.2901529
![]() |
[13] |
N. Noda, Thermal stresses intensity for functionally graded plate with an edge crack, J. Therm. Stresses, 20 (1996), 373–387. https://doi.org/10.1080/01495739708956108 doi: 10.1080/01495739708956108
![]() |
[14] |
K. H. Lee, Analysis of a propagating crack tip in orthotropic functionally graded materials, Compos. Part B: Eng., 84 (2016), 83–97. https://doi.org/10.1016/j.compositesb.2015.08.068 doi: 10.1016/j.compositesb.2015.08.068
![]() |
[15] |
Y. D. Lee, F. Erdogan, Interface Cracking of FGM Coating under Steady State Heat Flow, Eng. Fract. Mech., 59 (1998), 361–380. https://doi.org/10.1016/S0013-7944(97)00137-9 doi: 10.1016/S0013-7944(97)00137-9
![]() |
[16] |
P. Gu, M. Dao, R. J. Asrao, A Simplified Method for Calculating the Crack-tip Field of Functionally Graded Materials Using the Domain Integral, J. Appl. Mech., 66 (1999), 101–108. https://doi.org/10.1115/1.2789135 doi: 10.1115/1.2789135
![]() |
[17] |
B. N. Rao, S. Rahman, Meshfree analysis of cracks in isotropic functionally graded materials, Eng. Fract. Mech., 70 (2003), 1–27. https://doi.org/10.1016/S0013-7944(02)00038-3 doi: 10.1016/S0013-7944(02)00038-3
![]() |
[18] |
M. A. Fahmy, A Three-Dimensional CQBEM Model for Thermal Stress Sensitivities in Anisotropic Materials, Appl. Math. Inf. Sci. 19 (2025), 489–495. http://dx. doi.org/10.18576/amis/190301 doi: 10.18576/amis/190301
![]() |
[19] |
M. A. Fahmy, Three-dimensional Boundary Element Modeling for The Effect of Rotation on the Thermal Stresses of Anisotropic Materials, Appl. Math. Inf. Sci., 19 (2025), 379–386. http://dx. doi.org/10.18576/amis/190213 doi: 10.18576/amis/190213
![]() |
[20] |
M. A. Fahmy, BEM Modeling for Stress Sensitivity of Nonlocal Thermo-Elasto-Plastic Damage Problems, Computation, 12 (2024), 87. https://doi.org/10.3390/computation12050087 doi: 10.3390/computation12050087
![]() |
[21] |
M. A. Fahmy, M. Toujani, Fractional Boundary Element Solution for Nonlinear Nonlocal Thermoelastic Problems of Anisotropic Fibrous Polymer Nanomaterials, Computation, 12 (2024), 117. https://doi.org/10.3390/computation12060117 doi: 10.3390/computation12060117
![]() |
[22] | M. A. Fahmy, A new boundary element model for magneto‐thermo‐elastic stress sensitivities in anisotropic functionally graded materials, J. Umm Al-Qura Univ. Eng. Archit., 2025. https://doi.org/10.1007/s43995-025-00100-9 |
[23] | M. A. Fahmy, A time-stepping DRBEM for nonlinear fractional sub-diffusion bio-heat ultrasonic wave propagation problems during electromagnetic radiation, J Umm Al-Qura Univ Appl Sci, 2024. https://doi.org/10.1007/s43994-024-00178-2 |
[24] |
M. A. Fahmy, R. A. A. Jeli, A New Fractional Boundary Element Model for Anomalous Thermal Stress Effects on Cement-Based Materials, Fractal Fract., 8 (2024), 753. https://doi.org/10.3390/fractalfract8120753 doi: 10.3390/fractalfract8120753
![]() |
[25] |
B. Zheng, Y. Yang, X. Gao, C. Zhang, Dynamic fracture analysis of functionally graded materials under thermal shock loading by using the radial integration boundary element method, Compos. Struct., 201 (2018), 468–476. https://doi.org/10.1016/j.compstruct.2018.06.050 doi: 10.1016/j.compstruct.2018.06.050
![]() |
[26] |
H. A. Atmane, A. Tounsi, S. A. Meftah, H. A. Belhadj, Free vibration behavior of exponential functionally graded beams with varying cross-section, J. Vib. Control, 17 (2011), 311–318. https://doi.org/10.1177/1077546310370691 doi: 10.1177/1077546310370691
![]() |
[27] | K. Yang, X. W. Gao, Radial integration BEM for transient heat conduction problems, Eng. Anal. Bound. Elem., 34 (2010), 557–563. |
[28] |
X. W. Gao, C. Zhang, J. Sladek, V. Sladek, Fracture analysis of functionally graded materials by a BEM, Compos. Sci. Technol., 68 (2008), 1209–1215. https://doi.org/10.1016/j.compscitech.2007.08.029 doi: 10.1016/j.compscitech.2007.08.029
![]() |
[29] |
X. W. Gao, Boundary element analysis in thermoelasticity with and without internal cells, Int. J. Numer. Methods Eng., 57 (2003), 957–990. https://doi.org/10.1002/nme.715 doi: 10.1002/nme.715
![]() |
[30] |
F. Erdogan, Fracture mechanics of functionally graded materials, Int. J. Solids Struct., 5 (1995), 753–770. https://doi.org/10.1016/0961-9526(95)00029-M doi: 10.1016/0961-9526(95)00029-M
![]() |
[31] |
P. N. J. Rasolofosaon, B. E. Zinszner, Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks, Geophysics, 67 (2002), 230–240. https://doi.org/10.1190/1.1451647 doi: 10.1190/1.1451647
![]() |
[32] |
M. D. Iqbal, C. Birk, E. T. Ooi, S. Natarajan, H. Gravenkamp, Transient thermoelastic fracture analysis of functionally graded materials using the scaled boundary finite element method, Theor. Appl. Fract. Mec., 127 (2023), 104056. https://doi.org/10.1016/j.tafmec.2023.104056 doi: 10.1016/j.tafmec.2023.104056
![]() |
[33] |
E. Pan, Exact Solution for Functionally Graded Anisotropic Elastic Composite Laminates, J. Compos. Mater., 37 (2003), 1903–1920. https://doi.org/10.1177/002199803035565 doi: 10.1177/002199803035565
![]() |
β | μ1 | VarZ | CV | N | M | |
θ=0.4 | 0.3 | 0.0874 | 0.0234 | 1.7508 | 4.3227 | 30.106 |
0.6 | 0.2287 | 0.0351 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 0.3488 | 0.0369 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 0.4412 | 0.034 | 0.4179 | 0.5665 | 0.0143 | |
θ=0.6 | 0.3 | 0.3375 | 0.3492 | 1.7508 | 4.3227 | 30.106 |
0.6 | 0.4495 | 0.1355 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 0.5473 | 0.0908 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 0.6186 | 0.0668 | 0.4179 | 0.5665 | 0.0143 | |
θ=0.8 | 0.3 | 0.8806 | 2.3770 | 1.7508 | 4.3227 | 30.106 |
0.6 | 0.7260 | 0.3535 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 0.7534 | 0.1721 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 0.7862 | 0.1080 | 0.4179 | 0.5665 | 0.0143 | |
θ=1.2 | 0.3 | 3.4022 | 35.479 | 1.7508 | 4.3227 | 30.106 |
0.6 | 1.4270 | 1.3659 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 1.1822 | 0.4238 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 1.1022 | 0.2122 | 0.4179 | 0.5665 | 0.0143 | |
θ=1.5 | 0.3 | 7.1581 | 157.05 | 1.7508 | 4.3227 | 30.106 |
0.6 | 2.0699 | 2.8737 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 1.5149 | 0.6958 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 1.3274 | 0.3078 | 0.4179 | 0.5665 | 0.0143 |
m | MLE | BSE | BLI | BGE | |||||
Mean | MSE | Mean | MSE | Mean | MSE | Mean | MSE | ||
30 | θ | 0.4919 | 0.0039 | 0.4502 | 0.0035 | 0.4505 | 0.0037 | 0.4496 | 0.0039 |
β | 0.7802 | 0.0115 | 0.7496 | 0.0008 | 0.7497 | 0.0101 | 0.7494 | 0.0103 | |
60 | θ | 0.4928 | 0.0018 | 0.5093 | 0.0010 | 0.5093 | 0.0013 | 0.5085 | 0.0015 |
β | 0.7681 | 0.0051 | 0.7395 | 0.0007 | 0.7396 | 0.0009 | 0.7393 | 0.0101 | |
80 | θ | 0.5007 | 0.0011 | 0.4888 | 0.0006 | 0.4888 | 0.0008 | 0.4886 | 0.0010 |
β | 0.7586 | 0.0034 | 0.7882 | 0.0005 | 0.7883 | 0.0008 | 0.7880 | 0.0009 | |
100 | θ | 0.4943 | 0.0010 | 0.5091 | 0.0004 | 0.5093 | 0.0005 | 0.5087 | 0.0008 |
β | 0.7591 | 0.0024 | 0.7577 | 0.0004 | 0.7581 | 0.0006 | 0.7573 | 0.0008 |
m | MLE | BSE | BLI | BGE | |||||
Mean | MSE | Mean | MSE | Mean | MSE | Mean | MSE | ||
30 | θ | 0.7998 | 0.0055 | 0.8643 | 0.0039 | 0.8645 | 0.0041 | 0.4816 | 0.0043 |
β | 1.2981 | 0.0309 | 1.3373 | 0.0121 | 1.3384 | 0.0123 | 1.3364 | 0.0125 | |
60 | θ | 0.8001 | 0.0024 | 0.8358 | 0.0015 | 0.8359 | 0.0017 | 0.8357 | 0.0019 |
β | 1.2646 | 0.0148 | 1.1742 | 0.0075 | 1.1746 | 0.0078 | 1.1738 | 0.0079 | |
80 | θ | 0.7993 | 0.0023 | 0.7856 | 0.0014 | 0.7859 | 0.0016 | 0.7852 | 0.0018 |
β | 1.2641 | 0.0075 | 1.2241 | 0.0017 | 1.2244 | 0.0020 | 1.2239 | 0.0021 | |
100 | θ | 0.7948 | 0.0014 | 0.8046 | 0.0007 | 0.8048 | 0.0009 | 0.8044 | 0.0011 |
β | 1.2673 | 0.0072 | 1.2320 | 0.0011 | 1.2322 | 0.0013 | 1.2319 | 0.0015 |
m | MLE | BSE | BLI | BGE | ||||||
Mean | MSE | Mean | MSE | Mean | MSE | Mean | MSE | |||
30 | θ | 1.2240 | 0.0188 | 1.2206 | 0.0051 | 1.2217 | 0.0053 | 1.2196 | 0.0055 | |
β | 1.5799 | 0.0559 | 1.6200 | 0.0245 | 1.6225 | 0.0248 | 1.6184 | 0.0249 | ||
60 | θ | 1.2049 | 0.0065 | 1.2310 | 0.0032 | 1.2316 | 0.0034 | 1.2306 | 0.0036 | |
β | 1.5556 | 0.0215 | 1.5530 | 0.0058 | 1.5538 | 0.0061 | 1.5526 | 0.0062 | ||
80 | θ | 1.2035 | 0.0040 | 1.2276 | 0.0023 | 1.2280 | 0.0025 | 1.2272 | 0.0028 | |
β | 1.5524 | 0.0159 | 1.4679 | 0.0032 | 1.4685 | 0.0034 | 1.4676 | 0.0035 | ||
100 | θ | 1.2139 | 0.0041 | 1.2160 | 0.0019 | 1.2165 | 0.0022 | 1.2157 | 0.0024 | |
β | 1.5158 | 0.0113 | 1.4818 | 0.0022 | 1.4822 | 0.0023 | 1.4815 | 0.0025 |
8 | 6 | 8 | 16 | 23 | 20 | 28 | 40 |
43 | 50 | 54 | 32 | 52 | 29 | 33 | 42 |
41 | 52 | 56 | 79 | 155 | 84 | 95 | 111 |
136 | 161 | 204 | 241 |
Zone | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Mecca | 9.39 | 9.71 | 9.83 | 9.96 | 9.97 | 9.95 | 9.98 | 9.97 | 10.005 | 9.96 |
Eastern | 8.92 | 9.23 | 9.43 | 9.56 | 9.58 | 9.71 | 9.78 | 9.72 | 9.82 | 9.87 |
Al-Madinah | 7.46 | 7.47 | 7.81 | 8.52 | 8.62 | 8.61 | 8.73 | 8.43 | 8.74 | 8.77 |
Jizan | 6.66 | 6.69 | 6.84 | 7.64 | 7.71 | 7.75 | 7.75 | 7.68 | 7.82 | 7.82 |
Al-Qassim | 6.6 | 6.62 | 6.67 | 7.47 | 7.51 | 7.53 | 7.67 | 7.6 | 7.73 | 7.73 |
Tabuk | 5.31 | 5.46 | 5.66 | 6.41 | 6.54 | 6.52 | 6.54 | 6.43 | 6.67 | 6.6 |
Ha'il | 4.23 | 4.27 | 4.29 | 5.31 | 5.47 | 5.47 | 5.59 | 5.14 | 5.62 | 5.72 |
Zone | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Eastern | 2.55 | 3.90 | 4.59 | 6.37 | 7.11 | 7.38 | 7.55 | 7.17 | 7.89 | 8.54 |
Al Madinah | 3.26 | 3.46 | 3.47 | 4.99 | 6.38 | 6.42 | 6.81 | 6.16 | 6.77 | 7.21 |
Asir | 3.41 | 3.81 | 3.98 | 4.65 | 5.47 | 5.74 | 5.92 | 6.17 | 6.13 | 6.53 |
Jizan | 3.42 | 3.39 | 3.62 | 4.46 | 5.37 | 5.71 | 5.56 | 5.49 | 5.64 | 5.80 |
Al-Qassim | 3.43 | 3.45 | 3.37 | 4.11 | 4.46 | 4.81 | 5.10 | 5.07 | 5.24 | 5.45 |
Tabuk | 2.99 | 2.78 | 2.96 | 3.96 | 4.48 | 4.96 | 4.82 | 4.75 | 4.89 | 5.13 |
Ha'il | 2.89 | 2.59 | 2.73 | 3.59 | 4.19 | 4.59 | 4.52 | 4.50 | 4.70 | 4.75 |
Al Jawf | 2.29 | 2.75 | 2.48 | 3.35 | 4.22 | 4.42 | 4.55 | 4.44 | 4.63 | 4.71 |
Najran | 2.83 | 2.92 | 2.62 | 3.33 | 4.02 | 4.38 | 4.47 | 4.44 | 4.61 | 4.8 |
Northern Borders | 1.51 | 1.51 | 1.6 | 2.79 | 3.95 | 4.04 | 3.99 | 4.08 | 4.4 | 4.48 |
Data | Q1 | Q2 | μ′1 | Q3 | CV | N | M |
1 | 28.75 | 46.50 | 67.82 | 27.60 | 54.57 | 1.31 | 0.83 |
2 | 6.55 | 7.72 | 7.67 | 9.35 | 0.35 | -0.18 | -0.96 |
3 | 3.445 | 4.475 | 4.521 | 5.39 | 0.35 | 0.3589 | -0.0846 |
Data | Model | ˆθ | ˆβ | KS | P-value | LL | A | B | C | D |
EF-IW | 10.609 | 0.5686 | 0.1425 | 0.6197 | -144.601 | 293.202 | 295.866 | 294.016 | 293.682 | |
IW | 8.5601 | 0.6934 | 0.2135 | 0.1557 | -152.624 | 309.269 | 311.934 | 300.958 | 300.624 | |
1 | EF-W | 224.821 | 0.7022 | 0.1961 | 0.2316 | -147.318 | 298.637 | 301.301 | 299.451 | 299.117 |
EF-E | 0.0047 | 0.3475 | 0.0023 | -149.955 | 301.911 | 303.243 | 302.318 | 302.064 | ||
PBX | 0.0771 | 0.5983 | 0.1575 | 0.4901 | -145.356 | 294.713 | 297.378 | 295.603 | 295.269 | |
GE | 0.0188 | 1.4887 | 0.1495 | 0.5582 | -145.041 | 294.082 | 296.746 | 294.897 | 294.562 | |
EF-IW | 169.011 | 2.4633 | 0.1114 | 0.3500 | -132.473 | 268.947 | 273.444 | 270.734 | 269.126 | |
IW | 2168.36 | 4.0579 | 0.1697 | 0.0354 | -146.885 | 297.771 | 302.268 | 299.557 | 297.950 | |
2 | EF-W | 10.415 | 3.6140 | 0.1468 | 0.0978 | -132.736 | 269.472 | 273.969 | 271.259 | 269.651 |
EF-E | 0.0709 | 0.4251 | <0.0001 | -179.247 | 360.494 | 362.743 | 361.387 | 360.553 | ||
PBX | 0.0407 | 1.5378 | 0.2102 | 0.0041 | -146.950 | 297.936 | 302.433 | 299.723 | 298.115 | |
GE | 0.6226 | 69.883 | 0.1399 | 0.1290 | -139.298 | 282.596 | 287.093 | 284.382 | 282.775 | |
EF-IW | 11.193 | 1.5481 | 0.0756 | 0.6168 | -177.432 | 358.864 | 364.074 | 360.973 | 358.988 | |
IW | 25.075 | 2.5284 | 0.1395 | 0.0408 | -198.317 | 400.634 | 405.845 | 402.743 | 400.758 | |
3 | EF-W | 1.9167 | 7.5766 | 0.1301 | 0.0676 | -185.737 | 375.475 | 380.686 | 377.584 | 375.599 |
EF-E | 0.1131 | 0.3139 | <0.0001 | -210.347 | 422.694 | 425.300 | 423.749 | 422.735 | ||
PBX | 0.0639 | 1.7021 | 0.0909 | 0.3791 | -177.673 | 359.347 | 364.557 | 361.455 | 359.470 | |
GE | 0.7435 | 16.358 | 0.1060 | 0.2107 | -180.239 | 364.478 | 69.688 | 366.587 | 364.602 |
Data | Par | Bayes | ||
BSE | BLI | BGE | ||
1 | θ | 10.468 | 10.470 | 10.468 |
β | 0.5765 | 0.5766 | 0.5764 | |
2 | θ | 168.989 | 168.990 | 168.989 |
β | 2.457 | 2.457 | 2.457 | |
3 | θ | 11.692 | 11.689 | 11.694 |
β | 1.5635 | 1.5637 | 1.5634 |
β | μ1 | VarZ | CV | N | M | |
θ=0.4 | 0.3 | 0.0874 | 0.0234 | 1.7508 | 4.3227 | 30.106 |
0.6 | 0.2287 | 0.0351 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 0.3488 | 0.0369 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 0.4412 | 0.034 | 0.4179 | 0.5665 | 0.0143 | |
θ=0.6 | 0.3 | 0.3375 | 0.3492 | 1.7508 | 4.3227 | 30.106 |
0.6 | 0.4495 | 0.1355 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 0.5473 | 0.0908 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 0.6186 | 0.0668 | 0.4179 | 0.5665 | 0.0143 | |
θ=0.8 | 0.3 | 0.8806 | 2.3770 | 1.7508 | 4.3227 | 30.106 |
0.6 | 0.7260 | 0.3535 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 0.7534 | 0.1721 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 0.7862 | 0.1080 | 0.4179 | 0.5665 | 0.0143 | |
θ=1.2 | 0.3 | 3.4022 | 35.479 | 1.7508 | 4.3227 | 30.106 |
0.6 | 1.4270 | 1.3659 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 1.1822 | 0.4238 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 1.1022 | 0.2122 | 0.4179 | 0.5665 | 0.0143 | |
θ=1.5 | 0.3 | 7.1581 | 157.05 | 1.7508 | 4.3227 | 30.106 |
0.6 | 2.0699 | 2.8737 | 0.8190 | 1.5817 | 3.3285 | |
0.9 | 1.5149 | 0.6958 | 0.5506 | 0.8949 | 0.7335 | |
1.2 | 1.3274 | 0.3078 | 0.4179 | 0.5665 | 0.0143 |
m | MLE | BSE | BLI | BGE | |||||
Mean | MSE | Mean | MSE | Mean | MSE | Mean | MSE | ||
30 | θ | 0.4919 | 0.0039 | 0.4502 | 0.0035 | 0.4505 | 0.0037 | 0.4496 | 0.0039 |
β | 0.7802 | 0.0115 | 0.7496 | 0.0008 | 0.7497 | 0.0101 | 0.7494 | 0.0103 | |
60 | θ | 0.4928 | 0.0018 | 0.5093 | 0.0010 | 0.5093 | 0.0013 | 0.5085 | 0.0015 |
β | 0.7681 | 0.0051 | 0.7395 | 0.0007 | 0.7396 | 0.0009 | 0.7393 | 0.0101 | |
80 | θ | 0.5007 | 0.0011 | 0.4888 | 0.0006 | 0.4888 | 0.0008 | 0.4886 | 0.0010 |
β | 0.7586 | 0.0034 | 0.7882 | 0.0005 | 0.7883 | 0.0008 | 0.7880 | 0.0009 | |
100 | θ | 0.4943 | 0.0010 | 0.5091 | 0.0004 | 0.5093 | 0.0005 | 0.5087 | 0.0008 |
β | 0.7591 | 0.0024 | 0.7577 | 0.0004 | 0.7581 | 0.0006 | 0.7573 | 0.0008 |
m | MLE | BSE | BLI | BGE | |||||
Mean | MSE | Mean | MSE | Mean | MSE | Mean | MSE | ||
30 | θ | 0.7998 | 0.0055 | 0.8643 | 0.0039 | 0.8645 | 0.0041 | 0.4816 | 0.0043 |
β | 1.2981 | 0.0309 | 1.3373 | 0.0121 | 1.3384 | 0.0123 | 1.3364 | 0.0125 | |
60 | θ | 0.8001 | 0.0024 | 0.8358 | 0.0015 | 0.8359 | 0.0017 | 0.8357 | 0.0019 |
β | 1.2646 | 0.0148 | 1.1742 | 0.0075 | 1.1746 | 0.0078 | 1.1738 | 0.0079 | |
80 | θ | 0.7993 | 0.0023 | 0.7856 | 0.0014 | 0.7859 | 0.0016 | 0.7852 | 0.0018 |
β | 1.2641 | 0.0075 | 1.2241 | 0.0017 | 1.2244 | 0.0020 | 1.2239 | 0.0021 | |
100 | θ | 0.7948 | 0.0014 | 0.8046 | 0.0007 | 0.8048 | 0.0009 | 0.8044 | 0.0011 |
β | 1.2673 | 0.0072 | 1.2320 | 0.0011 | 1.2322 | 0.0013 | 1.2319 | 0.0015 |
m | MLE | BSE | BLI | BGE | ||||||
Mean | MSE | Mean | MSE | Mean | MSE | Mean | MSE | |||
30 | θ | 1.2240 | 0.0188 | 1.2206 | 0.0051 | 1.2217 | 0.0053 | 1.2196 | 0.0055 | |
β | 1.5799 | 0.0559 | 1.6200 | 0.0245 | 1.6225 | 0.0248 | 1.6184 | 0.0249 | ||
60 | θ | 1.2049 | 0.0065 | 1.2310 | 0.0032 | 1.2316 | 0.0034 | 1.2306 | 0.0036 | |
β | 1.5556 | 0.0215 | 1.5530 | 0.0058 | 1.5538 | 0.0061 | 1.5526 | 0.0062 | ||
80 | θ | 1.2035 | 0.0040 | 1.2276 | 0.0023 | 1.2280 | 0.0025 | 1.2272 | 0.0028 | |
β | 1.5524 | 0.0159 | 1.4679 | 0.0032 | 1.4685 | 0.0034 | 1.4676 | 0.0035 | ||
100 | θ | 1.2139 | 0.0041 | 1.2160 | 0.0019 | 1.2165 | 0.0022 | 1.2157 | 0.0024 | |
β | 1.5158 | 0.0113 | 1.4818 | 0.0022 | 1.4822 | 0.0023 | 1.4815 | 0.0025 |
8 | 6 | 8 | 16 | 23 | 20 | 28 | 40 |
43 | 50 | 54 | 32 | 52 | 29 | 33 | 42 |
41 | 52 | 56 | 79 | 155 | 84 | 95 | 111 |
136 | 161 | 204 | 241 |
Zone | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Mecca | 9.39 | 9.71 | 9.83 | 9.96 | 9.97 | 9.95 | 9.98 | 9.97 | 10.005 | 9.96 |
Eastern | 8.92 | 9.23 | 9.43 | 9.56 | 9.58 | 9.71 | 9.78 | 9.72 | 9.82 | 9.87 |
Al-Madinah | 7.46 | 7.47 | 7.81 | 8.52 | 8.62 | 8.61 | 8.73 | 8.43 | 8.74 | 8.77 |
Jizan | 6.66 | 6.69 | 6.84 | 7.64 | 7.71 | 7.75 | 7.75 | 7.68 | 7.82 | 7.82 |
Al-Qassim | 6.6 | 6.62 | 6.67 | 7.47 | 7.51 | 7.53 | 7.67 | 7.6 | 7.73 | 7.73 |
Tabuk | 5.31 | 5.46 | 5.66 | 6.41 | 6.54 | 6.52 | 6.54 | 6.43 | 6.67 | 6.6 |
Ha'il | 4.23 | 4.27 | 4.29 | 5.31 | 5.47 | 5.47 | 5.59 | 5.14 | 5.62 | 5.72 |
Zone | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Eastern | 2.55 | 3.90 | 4.59 | 6.37 | 7.11 | 7.38 | 7.55 | 7.17 | 7.89 | 8.54 |
Al Madinah | 3.26 | 3.46 | 3.47 | 4.99 | 6.38 | 6.42 | 6.81 | 6.16 | 6.77 | 7.21 |
Asir | 3.41 | 3.81 | 3.98 | 4.65 | 5.47 | 5.74 | 5.92 | 6.17 | 6.13 | 6.53 |
Jizan | 3.42 | 3.39 | 3.62 | 4.46 | 5.37 | 5.71 | 5.56 | 5.49 | 5.64 | 5.80 |
Al-Qassim | 3.43 | 3.45 | 3.37 | 4.11 | 4.46 | 4.81 | 5.10 | 5.07 | 5.24 | 5.45 |
Tabuk | 2.99 | 2.78 | 2.96 | 3.96 | 4.48 | 4.96 | 4.82 | 4.75 | 4.89 | 5.13 |
Ha'il | 2.89 | 2.59 | 2.73 | 3.59 | 4.19 | 4.59 | 4.52 | 4.50 | 4.70 | 4.75 |
Al Jawf | 2.29 | 2.75 | 2.48 | 3.35 | 4.22 | 4.42 | 4.55 | 4.44 | 4.63 | 4.71 |
Najran | 2.83 | 2.92 | 2.62 | 3.33 | 4.02 | 4.38 | 4.47 | 4.44 | 4.61 | 4.8 |
Northern Borders | 1.51 | 1.51 | 1.6 | 2.79 | 3.95 | 4.04 | 3.99 | 4.08 | 4.4 | 4.48 |
Data | Q1 | Q2 | μ′1 | Q3 | CV | N | M |
1 | 28.75 | 46.50 | 67.82 | 27.60 | 54.57 | 1.31 | 0.83 |
2 | 6.55 | 7.72 | 7.67 | 9.35 | 0.35 | -0.18 | -0.96 |
3 | 3.445 | 4.475 | 4.521 | 5.39 | 0.35 | 0.3589 | -0.0846 |
Data | Model | ˆθ | ˆβ | KS | P-value | LL | A | B | C | D |
EF-IW | 10.609 | 0.5686 | 0.1425 | 0.6197 | -144.601 | 293.202 | 295.866 | 294.016 | 293.682 | |
IW | 8.5601 | 0.6934 | 0.2135 | 0.1557 | -152.624 | 309.269 | 311.934 | 300.958 | 300.624 | |
1 | EF-W | 224.821 | 0.7022 | 0.1961 | 0.2316 | -147.318 | 298.637 | 301.301 | 299.451 | 299.117 |
EF-E | 0.0047 | 0.3475 | 0.0023 | -149.955 | 301.911 | 303.243 | 302.318 | 302.064 | ||
PBX | 0.0771 | 0.5983 | 0.1575 | 0.4901 | -145.356 | 294.713 | 297.378 | 295.603 | 295.269 | |
GE | 0.0188 | 1.4887 | 0.1495 | 0.5582 | -145.041 | 294.082 | 296.746 | 294.897 | 294.562 | |
EF-IW | 169.011 | 2.4633 | 0.1114 | 0.3500 | -132.473 | 268.947 | 273.444 | 270.734 | 269.126 | |
IW | 2168.36 | 4.0579 | 0.1697 | 0.0354 | -146.885 | 297.771 | 302.268 | 299.557 | 297.950 | |
2 | EF-W | 10.415 | 3.6140 | 0.1468 | 0.0978 | -132.736 | 269.472 | 273.969 | 271.259 | 269.651 |
EF-E | 0.0709 | 0.4251 | <0.0001 | -179.247 | 360.494 | 362.743 | 361.387 | 360.553 | ||
PBX | 0.0407 | 1.5378 | 0.2102 | 0.0041 | -146.950 | 297.936 | 302.433 | 299.723 | 298.115 | |
GE | 0.6226 | 69.883 | 0.1399 | 0.1290 | -139.298 | 282.596 | 287.093 | 284.382 | 282.775 | |
EF-IW | 11.193 | 1.5481 | 0.0756 | 0.6168 | -177.432 | 358.864 | 364.074 | 360.973 | 358.988 | |
IW | 25.075 | 2.5284 | 0.1395 | 0.0408 | -198.317 | 400.634 | 405.845 | 402.743 | 400.758 | |
3 | EF-W | 1.9167 | 7.5766 | 0.1301 | 0.0676 | -185.737 | 375.475 | 380.686 | 377.584 | 375.599 |
EF-E | 0.1131 | 0.3139 | <0.0001 | -210.347 | 422.694 | 425.300 | 423.749 | 422.735 | ||
PBX | 0.0639 | 1.7021 | 0.0909 | 0.3791 | -177.673 | 359.347 | 364.557 | 361.455 | 359.470 | |
GE | 0.7435 | 16.358 | 0.1060 | 0.2107 | -180.239 | 364.478 | 69.688 | 366.587 | 364.602 |
Data | Par | Bayes | ||
BSE | BLI | BGE | ||
1 | θ | 10.468 | 10.470 | 10.468 |
β | 0.5765 | 0.5766 | 0.5764 | |
2 | θ | 168.989 | 168.990 | 168.989 |
β | 2.457 | 2.457 | 2.457 | |
3 | θ | 11.692 | 11.689 | 11.694 |
β | 1.5635 | 1.5637 | 1.5634 |