In the present work, we consider the space-time fractional Whitham-Broer-Kaup (FWBK) equation and then find its analytical solutions under the framework of the Riccati-Bernoulli sub-ordinary differential equation method along with the Bäcklund transformation. The derived solutions are described in terms of the hyperbolic rational and trigonometric functions and resolve unique wave features. A unique feature of this work is the investigation of the impact of the fractional order on wave steepness in 2D, 3D, and contour plots. Also, it should be pointed that the found relationship shows that the change of the fractional order parameter really describes the traveling periodic waves, for example, Stokes waves, with potential importance for the analysis of wave propagation and stability in the nonlinear fractional structures. This work carries theoretical developments of fractional calculus and ideas for applications in fluid dynamics and wave mechanics.
Citation: Hussain Gissy, Abdullah Ali H. Ahmadini, Ali H. Hakami. The travelling wave phenomena of the space-time fractional Whitham-Broer-Kaup equation[J]. AIMS Mathematics, 2025, 10(2): 2492-2508. doi: 10.3934/math.2025116
[1] | Jingye Zhao, Zonghua Wei, Jiahui Liu, Yongqiang Fan . Vanishing magnetic field limits of solutions to the non-isentropic Chaplygin gas magnetogasdynamics equations. AIMS Mathematics, 2025, 10(1): 1675-1703. doi: 10.3934/math.2025077 |
[2] | Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534 |
[3] | Shang Mengmeng . Large time behavior framework for the time-increasing weak solutions of bipolar hydrodynamic model of semiconductors. AIMS Mathematics, 2017, 2(1): 102-110. doi: 10.3934/Math.2017.1.102 |
[4] | Aidi Yao . Two-dimensional pseudo-steady supersonic flow around a sharp corner for the generalized Chaplygin gas. AIMS Mathematics, 2022, 7(7): 11732-11758. doi: 10.3934/math.2022654 |
[5] | Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562 |
[6] | Lining Tong, Li Chen, Simone Göttlich, Shu Wang . The global classical solution to compressible Euler system with velocity alignment. AIMS Mathematics, 2020, 5(6): 6673-6692. doi: 10.3934/math.2020429 |
[7] | Shaomin Wang, Cunji Yang, Guozhi Cha . On the variational principle and applications for a class of damped vibration systems with a small forcing term. AIMS Mathematics, 2023, 8(9): 22162-22177. doi: 10.3934/math.20231129 |
[8] | Ahmed E. Abouelregal, Khalil M. Khalil, Wael W. Mohammed, Doaa Atta . Thermal vibration in rotating nanobeams with temperature-dependent due to exposure to laser irradiation. AIMS Mathematics, 2022, 7(4): 6128-6152. doi: 10.3934/math.2022341 |
[9] | Waleed Hamali, Abdulah A. Alghamdi . Exact solutions to the fractional nonlinear phenomena in fluid dynamics via the Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(11): 31142-31162. doi: 10.3934/math.20241501 |
[10] | Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607 |
In the present work, we consider the space-time fractional Whitham-Broer-Kaup (FWBK) equation and then find its analytical solutions under the framework of the Riccati-Bernoulli sub-ordinary differential equation method along with the Bäcklund transformation. The derived solutions are described in terms of the hyperbolic rational and trigonometric functions and resolve unique wave features. A unique feature of this work is the investigation of the impact of the fractional order on wave steepness in 2D, 3D, and contour plots. Also, it should be pointed that the found relationship shows that the change of the fractional order parameter really describes the traveling periodic waves, for example, Stokes waves, with potential importance for the analysis of wave propagation and stability in the nonlinear fractional structures. This work carries theoretical developments of fractional calculus and ideas for applications in fluid dynamics and wave mechanics.
The non-isentropic Euler equations in RN in fluid dynamics with a time-dependent linear damping and Coriolis force can be expressed as follows:
ρt+div(ρu)=0, | (1.1) |
(ρu)t+div(ρu⊗u)+ρJu+α(t)ρu+▽p=0, | (1.2) |
St+u⋅▽S=0, | (1.3) |
where u=(u1,u2,⋯,uN)T is an N-dimensional velocity field, ρ(x,t) and p(x,t)=eSργ represent density and the pressure function respectively, JT=−J representing Corilis force is an anti-symmetric matrix. The damping term α(t)ρu with α(t)≥0 as a coefficient of friction is proportional to the momentum.
For the special case when α(t)=0, the equations are reduced to Euler equations extended and governed by Coriolis rotational force [1,2,3,4]. The theoretical global existence of the Euler equations with rotational forces can be referred to [5,6,7]. Further studies on stability and tropical cyclones driven by this model can be referred to [8,9,10,11,12,13].
If J=0, (1.1)–(1.3) are reduced to non-isentropic linear-damped Euler equations, which provide an important model regarding to its physical behaviours. The system can also be used to describe compressible gas dynamics through a porous material driven by a friction force [14,15,16]. Weak solutions of the damped Euler equations are shown with asymptotic and large-time behavious in [16,17,18,19]. Chow, Fan, and Yuen, in 2017, constructed the solutions of Cartesian form with J=0 in [20], which can be regarded as a special case in this article, while taking the parameter γ and 2α in [20] to be γ+1 and α respectively. For time-dependent damping, Dong and Li studied a class of analytical solutions with free-boundary [21] in 2022.
For the case with J=0 and α(t)=0, the system (1.1)–(1.3) is reduced to the Euler equations
ρt+div(ρu)=0, | (1.4) |
(ρu)t+div(ρu⊗u)+▽p=0, | (1.5) |
St+u⋅▽S=0. | (1.6) |
There are lots of researches on Euler equations, for example, see [22,23,24,25,26]. Among all the topics, constructing analytical and exact solutions are crucial [27,28,29,30,31,32,33,34] with a common pattern of the velocity function u in linear form in many previous studies. For non-isentropic Euler equations, Barna and Mátyás presented the analytic solutions for one-dimensional Euler equations and three-dimensional Navier-Stokes equations with polytropic equation of state [34,35], which can be referred to by taking n≠γ and the viscosities to be zero respectively. Based on the linear form of velocity, An, Fan, and Yuen contributed with Cartesian rotational solutions to the N-dimension isentropic compressible Euler equations (1.4)–(1.6) [36] in 2015:
u=b(t)+A(t)x, | (1.7) |
where b(t) and A(t) are vector and matrix respectively. Further studies have shown the existence of general solutions in Cartesian form to isentropic Euler equations with damping and rotational forces in [20] and [37], respectively.
Referring to the many blowup pheonomena studies [38,39,40], the global solution is still complicated to look for.
In this article, the existence of a form of Cartesian solutions to non-isentropic Euler equations with rational force and linear damping (1.1)–(1.3) is proven by adopting mainly techniques on matrices, vectors, and curve integration. Enforcing eS=ρ and regarding velocity field u as an linear transformation of x∈RN, the problem is equivalent to finding the pressure function p, which leads us to a quadratic form and requirments on the matrix A and vector b. With this finding, we can construct some special exact solutions, which could be utilized in benchmarks for testings, simulations of computing flows.
In the following sections, we will prove the existence of the non-isentropic damped Euler equations with Coriolis forces, which admit Cartesian solutions by using appropriate requirements on matrix A and vector b. We will give examples on this first cartesian form solutions to non-isentropic Euler equations based on our finding.
In this section, we consider the non-isentropic Euler equations. Suppose that the density ρ and pressure p satisfy the relation
p(ρ)=eSργ, | (3.1) |
where the constant γ=cp/cu≥1, and cp and cu are the specific heats per unit mass under constant pressure and constant volume, respectively. Then we have the following theorem.
Theorem 3.1. If matrices A with tr(A)=0 and B=(At+A2+JA+α(t)A)/2 satisfy the matrix differential equations
BT=B, | (3.2) |
Bt+BA+ATB=0, | (3.3) |
then the compressible Euler equations with a time-dependent linear damping and Coriolis force (1.1)–(1.3) have explicit solutions in the form
u=b(t)+Ax, | (3.4) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ, | (3.5) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)], | (3.6) |
where μ=(γγ+1)1γ; the vector function b(t) and scalar function c(t) satisfy the ordinary differential equations:
(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb=0, | (3.7) |
ct−bT(bt+Ab+Jb+α(t)b)=0. | (3.8) |
Proof. By (3.65), (3.5) and (3.6), ρ>0, S=lnρ. Let
ˉp=γ+1γργ, | (3.9) |
▽pρ=1ρ▽(esργ)=1ρ▽(ργ+1)=(γ+1)ργ−1▽ρ=▽(γ+1γργ)=▽ˉp. | (3.10) |
With (3.9), the compressible Euler equations (1.2) and (1.3) can then be written as
ρt+div(ρu)=0, | (3.11) |
ut+(u⋅▽)u+Ju+α(t)u+▽ˉp=0, | (3.12) |
St+u⋅▽S=0. | (3.13) |
Owing to the equivalent relation (3.9) between ˉp and ρ, we mainly deal with ˉp when solving Eqs (3.11) and (3.12). Substituting Eq (3.4) into Eq (3.12), we have
ut+(u⋅▽)u+Ju+α(t)u+▽ˉp | (3.14) |
=bt+Atx+[(b+Ax)⋅▽](b+Ax)+JAx+α(t)Ax+Jb+α(t)b+▽ˉp | (3.15) |
=bt+Jb+α(t)b+Atx+(b⋅▽)Ax+(Ax⋅▽)Ax+JAx+α(t)Ax+▽ˉp | (3.16) |
=bt+(A+J+α(t))b+(At+A2+JA+α(t)A)x+▽ˉp=0. | (3.17) |
Let
B=(bij)N×N=12(At+A2+JA+α(t)A), J=(gij)N×N. | (3.18) |
Then the above equation can be written into a component form
Qi(x1,⋯,xN)≡−bit−α(t)bi−N∑k=1(aikbk+gikbk+2bikxk)=∂ˉp∂xi, i=1,2,⋯,N. | (3.19) |
Then, the following sufficient and necessary compatible conditions of these N equations,
∂Qj(x1,⋯,xN)∂xi=∂Qi(x1,⋯,xN)∂xj, i,j=1,2,⋯,N, | (3.20) |
lead to
bji=bij, i,j=1,2,⋯,N, | (3.21) |
which implies that B=12(At+A2+JA+α(t)A) is a symmetric matrix. Under the condition (3.20), ˉp(x) is a complete differential function,
dˉp(x)=N∑i=1∂ˉp(x)∂xidxi=N∑i=1Qi(x1,⋯,xN)dxi. | (3.22) |
Therefore we can choose a special integration route to obtain
ˉp(x,t)=N∑i=1∫(x1,x2,⋯,xN)(0,0,⋯,0)Qi(x1,x2,⋯,xN)dxi | (3.23) |
=∫x10Q1(x1,0,⋯,0)dx1,+∫x20Q2(x1,x2,0,⋯,0)dx2+⋯+∫xN0QN(x1,x2,⋯,xN)dxN | (3.24) |
=−N∑i=1[bi,t+N∑k=1(aikbk+gikbk)+α(t)bi]xi−N∑i=1biix2i−2N∑i,k=1, i<kbikxixk+c(t) | (3.25) |
=−xT(bt+Jb+Ab+α(t)b)−xTBx+c(t). | (3.26) |
Next, we show that functions (3.4)–(3.6) satisfy (3.11). By (3.9), we have
ρt=(μˉp1γ)t=μγˉp1γ−1ˉpt, | (3.27) |
ρtr(A)=μˉp1γtr(A)=μγˉp1γ−1γtr(A)ˉp, | (3.28) |
▽ρ=▽(μˉp1γ)=μγˉp1γ−1▽ˉp, | (3.29) |
u⋅▽ρ=μγˉp1γ−1uT▽ˉp. | (3.30) |
From Eqs (3.27)–(3.30), we have
ρt+div(ρu)=ρt+ρtr(A)+u⋅▽ρ=−μγˉp1γ−1{xT(bt+Ab+Jb+α(t)b)t+xTBtx−ct(t)+γtr(A)[xT(bt+Ab+Jb+α(t)b)+xTBx−c(t)]+(b+Ax)T(bt+Ab+Jb+α(t)b+2Bx)} | (3.31) |
=−μγˉp1γ−1{xT(Bt+γtr(A)B+2ATB)x+xT[(bt+Ab+Jb+α(t)b)t+(γtr(A)I+AT)(bt+Ab+Jb+α(t)b)+2Bb]−[ct+γtr(A)c−bT(bt+Ab+Jb+α(t)b)]} | (3.32) |
=−μγˉp1γ−1{xT[Bt+2ATB]x+xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb]−[ct−bT(bt+Ab+Jb+α(t)b)]}=0, | (3.33) |
where we use the condition of the first term
xT(Bt+2ATB)x=0, | (3.34) |
which is equivalent to
(Bt+2ATB)T=−(Bt+2ATB), | (3.35) |
that is,
Bt+BA+ATB=0, | (3.36) |
which is (3.3). The second and third terms are controlled to be 0 with (3.7) and (3.8). By (3.6), we have
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]=lnρ. | (3.37) |
From (3.9), (3.37) is equivalent to
S=ln(μˉpγ)=lnμ+1γlnˉp, | (3.38) |
St=(lnˉp)tγ=1γˉp−1ˉpt, | (3.39) |
▽S=1γ▽lnˉp=1γˉp−1▽ˉp. | (3.40) |
Substituting (3.4)–(3.6) and (3.38)–(3.40) to (3.13) and using (3.3), (3.7), and (3.8), we obtain by a similar argument used in obtaining Eq (3.33) that
St+u⋅▽S=1γˉp−1(ˉpt+uT▽ˉp) | (3.41) |
=1γˉp−1[−xT(bt+Ab+Jb+α(t)b)t−xTBtx+ct(t)−(xTAT+bT)(bt+Ab+Jb+α(t)b+2Bx)] | (3.42) |
=1γˉp{−xT[(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb]−xT[Bt+2ATB]x+ct(t)−bT(bt+Ab+Jb+α(t)b)}=0. | (3.43) |
We observe that Eq (3.3) is a N2 matrix differential equation, which demands us to apply special reduction conditions to acquire solutions.
Corollary 3.1. If A is an anti-symmetric matrix, that is
AT=−A, | (3.44) |
and the following conditions are satisfied:
At+α(t)A=0, | (3.45) |
AJ=JA, | (3.46) |
Bt=0, | (3.47) |
btt+2Atb+(Jb+α(t)b)t=0, | (3.48) |
ct−bT(bt+Ab+Jb+α(t)b)=0, | (3.49) |
then the compressible Euler equations (3.11)–(3.13) admit a general solution
u=b(t)+Ax, | (3.50) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ, | (3.51) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]. | (3.52) |
Proof. By (3.45) and (3.46),
BT=12(At+A2+JA+α(t)A)T | (3.53) |
=12[(−A)(−A)+(−A)(−J)] | (3.54) |
=12(A2+JA)=B. | (3.55) |
We can then simplify (3.3), (3.7), and (3.8) into (3.47), (3.48), and (3.49). Since matrix A is anti-symmetric, we have
BA+ATB=0. | (3.56) |
By (3.47), we have
Bt=0, | (3.57) |
Bt+BA+ATB=0. | (3.58) |
Thus, Eq (3.3) is ensured.
Since
BT=B, | (3.59) |
AJ=JA, | (3.60) |
AT+A=0, | (3.61) |
we have
(bt+Ab+Jb+α(t)b)t+AT(bt+Ab+Jb+α(t)b)+2Bb | (3.62) |
=btt+Atb+Abt−Abt−A(Ab+Jb+α(t)b)+(At+A2+JA+α(t)A)b+(Jb+α(t)b)t | (3.63) |
=btt+2Atb+(Jb+α(t)b)t=0. | (3.64) |
Thus, Eq (3.64) is simplified to (3.48).
Next, we give the following examples in 2 to N-dimension to demonstrate special cases of this corollary.
Remark 3.1. As (3.5) and (3.6) demand
−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)>0 | (3.65) |
for the positivity of the argument of the logarithm and density, the solutions exist locally.
Example 3.1. When α=0, we have the following examples:
2-dimensional Case: We take constant matrix
A=J=k1[01−10], b=k2[cos(k1t)sin(k1t)], c(t)=0, | (3.66) |
where k1 and k2 are arbitrary constants.
By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.67) |
=k12[−100−1]. | (3.68) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.69) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.70) |
=−k12b+0+Jbt+0 | (3.71) |
=−k12k2[cos(k1t)sin(k1t)]+k12k2[01−10][−sin(k1t)cos(k1t)]=0, | (3.72) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.73) |
=0−k2[cos(k1t)sin(k1t)]T(k1k2[−sin(k1t)cos(k1t)]+2k1k2[01−10][cos(k1t)sin(k1t)]) | (3.74) |
=−k1k22[cos(k1t)sin(k1t)]T[sin(k1t)−cos(k1t)]=0. | (3.75) |
we obtain the following solution:
u(t)=[k2cos(k1t)+k1x2k2sin(k1t)−k1x1], | (3.76) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.77) |
=μ[−xT(bt+2Ab)−xTA2x]1γ | (3.78) |
=μ[−xT(k1k2[−sin(k1t)cos(k1t)]+2k1k2[−sin(k1t)cos(k1t)])−xTk12[−100−1]x]1γ | (3.79) |
=μ[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)]1γ, | (3.80) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.81) |
=lnμ+1γln[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)]. | (3.82) |
3-dimensional Case: We take constant matrix
A=J=k1[01−1−1011−10], b=k2t[111], c(t)=3k222t2, | (3.83) |
where k1 and k2 are arbitrary constants.
Since matrix A is a constant matrix, (3.45)–(3.47) are satisfied. By using of (3.83), (3.48) and (3.49) are ensured. By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.84) |
=k12[−2111−2111−2]. | (3.85) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.86) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.87) |
=0+0+Jbt+0 | (3.88) |
=k1k2[01−1−1011−10][111]=0, | (3.89) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.90) |
=3k22t−k2[ttt]T(k2[111]+2k1k2[01−1−1011−10][ttt]) | (3.91) |
=3k22t−3k22t+0=0. | (3.92) |
Therefore we obtain the solution:
u(t)=[k2t+k1(x2−x3)k2t+k1(x3−x1)k2t+k1(x1−x2)], | (3.93) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.94) |
=μ[−xT(bt+2Ab)−xTA2x+3k222t2]1γ | (3.95) |
=μ[−xT(k2[111]+0)−xTk12[−2111−2111−2]x+3k222t2]1γ | (3.96) |
=μ[2k12(x12+x22+x32−x1x2−x1x3−x2x3)−k2(x1+x2+x3)+3k222t2]1γ, | (3.97) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.98) |
=lnμ+1γln[2k12(x12+x22+x32−x1x2−x1x3−x2x3)−k2(x1+x2+x3)+3k222t2]. | (3.99) |
Remark 3.2. The 3-dimensional example has the same setting with Example 5 in [37], which admits the same u solution but has different entropy and density.
4-dimensional Case: We take
A=J=k1[0−211201−3−1−102−13−20], | (3.100) |
b=k2t[1111], c(t)=2k22t2, | (3.101) |
where k1 and k2 are arbitrary constants. By (3.18),
B=12(At+A2+JA+α(t)A)=12(2A2)=A2 | (3.102) |
=k12[−62−482−1484−48−62842−14]. | (3.103) |
Since A is a constant matrix, At=0, taking α(t)=0,
Bt=d(At+A2+JA+α(t)A)2dt=0, | (3.104) |
Eqs (3.45) and (3.47) are satisfied. As J=A, Eq (3.46) is guaranteed. Equation (3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.105) |
=0+0+Jbt+0 | (3.106) |
=k1k2[0−211201−3−1−102−13−20][1111]=0, | (3.107) |
Eq (3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.108) |
=4k22t−k2[tttt]T(k2[1111]+2k1k2[0−211201−3−1−102−13−20][tttt]) | (3.109) |
=4k22t−4k22t+0=0. | (3.110) |
We have the following solutions:
u=k2t[1111]+k1[−2x2+x3+x42x1+x3−3x4−x1−x2+2x4−x1+3x2−2x3], | (3.111) |
ρ=μ[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)]1γ | (3.112) |
=μ[−xT(bt+2Ab)−xTA2x+2k22t2]1γ | (3.113) |
=μ[−xT(k2[1111]+0)−xTk12[−62−482−1484−48−62842−14]x+2k22t2]1γ | (3.114) |
=μ[−k2(x1+x2+x3+x4)+k21(6x12+14x22+6x32+14x42−4x1x2+8x1x3−16x1x4−16x2x3−8x2x4−4x3x4)+2k22t2]1γ, | (3.115) |
S=lnμ+1γln[−xT(bt+Jb+α(t)b+Ab)−xTBx+c(t)] | (3.116) |
=lnμ+1γln[−k2(x1+x2+x3+x4)+k21(6x12+10x22+6x32+14x42−4x1x2+8x1x3−16x1x4−16x2x3−8x2x4−4x3x4)+2k22t2]. | (3.117) |
Example 3.2. When α is a constant, we have the following examples.
2-dimensional Case: We take
A=−J=k1e−αt[01−10], b=k2e−αt[11], | (3.118) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1x2+k2−k1x1+k2], | (3.119) |
ρ=μm1γ, | (3.120) |
S=lnμ+1γlnm. | (3.121) |
3-dimensional Case: We take
A=−J=k1e−αt[011−101−1−10], b=k2e−αt[111], | (3.122) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1(x2+x3)+k2k1(x3−x1)+k2−k1(x1+x2)+k2], | (3.123) |
ρ=μm1γ, | (3.124) |
S=lnμ+1γlnm. | (3.125) |
4-dimensional Case: We take
A=−J=k1e−αt[0111−1011−1−101−1−1−10], b=k2e−αt[1111], | (3.126) |
c(t)=m>0, where k1, k2, and m are arbitrary constants. Then we get a solution
u(t)=e−αt[k1(x2+x3+x4)+k2k1(x3+x4−x1)+k2k1(x4−x1−x2)+k2−k1(x1+x2+x3)+k2], | (3.127) |
ρ=μm1γ, | (3.128) |
S=lnμ+1γlnm. | (3.129) |
N-dimensional Case: We take
A=k1e−αt[011⋯1−101⋯1−1−1⋱1⋮⋮⋱1−1−1−1⋯0], b=k2e−αt[11⋮1], | (3.130) |
J=−A, c(t)=m>0, | (3.131) |
where k1, k2, and m are arbitrary constants. Then we get a solution
ui=e−αt[k1(N∑k=i+1xk−i−1∑k=1xk)+k2], | (3.132) |
ρ=μm1γ, | (3.133) |
S=lnμ+1γlnm. | (3.134) |
Proof. Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. (3.46) is guaranteed by J=−A, with
At=−αk1e−αt=−αA, | (3.135) |
(3.45) is satisfied. Therefore,
B=12(At+A2+JA+αA)=0, Bt=0, | (3.136) |
(3.47) is ensured. Substituting (3.130) and (3.131) into (3.48) and (3.49) produces
btt+2Atb+(Jb+α(t)b)t | (3.137) |
=α2b+2αAb+(αb−Ab)t | (3.138) |
=α2b+2αAb−α2b−2αAb=0, | (3.139) |
and
ct−bT(bt+αb+Ab+Jb) | (3.140) |
=0−bT(−αb+αb−Jb+Jb)=0. | (3.141) |
Example 3.3. (2-dimensional case) We take
A=tk1[01−10], J=(tk1−k2tk1)[0−110], b=tk1[11], c(t)=β, α(t)=−k1t, | (3.142) |
where k1<0, k2, and β are arbitrary constants. As
AJ=JA=(t2k1−k2)[1001], | (3.143) |
(3.46) is satisfied.
Denoting
Q=(qij)N×N=[01−10], w=[11], | (3.144) |
it is easy to see
At=k1tk1−1Q=−α(t)A, | (3.145) |
and,
B=A2+JA2=(A+J)A2=k22tk1QA=−k22I=BT, | (3.146) |
Bt=(−k22I)t=0, | (3.147) |
therefore, (3.47) is satisfied. Since
bt=−α(t)b,J=k2tk1Q−A, | (3.148) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.149) |
=−(α(t)b)t−2α(t)Ab+[(k2tk1Q−A)tk1w]t+(α(t)b)t | (3.150) |
=−2α(t)Ab−(Ab)t | (3.151) |
=−2α(t)Ab−Abt−Atb | (3.152) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.153) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.154) |
=0−tk1wT[k1tk1−1w+tk1Qtk1w+(k2tk1−tk1)Qtk1w−k1tk1−1w] | (3.155) |
=0−tk1wT(k2tk1Qtk1w) | (3.156) |
=−k2tk1wTQw | (3.157) |
=−k2tk1N∑i=1,j=1qij=0. | (3.158) |
Then we get a solution
u(t)=tk1[1+x21−x1], | (3.159) |
ρ=μ[k2(x12+x222−x1−x2)+β]1γ, | (3.160) |
S=lnμ+1γln[k2(x12+x222−x1−x2)+β]. | (3.161) |
Example 3.4 (3-dimensional case). We take
A=tk1[011−101−1−10], J=(tk1−k2tk1)[0−1−110−1110], b=tk1[111], c(t)=β, α(t)=−k1t, | (3.162) |
where k1<0, k2, and β are arbitrary constants. As
AJ=JA=(t2k1−k2)[21−1121−112], | (3.163) |
(3.46) is satisfied.
Denoting
Q=(qij)N×N=[011−101−1−10], w=[111], | (3.164) |
it is easy to see
At=−α(t)A, | (3.165) |
B=A2+JA2=(A+J)A2=k22tk1QA=k22Q2=BT, | (3.166) |
B=A2+JA2=k22[−2−11−1−2−11−1−2], | (3.167) |
therefore
BT=B, Bt=0, | (3.168) |
(3.47) is satisfied.
Since
bt=−α(t)b, J=k2tk1Q−A, | (3.169) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.170) |
=−(α(t)b)t−2α(t)Ab+[(k2tk1Q−A)tk1w]t+(α(t)b)t | (3.171) |
=−2α(t)Ab−(Ab)t | (3.172) |
=−2α(t)Ab−Abt−Atb | (3.173) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.174) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.175) |
=0−tk1wT[k1tk1−1w+tk1Qtk1w+(k2tk1−tk1)Qtk1w−k1tk1−1w] | (3.176) |
=0−tk1wT(k2tk1Qtk1w) | (3.177) |
=−k2tk1wTQw | (3.178) |
=−k2tk1N∑i=1,j=1qij=0. | (3.179) |
We then get a solution
u(t)=tk1[x2+x3+1x3−x1+1−x1−x2+1], | (3.180) |
ρ=μ[k2(x12+x22+x32+x1x2+x2x3−x1x3−2x1+2x3)+β]1γ, | (3.181) |
S=lnμ+1γln[k2(x12+x22+x32+x1x2+x2x3−x1x3−2x1+2x3)+β]. | (3.182) |
Remark 3.3 (N-dimensional case). We can abtain N-dimensional solutions denoting
Q=(qij)N×N=[011⋯1−101⋯1−1−1⋱1⋮⋮⋱1−1−1−1⋯0], w=[11⋮1], | (3.183) |
and taking
A=f(t)Q, J=(k1f(t)−f(t))Q, b=f(t)w, α(t)=−˙f(t)f(t), c(t)=β, | (3.184) |
where ˙f(t)f(t)≤0, k1 and β are arbitrary constants. As
AJ=JA=(k1−f(t)2)Q2, | (3.185) |
(3.46) is satisfied. It is easy to see
At=−α(t)A, | (3.186) |
B=A2+JA2=(A+J)A2=k12f(t)Qf(t)Q=k12Q2, | (3.187) |
therefore
BT=B, Bt=0, | (3.188) |
(3.47) are satisfied. Since
bt=−α(t)b, J=k1f(t)Q−A, | (3.189) |
(3.48) is satisfied by
btt+2Atb+(Jb+α(t)b)t | (3.190) |
=−(α(t)b)t−2α(t)Ab+[(k1f(t)−f(t))Qf(t)w]t+(α(t)b)t | (3.191) |
=−2α(t)Ab+(k1Qw−Ab)t | (3.192) |
=−2α(t)Ab−(Ab)t | (3.193) |
=−2α(t)Ab−Abt−Atb | (3.194) |
=−2α(t)Ab+α(t)Ab+α(t)Ab=0, | (3.195) |
(3.49) is satisfied by
ct−bT(bt+Ab+Jb+α(t)b) | (3.196) |
=0−f(t)wT[˙f(t)w+f(t)Qf(t)w+(k1f(t)−f(t))Qf(t)w−˙f(t)w] | (3.197) |
=0−f(t)wT(k1f(t)Qf(t)w) | (3.198) |
=−k1f(t)wTQw | (3.199) |
=−k1f(t)N∑i=1,j=1qij=0. | (3.200) |
In this paper, we construct the Cartesian solutions
u=b(t)+A(t)x |
for the non-isentropic Euler equations with a time-dependent linear damping and a rotational force. By constructing appropriate matices A(t) and vectors b(t), we obtain new theoretical new exact solutions, which are obtained under the requirement of entropy S=lnρ. We then invite the scientific community to provide solutions with other forms of or more general form of entropy. The global existence of the solutions remains open, while the blowup phenomena are complicated to higher dimensional cases due to the existence of many temporal variables and the multiple requirements imposed on them.
The author declares there is no interest in relation to this article.
Verification of examples on Euler equations
For simplicity, we use the same ˉp defined in (3.9), solutions of ρ and S in all dimensions are equivalent to
ρ=μˉp1γ, | (4.1) |
S=lnμ+1γlnˉp. | (4.2) |
It is clear that from the theorem (3.5) and (3.6) and can be easily verified from substitution that all solutions satisfy S=lnρ. Dividing ρ from both sides of (1.2), we rewrite the Euler equations (1.1)–(1.3) as
ρt+N∑k=1∂∂xkρuk=0, | (4.3) |
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ=0, | (4.4) |
St+N∑k=1uk∂∂xkS=0. | (4.5) |
Example 1
For 2-dimension case: Substituting (3.76)–(3.82) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2) | (4.6) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2) | (4.7) |
=μγˉp1−γγˉpt+(k2cos(k1t)+k1x2)∂∂x1μˉp1γ+(k2cos(k1t)−k1x1)∂∂x2μˉp1γ | (4.8) |
=μγˉp1−γγ[−k21k2cos(k1t)x1−k21k2sin(k1t)x2]+μγˉp1−γγ∂∂x1[ˉp(k2cos(k1t)+k1x2)]+μγˉp1−γγ∂∂x2[ˉp(k2cos(k1t)−k1x1)] | (4.9) |
=μγˉp1−γγ{−k21k2cos(k1t)x1−k21k2sin(k1t)x2+∂∂x1[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)](k2cos(k1t)+k1x2)+∂∂x2[k12(x12+x22)+k1k2(−sin(k1t)x1+cos(k1t)x2)](k2sin(k1t)−k1x1)} | (4.10) |
=μγˉp1−γγ[−k21k2cos(k1t)x1−k21k2sin(k1t)x2+(2k21x1−k1k2sin(k1t))(k2cos(k1t)+k1x2)+(2k21x2+k1k2cos(k1t))(k2sin(k1t)−k1x1)]=0. | (4.11) |
Substituting (3.76)–(3.82) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+αu1+γ+1γ∂∂x1ργ | (4.12) |
=−k1k2sin(k1t)+u1(0+0)+(k2sin(k1t)−k1x1)(k1+k1)+2k21x1−k1k2sin(k1t) | (4.13) |
=0, | (4.14) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j11)+u2(∂u2∂x2+j12)+αu2+γ+1γ∂∂x2ργ | (4.15) |
=k1k2sin(k1t)+(k2cos(k1t)−k1x2)(−k1−k1)+u2(0+0)+2k21x2−k1k2cos(k1t) | (4.16) |
=0. | (4.17) |
Substituting (3.76)–(3.82) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S | (4.18) |
=1γˉp(−k21k2cos(k1t)x1−k21k2sin(k1t)x2)+1γˉp(2k21x1−k1k2sin(k1t))(k2cos(k1t)+k1x2)+1γˉp(2k21x2+k1k2cos(k1t))(k2sin(k1t)−k1x1) | (4.19) |
=1γˉp(−k21k2cos(k1t)x1−k21k2sin(k1t)x2)+1γˉp(k21k2sin(k1t)x2+k21k2cos(k1t)x1)=0. | (4.20) |
For 3-dimensional case: Substituting (3.93)–(3.99) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2)+∂∂x3(ρu3) | (4.21) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2)+∂∂x3(μˉp1γu3) | (4.22) |
=μγˉp1−γγˉpt+[k2t+k1(x2−x3)]∂∂x1μˉp1γ+[k2t+k1(x3−x1)]∂∂x2μˉp1γ+[k2t+k1(x1−x2)]∂∂x3μˉp1γ | (4.23) |
=μγˉp1−γγ3k22t+μγˉp1−γγ[k2t+k1(x2−x3)]∂ˉp∂x1+μγˉp1−γγ[k2t+k1(x3−x1)]∂ˉp∂x2+μγˉp1−γγ[k2t+k1(x1−x2)]∂ˉp∂x3 | (4.24) |
=μγˉp1−γγ{3k22t+[k2t+k1(x2−x3)]∂ˉp∂x1+[k2t+k1(x3−x1)]∂ˉp∂x2+[k2t+k1(x1−x2)]∂ˉp∂x3} | (4.25) |
=μγˉp1−γγ{3k22t+[k2t+k1(x2−x3)][2k22(2x1−x2−x3)−k2]+[k2t+k1(x3−x1)][2k22(2x2−x1−x3)−k2]+[k2t+k1(x1−x2)][2k22(2x3−x1−x2)−k2]}=0. | (4.26) |
Substituting (3.93)–(3.99) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+u3(∂u1∂x3+j13)+αu1+γ+1γ∂∂x1ργ | (4.27) |
=k2+u1(0+0)+[k2t+k1(x3−x1)](k1+k1)+[k2t+k1(x1−x2)](−k1−k1)+2k21(2x1−x2−x3)−k2=0, | (4.28) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j21)+u2(∂u2∂x2+j22)+u3(∂u2∂x3+j23)+αu2+γ+1γ∂∂x2ργ | (4.29) |
=k2+[k2t+k1(x2−x3)](−k1−k1)+u2(0+0)+[k2t+k1(x1−x2)](k1+k1)+2k21(2x2−x1−x3)−k2=0, | (4.30) |
the third momentum gives
∂u3∂t+u1(∂u3∂x1+j31)+u2(∂u3∂x2+j32)+u3(∂u3∂x3+j33)+αu3+γ+1γ∂∂x3ργ | (4.31) |
=k2+[k2t+k1(x2−x3)](k1+k1)+[k2t+k1(x3−x1)](−k1−k1)+u3(0+0)+2k21(2x3−x1−x2)−k2=0. | (4.32) |
Substituting (3.93)–(3.99) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S | (4.33) |
=1γˉp3k22t+[k2t+k1(x2−x3)]∂∂x1lnˉp+[k2t+k1(x3−x1)]∂∂x2lnˉp+[k2t+k1(x1−x2)]∂∂x3lnˉp | (4.34) |
=1γˉp{3k22t+[k2t+k1(x2−x3)][2k21(2x1−x2−x3)−k2]+[k2t+k1(x3−x1)][2k21(2x2−x1−x3)−k2]+[k2t+k1(x1−x2)][2k21(2x3−x1−x2)−k2]}=0. | (4.35) |
For 4-dimensional case: Substituting (3.111)–(3.117) and (4.1) into (4.3) produces
ρt+∂∂x1(ρu1)+∂∂x2(ρu2)+∂∂x3(ρu3)+∂∂x4(ρu4) | (4.36) |
=μ(ˉp1γ)t+∂∂x1(μˉp1γu1)+∂∂x2(μˉp1γu2)+∂∂x3(μˉp1γu3)+∂∂x4(μˉp1γu4) | (4.37) |
=μγˉp1−γγˉpt+[k2t+k1(−2x2+x3+x4)]∂∂x1μˉp1γ+[k2t+k1(2x1+x3−3x4)]∂∂x2μˉp1γ+[k2t+k1(−x1−x2+2x4)]∂∂x3μˉp1γ+[k2t+k1(−x1+3x2−2x3)]∂∂x4μˉp1γ | (4.38) |
=μγˉp1−γγ4k22t+μγˉp1−γγ[k2t+k1(−2x2+x3+x4)]∂ˉp∂x1+μγˉp1−γγ[k2t+k1(2x1+x3−3x4)]∂ˉp∂x2+μγˉp1−γγ[k2t+k1(−x1−x2+2x4)]∂ˉp∂x3+μγˉp1−γγ[k2t+k1(−x1+3x2−2x3)]∂ˉp∂x4 | (4.39) |
=μγˉp1−γγ{4k22t+[k2t+k1(−2x2+x3+x4)]∂ˉp∂x1+[k2t+k1(2x1+x3−3x4)]∂ˉp∂x2+[k2t+k1(−x1−x2+2x4)]∂ˉp∂x3+[k2t+k1(−x1+3x2−2x3)]∂ˉp∂x4} | (4.40) |
=μγˉp1−γγ{4k22t+[k2t+k1(−2x2+x3+x4)][−k2+k21(12x1−4x2+8x3−16x4)]+[k2t+k1(2x1+x3−3x4)][−k2+k21(28x2−4x1−16x3−8x4)]+[k2t+k1(−x1−x2+2x4)][−k2+k21(12x3+8x1−16x2−4x4)]+[k2t+k1(−x1+3x2−2x3)][−k2+k21(28x4−16x1−8x2−4x3)]}=0. | (4.41) |
Substituting (3.111)–(3.117) into (4.4), the first momentum gives
∂u1∂t+u1(∂u1∂x1+j11)+u2(∂u1∂x2+j12)+u3(∂u1∂x3+j13)+u4(∂u1∂x4+j14)+αu1+γ+1γ∂∂x1ργ | (4.42) |
=k2+u1(0+0)+[k2t+k1(2x1+x3−3x4)](−2k1−2k1)+[k2t+k1(−x1−x2+2x4)](k1+k1)+[k2t+k1(−x1+3x2−2x3)](k1+k1)−k2+k21(12x1−4x2+8x3−16x4)=0, | (4.43) |
the second momentum gives
∂u2∂t+u1(∂u2∂x1+j21)+u2(∂u2∂x2+j22)+u3(∂u2∂x3+j23)+u4(∂u2∂x4+j24)+αu2+γ+1γ∂∂x2ργ | (4.44) |
=k2+[k2t+k1(−2x2+x3+x4)](2k1+2k1)+u2(0+0)+[k2t+k1(−x1−x2+2x4)](k1+k1)+[k2t+k1(−x1+3x2−2x3)](−3k1−3k1)−k2+k21(−4x1+28x2−16x3−8x4)=0, | (4.45) |
the third momentum gives
∂u3∂t+u1(∂u3∂x1+j31)+u2(∂u3∂x2+j32)+u3(∂u3∂x3+j33)+u4(∂u3∂x4+j34)+αu3+γ+1γ∂∂x3ργ | (4.46) |
=k2+[k2t+k1(−2x2+x3+x4)](−k1−k1)+[k2t+k1(2x1+x3−3x4)](−k1−k1)+u3(0+0)+[k2t+k1(−x1+3x2−2x3)](2k1+2k1)−k2+k21(8x1−16x2+12x3−4x4)=0, | (4.47) |
the fourth momentum gives
∂u4∂t+u1(∂u4∂x1+j41)+u2(∂u4∂x2+j42)+u3(∂u4∂x3+j43)+u4(∂u4∂x4+j44)+αu4+γ+1γ∂∂x4ργ | (4.48) |
=k2+[k2t+k1(−2x2+x3+x4)](−k1−k1)+[k2t+k1(2x1+x3−3x4)](3k1+3k1)+[k2t+k1(−x1−x2+2x4)](−2k1−2k1)+u4(0+0)−k2+k21(−16x1−8x2−4x3+28x4)=0. | (4.49) |
Substituting (3.111)–(3.117) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S+u4∂∂x4S | (4.50) |
=ˉptγˉp+u1∂∂x1lnˉpγ+u2∂∂x2lnˉpγ+u3∂∂x3lnˉpγ+u4∂∂x4lnˉpγ | (4.51) |
=1γˉp{4k22t+[k2t+k1(−2x2+x3+x4)][−k2+k21(12x1−4x2+8x3−16x4)]+[k2t+k1(2x1+x3−3x4)][−k2+k21(28x2−4x1−16x3−8x4)]+[k2t+k1(−x1−x2+2x4)][−k2+k21(12x3+8x1−16x2−4x4)]+[k2t+k1(−x1+3x2−2x3)][−k2+k21(28x4−16x1−8x2−4x3)]}=0. | (4.52) |
Example 2
Since N-dimensional case covers 2 to 4-dimensional cases, here gives the verification of N-dimensional case. Substituting solutions into Euler equations, as S is a constant, (4.5) is guaranteed. Since ρ is also a constant, by
ρt+N∑k=1∂∂xkρuk | (4.53) |
=0+ρN∑k=1∂∂xkuk | (4.54) |
=ρe−αtN∑k=1∂∂xk[k1(N∑g=k+1xg−k−1∑g=1xg)+k2]=0, | (4.55) |
Eq (4.3) is verified.
∂ui∂xk=∂∂xke−αt[k1(N∑k=i+1xk−i−1∑k=1xk)+k2] | (4.56) |
={−k1e−αt,for k<i0,for k=ik1e−αt,for k>i}=−jik, | (4.57) |
therefore,
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ | (4.58) |
=−αui+0+αui+0=0, | (4.59) |
the n-th momentum Eq (4.4) is satisfied.
Example 3
Substituting (3.159)–(3.161) into (4.3) produces
ρt+∂∂x1ρu1+∂∂x2ρu2 | (4.60) |
=0+μγˉp1−γγtk1(1+x2)k2(x1−1)+μγˉp1−γγtk1(1−x1)k2(x2+1)=0. | (4.61) |
Substituting (3.159)–(3.161) into (4.4) gives
∂ui∂t+u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+αui+γ+1γ∂∂xiργ | (4.62) |
=u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+0 | (4.63) |
=k1tk1−1[1+x11−x2]+tk1(1+x2)(tk1[0−1]+[0tk1−k2tk1])+tk1(1−x1)(tk1[10]+[−tk1+k2tk10])−k1ttk1[1+x11−x2]+[k2(x1−1)k2(x2+1)]=0. | (4.64) |
Substituting (3.159)–(3.161) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S | (4.65) |
=0+tk1(1+x2)k2(2x1−1)γˉp+tk1(1−x1)k2(2x2+1)γˉp=0. | (4.66) |
Example 4
Substituting (3.180)–(3.182) into (4.3) produces
ρt+∂∂x1ρu1+∂∂x2ρu2+∂∂x3ρu3 | (4.67) |
=0+μγˉp1−γγ[tk1(x2+x3+1)k2(2x1+x2−x3−2)+tk1(x3−x1+1)k2(2x2+x1+x3)+tk1(−x1−x2+1)k2(2x3−x1+x2+2)]=0. | (4.68) |
Substituting (3.180)–(3.182) into (4.4), since
ut=k1tk1−1=k1ttk1=−α(t)u, | (4.69) |
we have
∂ui∂t+N∑k=1uk(∂ui∂xk+jik)+αui+γ+1γ∂∂xiργ | (4.70) |
=u1(∂ui∂xk+ji1)+u2(∂ui∂xk+ji2)+u3(∂ui∂xk+ji3)+0 | (4.71) |
=tk1(x2+x3+1)(tk1[0−1−1]+[0tk1−k2tk1tk1−k2tk1])+tk1(x3−x1+1)(tk1[10−1]+[−tk1+k2tk10tk1−k2tk1])+tk1(−x1−x2+1)(tk1[110]+[−tk1+k2tk1−tk1+k2tk10]+[k2(2x1+x2−x3−2)k2(2x2+x1+x3)k2(2x3−x1+x2−2)])=0. | (4.72) |
Substituting (3.180)–(3.182) into (4.5) gives
St+u1∂∂x1S+u2∂∂x2S+u3∂∂x3S | (4.73) |
=0+1γˉp[tk1(x2+x3+1)k2(2x1+x2−x3−2)+tk1(x3−x1+1)k2(2x2+x1+x3)+tk1(−x1−x2+1)k2(2x3−x1+x2+2)]=0. | (4.74) |
[1] |
W. Gao, H. Rezazadeh, Z. Pinar, H. M. Baskonus, S. Sarwar, G. Yel, Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Opt. Quant. Electron., 52 (2020), 52. https://doi.org/10.1007/s11082-019-2162-8 doi: 10.1007/s11082-019-2162-8
![]() |
[2] |
C. Zhu, M. Al-Dossari, S. Rezapour, B. Gunay, On the exact soliton solutions and different wave structures to the (2+1)-dimensional Chaffee-Infante equation, Results Phys., 57 (2024), 107431. https://doi.org/10.1016/j.rinp.2024.107431 doi: 10.1016/j.rinp.2024.107431
![]() |
[3] |
M. N. Rafiq, M. H. Rafiq, H. Alsaud, Chaotic response, multistability and new wave structures for the generalized coupled Whitham-Broer-Kaup-Boussinesq-Kupershmidt system with a novel methodology, Chaos Soliton. Fract., 190 (2025), 115755. https://doi.org/10.1016/j.chaos.2024.115755 doi: 10.1016/j.chaos.2024.115755
![]() |
[4] |
X. H. Zhao, Multi-solitons and integrability for a (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation, Appl. Math. Lett., 149 (2024), 108895. https://doi.org/10.1016/j.aml.2023.108895 doi: 10.1016/j.aml.2023.108895
![]() |
[5] |
Z. Z. Lan, Semirational rogue waves of the three coupled higher-order nonlinear Schrödinger equations, Appl. Math. Lett., 147 (2024), 108845. https://doi.org/10.1016/j.aml.2023.108845 doi: 10.1016/j.aml.2023.108845
![]() |
[6] |
Z. Z. Lan, Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers, Chinese Phys. B, 33 (2024), 060201. https://doi.org/10.1088/1674-1056/ad39d7 doi: 10.1088/1674-1056/ad39d7
![]() |
[7] |
M. Ghasemi, High order approximations using spline-based differential quadrature method: implementation to the multi-dimensional PDEs, Appl. Math. Model., 46 (2017), 63–80. https://doi.org/10.1016/j.apm.2017.01.052 doi: 10.1016/j.apm.2017.01.052
![]() |
[8] |
N. Perrone, R. Kao, A general finite difference method for arbitrary meshes, Comput. Struct., 5 (1975), 45–57. https://doi.org/10.1016/0045-7949(75)90018-8 doi: 10.1016/0045-7949(75)90018-8
![]() |
[9] | M. N. Rafiq, H. Chen, Multiple interaction solutions, parameter analysis, chaotic phenomena and modulation instability for a (3+1)-dimensional Kudryashov-Sinelshchikov equation in ideal liquid with gas bubbles, Nonlinear Dyn., 2024. https://doi.org/10.1007/s11071-024-10164-2 |
[10] |
S. Mahmood, R. Shah, H. Khan, M. Arif, Laplace Adomian Decomposition method for multidimensional time fractional model of Navier-Stokes equation, Symmetry, 11 (2019), 149. https://doi.org/10.3390/sym11020149 doi: 10.3390/sym11020149
![]() |
[11] |
M. A. Abdou, A. A. Soliman, New applications of variational iteration method, Phys. D, 211 (2005), 1–8. https://doi.org/10.1016/j.physd.2005.08.002 doi: 10.1016/j.physd.2005.08.002
![]() |
[12] |
E. Yusufoglu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method, Int. J. Comput. Math., 83 (2006), 915–924. https://doi.org/10.1080/00207160601138756 doi: 10.1080/00207160601138756
![]() |
[13] |
E. Az-Zo'bi, L. Akinyemi, A. O. Alleddawi, Construction of optical solitons for conformable generalized model in nonlinear media, Mod. Phys. Lett. B, 35 (2021), 2150409. https://doi.org/10.1142/S0217984921504091 doi: 10.1142/S0217984921504091
![]() |
[14] | E. A. Az-Zo'bi, Exact analytic solutions for nonlinear diffusion equations via generalized residual power series method, Int. J. Math. Comput. Sci., 14 (2019), 69–78. |
[15] |
C. K. Kuo, New solitary solutions of the Gardner equation and Whitham-Broer-Kaup equations by the modified simplest equation method, Optik, 147 (2017), 128–135. https://doi.org/10.1016/j.ijleo.2017.08.048 doi: 10.1016/j.ijleo.2017.08.048
![]() |
[16] |
S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. https://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
![]() |
[17] |
M. Lei, H. Liao, S. Wang, H. Zhou, J. Zhu, H. Wan, et al., Electro-sorting creates heterogeneity: constructing a multifunctional Janus film with integrated compositional and microstructural gradients for guided bone regeneration, Adv. Sci., 11 (2024), 2307606. https://doi.org/10.1002/advs.202307606 doi: 10.1002/advs.202307606
![]() |
[18] |
R. Ali, M. M. Alam, S. Barak, Exploring chaotic behavior of optical solitons in complex structured conformable perturbed Radhakrishnan-Kundu-Lakshmanan model, Phys. Scr., 99 (2024), 095209. https://doi.org/10.1088/1402-4896/ad67b1 doi: 10.1088/1402-4896/ad67b1
![]() |
[19] |
A. Secer, S. Altun, A new operational matrix of fractional derivatives to solve systems of fractional differential equations via Legendre wavelets, Mathematics, 6 (2018), 238. https://doi.org/10.3390/math6110238 doi: 10.3390/math6110238
![]() |
[20] | H. R. Ghehsareh, A. Majlesi, A. Zaghian, Lie symmetry analysis and conservation laws for time fractional coupled Whitham-Broer-Kaup equations, UPB Sci. Bull. A: Appl. Math. Phys., 80 (2018), 153–168. |
[21] |
S. M. El-Sayed, D. Kaya Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations, Appl. Math. Comput., 167 (2005), 1339–1349. https://doi.org/10.1016/j.amc.2004.08.012 doi: 10.1016/j.amc.2004.08.012
![]() |
[22] |
S. Kumar, K. S. Nisar, M. Niwas, On the dynamics of exact solutions to a (3+1)-dimensional YTSF equation emerging in shallow sea waves: Lie symmetry analysis and generalized Kudryashov method, Results Phys., 48 (2023), 106432. https://doi.org/10.1016/j.rinp.2023.106432 doi: 10.1016/j.rinp.2023.106432
![]() |
[23] |
A. Irshad, N. Ahmed, A. Nazir, U. Khan, S. T. Mohyud-Din, Novel exact double periodic soliton solutions to strain wave equation in micro structured solids, Phys. A, 550 (2020), 124077. https://doi.org/10.1016/j.physa.2019.124077 doi: 10.1016/j.physa.2019.124077
![]() |
[24] |
S. Bibi, S. T. Mohyud-Din, U. Khan, N. Ahmed, Khater method for nonlinear Sharma-Tasso-Olever (STO) equation of fractional order, Results Phys., 7 (2017), 4440–4450. https://doi.org/10.1016/j.rinp.2017.11.008 doi: 10.1016/j.rinp.2017.11.008
![]() |
[25] |
S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. https://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
![]() |
[26] |
F. Meng, A. Pang, X. Dong, C. Han, X. Sha, H∞ optimal performance design of an unstable plant under bode integral constraint, Complexity, 2018 (2018), 4942906. https://doi.org/10.1155/2018/4942906 doi: 10.1155/2018/4942906
![]() |
[27] |
S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. https://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
![]() |
[28] |
Y. Hu, Y. Sugiyama, Well-posedness of the initial-boundary value problem for 1D degenerate quasilinear wave equations, Adv. Differ. Equations, 30 (2025), 177–206. https://doi.org/10.57262/ade030-0304-177 doi: 10.57262/ade030-0304-177
![]() |
[29] |
L. Zheng, Y. Zhu, Y. Zhou, Meta-transfer learning-based method for multi-fault analysis and assessment in power system, Appl. Intell., 54 (2024), 12112–12127. https://doi.org/10.1007/s10489-024-05772-9 doi: 10.1007/s10489-024-05772-9
![]() |
[30] |
Y. Zhu, Y. Zhou, L. Yan, Z. Li, H. Xin, W. Wei, Scaling graph neural networks for large-scale power systems analysis: empirical laws for emergent abilities, IEEE Trans. Power Syst., 39 (2024), 7445–7448. https://doi.org/10.1109/TPWRS.2024.3437651 doi: 10.1109/TPWRS.2024.3437651
![]() |
[31] |
C. Yang, K. Meng, L. Yang, W. Guo, P. Xu, S. Zhou, Transfer learning-based crashworthiness prediction for the composite structure of a subway vehicle, Int. J. Mech. Sci., 248 (2023), 108244. https://doi.org/10.1016/j.ijmecsci.2023.108244 doi: 10.1016/j.ijmecsci.2023.108244
![]() |
[32] |
Z. Cheng, Y. Chen, H. Huang, Identification and validation of a novel prognostic signature based on ferroptosis-related genes in ovarian cancer, Vaccine, 11 (2023), 205. https://doi.org/10.3390/vaccines11020205 doi: 10.3390/vaccines11020205
![]() |
[33] |
Y. Yang, L. Zhang, C. Xiao, Z. Huang, F. Zhao, J. Yin, Highly efficient upconversion photodynamic performance of rare-earth-coupled dual-photosensitizers: ultrafast experiments and excited-state calculations, Nanophotonics, 13 (2024), 443–455. https://doi.org/10.1515/nanoph-2023-0772 doi: 10.1515/nanoph-2023-0772
![]() |
[34] |
B. Zhuang, Y. Yang, K. Huang, J. Yin, Plasmon-enhanced NIR-Ⅱ photoluminescence of rare-earth oxide nanoprobes for high-sensitivity optical temperature sensing, Opt. Lett., 49 (2024), 6489–6492. https://doi.org/10.1364/OL.540944 doi: 10.1364/OL.540944
![]() |
[35] |
M. N. Alam, An analytical method for finding exact solutions of a nonlinear partial differential equation arising in electrical engineering, Open J. Math. Sci., 7 (2023), 10–18. https://doi.org/10.30538/oms2023.0195 doi: 10.30538/oms2023.0195
![]() |
[36] |
Y. Gu, X. Zhang, Z. Huang, L. Peng, Y. Lai, N. Aminakbari, Soliton and lump and travelling wave solutions of the (3+1) dimensional KPB like equation with analysis of chaotic behaviors, Sci. Rep., 14 (2024), 20966. https://doi.org/10.1038/s41598-024-71821-5 doi: 10.1038/s41598-024-71821-5
![]() |
[37] |
A. Yokuş, S. Duran, D. Kaya, An expansion method for generating travelling wave solutions for the (2+1)-dimensional Bogoyavlensky-Konopelchenko equation with variable coefficients, Chaos Soliton. Fract., 178 (2024), 114316. https://doi.org/10.1016/j.chaos.2023.114316 doi: 10.1016/j.chaos.2023.114316
![]() |
[38] |
R. Ali, E. Tag-eldin, A comparative analysis of generalized and extended (G′G)-expansion methods for travelling wave solutions of fractional Maccari system with complex structure, Alexandria Eng. J., 79 (2023), 508–530. https://doi.org/10.1016/j.aej.2023.08.007 doi: 10.1016/j.aej.2023.08.007
![]() |
[39] |
J. A. Haider, S. Gul, J. U. Rahman, F. D. Zaman, Travelling wave solutions of the non-linear wave equations, Acta Mech. Autom., 17 (2023), 239–245. https://doi.org/10.2478/ama-2023-0027 doi: 10.2478/ama-2023-0027
![]() |
[40] |
K. Khan, M. A. Akbar, Study of explicit travelling wave solutions of nonlinear evolution equations, Partial Differ. Equ. Appl. Math., 7 (2023), 100475. https://doi.org/10.1016/j.padiff.2022.100475 doi: 10.1016/j.padiff.2022.100475
![]() |
[41] |
M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the modified Korteweg-de Vries equation in deterministic case and random case, J. Phys. Math., 8 (2017), 1–6. https://doi.org/10.4172/2090-0902.1000214 doi: 10.4172/2090-0902.1000214
![]() |
[42] |
X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 2015 (2015), 117. https://doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
![]() |
[43] |
M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in the stochastic input case, Eur. Phys. J. Plus, 132 (2017), 339. https://doi.org/10.1140/epjp/i2017-11607-5 doi: 10.1140/epjp/i2017-11607-5
![]() |
[44] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[45] | D. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, Int. J. Nonlinear Sci., 10 (2010), 320–325. |
[46] |
H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–223. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
![]() |
[47] |
G. B. Whitham, Variational methods and applications to water waves, Proc. R. Soc. Lond. A, 299 (1967), 6–25. https://doi.org/10.1098/rspa.1967.0119 doi: 10.1098/rspa.1967.0119
![]() |
[48] |
L. J. F. Broer, Approximate equations for long water waves, Appl. Sci. Res., 31 (1975), 377–395. https://doi.org/10.1007/BF00418048 doi: 10.1007/BF00418048
![]() |
[49] |
D. J. Kaup, A higher-order water-wave equation and the method for solving it, Prog. Theor. Phys., 54 (1975), 396–408. https://doi.org/10.1143/PTP.54.396 doi: 10.1143/PTP.54.396
![]() |