Loading [MathJax]/jax/output/SVG/jax.js
Research article

A fractional Halanay inequality for neutral systems and its application to Cohen-Grossberg neural networks

  • Received: 31 December 2024 Revised: 26 January 2025 Accepted: 08 February 2025 Published: 12 February 2025
  • MSC : 92B20, 26A33, 34D20

  • We expand the Halanay inequality to accommodate fractional-order systems incorporating both discrete and distributed neutral delays. By establishing specific conditions, we demonstrate that the solutions of these systems converge to zero at a Mittag-Leffler rate. Our analysis is versatile, accommodating a wide range of delay kernels. This versatility extends the applicability of our findings to fractional Cohen-Grossberg neural networks, offering valuable insights into their stability and dynamical behavior.

    Citation: Mohammed D. Kassim. A fractional Halanay inequality for neutral systems and its application to Cohen-Grossberg neural networks[J]. AIMS Mathematics, 2025, 10(2): 2466-2491. doi: 10.3934/math.2025115

    Related Papers:

    [1] Yijia Zhang, Tao Xie, Yunlong Ma . Robustness analysis of exponential stability of Cohen-Grossberg neural network with neutral terms. AIMS Mathematics, 2025, 10(3): 4938-4954. doi: 10.3934/math.2025226
    [2] Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Chuangxia Huang, Michal Niezabitowski . Delay-coupled fractional order complex Cohen-Grossberg neural networks under parameter uncertainty: Synchronization stability criteria. AIMS Mathematics, 2021, 6(3): 2844-2873. doi: 10.3934/math.2021172
    [3] Biwen Li, Yibo Sun . Stability analysis of Cohen-Grossberg neural networks with time-varying delay by flexible terminal interpolation method. AIMS Mathematics, 2023, 8(8): 17744-17764. doi: 10.3934/math.2023906
    [4] Er-Yong Cong, Yantao Wang, Xian Zhang, Li Zhu . A new approach for accuracy-preassigned finite-time exponential synchronization of neutral-type Cohen–Grossberg memristive neural networks involving multiple time-varying leakage delays. AIMS Mathematics, 2025, 10(5): 10917-10942. doi: 10.3934/math.2025496
    [5] Jingfeng Wang, Chuanzhi Bai . Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay. AIMS Mathematics, 2023, 8(10): 22538-22552. doi: 10.3934/math.20231148
    [6] Tao Xie, Wenqing Zheng . Robustness analysis of Cohen-Grossberg neural network with piecewise constant argument and stochastic disturbances. AIMS Mathematics, 2024, 9(2): 3097-3125. doi: 10.3934/math.2024151
    [7] Hongmei Zhang, Xiangnian Yin, Hai Zhang, Weiwei Zhang . New criteria on global Mittag-Leffler synchronization for Caputo-type delayed Cohen-Grossberg Inertial Neural Networks. AIMS Mathematics, 2023, 8(12): 29239-29259. doi: 10.3934/math.20231497
    [8] Qinghua Zhou, Li Wan, Hongshan Wang, Hongbo Fu, Qunjiao Zhang . Exponential stability of Cohen-Grossberg neural networks with multiple time-varying delays and distributed delays. AIMS Mathematics, 2023, 8(8): 19161-19171. doi: 10.3934/math.2023978
    [9] Ruoyu Wei, Jinde Cao, Wenhua Qian, Changfeng Xue, Xiaoshuai Ding . Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method. AIMS Mathematics, 2021, 6(7): 6915-6932. doi: 10.3934/math.2021405
    [10] Zhiying Li, Wei Liu . The anti-periodic solutions of incommensurate fractional-order Cohen-Grossberg neural network with inertia. AIMS Mathematics, 2025, 10(2): 3180-3196. doi: 10.3934/math.2025147
  • We expand the Halanay inequality to accommodate fractional-order systems incorporating both discrete and distributed neutral delays. By establishing specific conditions, we demonstrate that the solutions of these systems converge to zero at a Mittag-Leffler rate. Our analysis is versatile, accommodating a wide range of delay kernels. This versatility extends the applicability of our findings to fractional Cohen-Grossberg neural networks, offering valuable insights into their stability and dynamical behavior.



    We generalize the classical Halanay inequality to encompass fractional-order systems with both discrete and distributed neutral delays. This inequality, originally formulated for integer-order systems, is now generalized to non-integer orders.

    Lemma 1.1. Consider a nonnegative function w(t) that satisfies the inequality

    w(t)K1w(t)+K2suptτstw(s),ta,

    where 0<K2<K1. Under these conditions, positive constants K3 and K4 exist such that

    w(t)K3eK4(ta),ta.

    Halanay first introduced this inequality while studying the stability of a specific differential equation [10]

    υ(t)=Aυ(t)+Bυ(tτ),τ>0.

    Since then, the inequality has been generalized to include variable coefficients and delays of varying magnitude, both bounded and unbounded [1,25,26]. These generalizations have found applications in Hopfield neural networks and the analysis of Volterra functional equations, particularly in the context of problems described by the following system [12,16,27]:

    {xi(t)=cixi(t)+nj=1bijfj(xj(tτ))+nj=1aijfj(xj(t))+Ii,t>0,xi(t)=ϕi(t),τt0, i=1,...,n.

    Such problems arise in various fields, including parallel computing, cryptography, image processing, combinatorial optimization, signal theory, and geology [15,17,18].

    Additionally, a generalization of the Halanay inequality to systems with distributed delays is presented in [21]:

    w(x)B(x)w(x)+A(x)0k(s)w(xs)ds,x0.

    The solutions exhibit exponential decay if the kernels satisfy the conditions

    0eβsk(s)ds<,

    for some β>0, and

    A(x)0k(s)dsB(x)C,C>0,xR.

    See also [22] for further details.

    This study broadens the scope of Halanay's inequality to encompass fractional-order systems. The justification for using fractional derivatives is provided in [2,3]. We also consider neutral delays, where delays appear in the leading derivative. Specifically, we analyze the stability of the following problem:

    {Dφ,αC[w(t)pw(tυ)]qw(t)+taw(r)k(tr)dr, p>0, 0<α<1, υ,t>a,w(t)=ϖ(t),aυta. (1.1)

    We establish sufficient conditions on the kernel k to guarantee Mittag-Leffler stability, ensuring that the solutions satisfy

    w(t)AEα(q[φ(t)φ(a)]α),t>a.

    We provide examples of function families that satisfy our assumptions. As an application, we consider a fractional-order Cohen-Grossberg neural network system with neutral delays [9]. This system represents a more general form of the traditional Hopfield neural network.

    There is extensive research on the existence, stability, and long-term behavior of Cohen-Grossberg neural network systems. Our focus is on research that specifically addresses networks with time delays or fractional-order dynamics. For integer-order neutral Cohen-Grossberg systems, refer to [5,7,24]. The fractional case with discrete delays was explored in [14]. While the Halanay inequality has been adapted for fractional-order systems with discrete delays in [4,11,28], we are unaware of any work addressing our specific problem (1.1).

    The techniques used for integer-order systems are not directly applicable to the fractional-order case. For example, the Mittag-Leffler functions lack the semigroup property, and estimating the expression Eα(q(φ(tυ)φ(a))α)/Eα(q(φ(t)φ(a))α) is challenging for convergence analysis. The ideal decay rate would be Eα(q(φ(t)φ(a))α), but the neutral delay introduces new challenges, particularly near ν. Approximating with (φ(t)φ(a))α (using Mainardi's conjecture) does not fully resolve these issues.

    This paper is organized into eight sections, beginning with background information in Section 2. Section 3 presents our inequality for systems with discrete time delays, and Section 4 discusses two potential kernel functions. Section 5 investigates a fractional Halanay inequality in the presence of distributed neutral delays. Solutions of arbitrary signs for the problem in Section 3 are addressed in Section 6, and Section 7 applies our results to a Cohen-Grossberg system with neutral delays. Section 8 provides the conclusion, summarizing the findings and highlighting directions for future research.

    This section provides fundamental definitions and lemmas essential for the subsequent analysis. Throughout the paper, we consider [a,b] to be an infinite or finite interval, and φ to be an n- continuously differentiable function on [a,b] such that φ is increasing and φ(ϰ)0 on [a,b].

    Definition 2.1. The φ-Riemann-Liouville fractional integral of a function ω with respect to a function φ is defined as

    Iφ,αω(z)=1Γ(α)za[φ(z)φ(s)]α1ω(s)φ(s)ds,α>0,z>a

    provided that the right side exists.

    Definition 2.2. The φ-Caputo derivative of order α>0 is defined by

    Dφ,αCω(ϰ)=Iφ,nα(1φ(ϰ)ddϰ)nω(ϰ),

    which can be expressed equivalently as

    Dφ,αCω(ϰ)=1Γ(nα)ϰa[φ(ϰ)φ(τ)]nα1φ(τ)ω[n]φ(τ)dτ, ϰ>a,

    where

    ω[n]φ(ϰ)=(1φ(ϰ)ddϰ)nω(ϰ), n=[α].

    Particularly, when 0<α<1

    Dφ,αCω(ϰ)=Iφ,1α(1φ(ϰ)ddϰ)ω(ϰ)=1Γ(1α)ϰa[φ(ϰ)φ(τ)]αω(τ)dτ.

    The Mittag-Leffler functions used in this context are defined as follows:

    Eα(y):=n=0ynΓ(1+αn), Re(α)>0,

    and

    Eα,β(y):=n=0ynΓ(β+αn), Re(β)>0, Re(α)>0.

    Lemma 2.1. [13] The Cauchy problem

    {Dφ,αCy(ζ)=λy(ζ),0<α1ζ>a,λRy(a)=ya, (2.1)

    has the solution

    y(ζ)=yaEα(λ[φ(ζ)φ(a)]α),ζa.

    Lemma 2.2. [13] The Cauchy problem

    {Dφ,αCy(ζ)=λy(ζ)+h(ζ),0<α1λRζ>a,y(a)=yaR, (2.2)

    admits the solution for ζa

    y(ζ)=yaEα(λ[φ(ζ)φ(a)]α)+ζa[φ(ζ)φ(s)]α1Eα,α(λ[φ(ζ)φ(s)]α)φ(s)h(s)ds.

    Lemma 2.3. For λ,ν,ω>0, the following inequality is valid for all z>a:

    za[φ(s)φ(a)]λ1[φ(z)φ(s)]ν1eω[φ(s)φ(a)]φ(s)dsC[φ(z)φ(a)]ν1,

    where

    C=max{1,21ν}Γ(λ)[1+λ(λ+1)/ν]ωλ.

    Proof. For z>a, let

    I(z)=[φ(z)φ(a)]1νza[φ(s)φ(a)]λ1[φ(z)φ(s)]ν1eω[φ(s)φ(a)]φ(s)ds.

    Set ξ[φ(z)φ(a)]=φ(s)φ(a). Then, [φ(z)φ(a)]dξ=φ(s)ds and

    I(z)=[φ(z)φ(a)]λ10(1ξ)ν1ξλ1eωξ[φ(z)φ(a)]dξ, z>a.

    As for 0ξ<1/2, we have (1ξ)ν1max{1,21ν}, therefore

    I(z)max{1,21ν}[φ(z)φ(a)]λ1/20ξλ1eωξ[φ(z)φ(a)]dξ+[φ(z)φ(a)]λ11/2(1ξ)ν1ξλ1eωξ[φ(z)φ(a)]dξ. (2.3)

    Let u=ωξ[φ(z)φ(a)]. Then, dξ=[φ(z)φ(a)]1ω1du and

    [φ(z)φ(a)]λ1/20ξλ1eωξ[φ(z)φ(a)]dξωλ0uλ1eudu=ωλΓ(λ). (2.4)

    If 1ωξ[φ(z)φ(a)], then

    eωξ[φ(z)φ(a)][ωξ[φ(z)φ(a)]]1+[λ]Γ([λ]+2)[ωξ[φ(z)φ(a)]]λΓ(λ+2).

    Therefore, when 1/2<ξ1,

    ξλ1eωξ[φ(z)φ(a)]ξλ1Γ(2+λ)[ωξ[φ(z)φ(a)]]λ2ωλΓ(λ+2)[φ(z)φ(a)]λ,

    and consequently

    [φ(z)φ(a)]λ11/2(1ξ)ν1ξλ1eωξ[φ(z)φ(a)]dξ[φ(z)φ(a)]λ11/2(1ξ)ν12ωλΓ(2+λ)[φ(z)φ(a)]λdξ=2ωλΓ(2+λ)11/2(1ξ)ν1dξ=21νωλΓ(λ+2)ν.

    When ωξ[φ(z)φ(a)]<1, it implies that [ωξ[φ(z)φ(a)]]λ<1eωξ[φ(z)φ(a)]. Consequently,

    [φ(z)φ(a)]λ11/2ξλ1(1ξ)ν1eωξ[φ(z)φ(a)]dξ<[φ(z)φ(a)]λ11/2ξλ1(1ξ)ν1[ωξ[φ(z)φ(a)]]λdξ<2ωλ11/2(1ξ)ν1dξ=21νωλν. (2.5)

    Taking into account (2.3)–(2.5), we infer that

    I(z)max{1,21ν}ωλΓ(λ)+21νωλΓ(λ+2)νmax{1,21ν}ωλΓ(λ)(1+λ(λ+1)ν), z>a.

    The proof is complete.

    Lemma 2.4. [8, (4.4.10), (4.9.4)] For β>0, ν>0, and λ,λC, λλ, we have

    ϰ0zβ1Eα,β(λzα)(ϰz)ν1Eα,ν(λ(ϰz)α)dz=λEα,β+ν(λϰα)λEα,β+ν(λϰα)λλϰβ+ν1,

    and for σ>0, γ>0,

    Iσzγ1Eα,γ(pzα)(ϰ)=ϰσ+γ1Eα,σ+γ(pϰα).

    Lemma 2.5. For β>0, ν>0, and λ,λC, λλ, we have

    ϰaEα,β(λ[φ(z)φ(a)]α)[φ(ϰ)φ(z)]ν1[φ(z)φ(a)]β1×Eα,ν(λ[φ(ϰ)φ(z)]α)φ(z)dz=[φ(ϰ)φ(a)]β+ν1λEα,β+ν(λ[φ(ϰ)φ(a)]α)λEα,β+ν(λ[φ(ϰ)φ(a)]α)λλ,

    and for σ>0, γ>0,

    Iφ,σ[φ(z)φ(a)]γ1Eα,γ(p[φ(z)φ(a)]α)(ϰ)=[φ(ϰ)φ(a)]σ+γ1×Eα,σ+γ(p[φ(ϰ)φ(a)]α). (2.6)

    Proof. Let u=φ(ϰ)φ(z). Then,

    ϰaEα,β(λ[φ(z)φ(a)]α)[φ(ϰ)φ(z)]ν1[φ(z)φ(a)]β1×Eα,ν(λ[φ(ϰ)φ(z)]α)φ(z)dz=φ(ϰ)φ(a)0Eα,β(λ[φ(ϰ)φ(a)u]α)[φ(ϰ)φ(a)u]β1uν1Eα,ν(λuα)du.

    At this point, we can utilize Lemma 2.4 to derive the following:

    ϰaEα,β(λ[φ(z)φ(a)]α)[φ(ϰ)φ(z)]ν1[φ(z)φ(a)]β1×Eα,ν(λ[φ(ϰ)φ(z)]α)φ(z)dz=[φ(ϰ)φ(a)]β+ν1λEα,β+ν(λ[φ(ϰ)φ(a)]α)λEα,β+ν(λ[φ(ϰ)φ(a)]α)λλ.

    To prove the second formula in the lemma, we have

    Iφ,σ[φ(z)φ(a)]γ1Eα,γ(p[φ(z)φ(a)]α)(ϰ)=1Γ(σ)ϰaEα,γ(p[φ(z)φ(a)]α)[φ(ϰ)φ(z)]σ1[φ(z)φ(a)]γ1φ(z)dz.

    From the first formula in the lemma, with β=γ, ν=σ, λ=p, λ=0, we obtain

    Iφ,σ[φ(z)φ(a)]γ1Eα,γ(p[φ(z)φ(a)]α)(ϰ)=1Γ(σ)ϰa[φ(z)φ(a)]γ1Eα,γ(p[φ(z)φ(a)]α)[φ(ϰ)φ(z)]σ1φ(z)dz=[φ(ϰ)φ(a)]γ+σ1Eα,γ+σ(p[φ(ϰ)φ(a)]α),

    where we have used

    Eα,σ(λ[φ(ϰ)φ(z)]α)=1Γ(σ).

    Mainardi's conjecture. [19] For fixed γ with 0<γ<1, the following holds:

    11+qΓ(1γ)tγEγ(qtγ)1qΓ(1+γ)1tγ+1,q, t0. (2.7)

    This result was later established in [6,23].

    To start, we will introduce the concept of Mittag-Leffler stability.

    Definition 3.1. For 0<α<1, a solution v(z) is defined as α -Mittag-Leffler stable if there exist positive constants A and γ such that

    v(z)AEα(γ[φ(z)φ(a)]α),z>a,

    where . represents a specific norm.

    Theorem 3.1. Let u(t) be a nonnegative function fulfilling the conditions

    Dφ,αC[u(t)pu(tυ)]qu(t)+tau(s)k(ts)ds,0<α<1,t>a, (3.1)

    with the initial condition

    u(t)=ϖ(t)0,aυta, (3.2)

    where k is a nonnegative function integrable over its domain, and q>0. Assume p>0, and that k satisfies the following inequality for some M>0:

    taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(saEα(q[φ(σ)φ(a)]α)k(sσ)dσ)φ(s)dsMEα(q[φ(t)φ(a)]α),t>a. (3.3)

    Further, assume that the constant M satisfies

    M<11(φ(a+υ)φ(a))α(1q+Γ(1α)[φ(a+3υ)φ(a)]α)p, (3.4)

    with the additional condition

    1(φ(a+υ)φ(a))α(1q+Γ(1α)[φ(a+3υ)φ(a)]α)p<1. (3.5)

    Then, u(t) exhibits Mittag-Leffler decay, i.e.,

    u(t)CEα(q[φ(t)φ(a)]α),t>a

    for some constant C>0.

    Proof. Solutions of (3.1) and (3.2) will be compared to those of

    {Dφ,αC[w(t)pw(tυ)]=qw(t)+taw(s)k(ts)ds,0<α<1,t>a,w(t)=ϖ(t)0,aυta. (3.6)

    The equation presented in (3.6) can be expressed equivalently as

    Dφ,αC[w(t)pw(tυ)]=q[w(t)pw(tυ)]+tak(ts)w(s)dsqpw(tυ),t>a.

    This permits to profit from the form

    w(t)pw(tυ)=[ϖ(a)pϖ(aυ)]Eα(q[φ(t)φ(a)]α)+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(qpw(sυ)+sak(sσ)w(σ)dσ)φ(s)ds.

    Capitalizing on the nonnegativity of the solution, we find for t>a,

    w(t)ϖ(a)Eα(q(φ(t)φ(a))α)+pw(tυ)+taEα,α(q[φ(t)φ(s)]α)×[φ(t)φ(s)]α1(sak(sσ)w(σ)dσ)φ(s)ds. (3.7)

    Therefore, for t>a,

    w(t)Eα(q(φ(t)φ(a))α)ϖ(a)+pEα(q(φ(t)φ(a))α)w(tυ)+1Eα(q(φ(t)φ(a))α)ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(sak(sσ)Eα(q(φ(σ)φ(a))α)w(σ)Eα(q(φ(σ)φ(a))α)dσ)φ(s)ds,

    and

    w(t)Eα(q(φ(t)φ(a))α)ϖ(a)+pEα(q(φ(t)φ(a))α)w(tυ)+1Eα(q(φ(t)φ(a))α)ta[φ(t)φ(s)]α1×Eα,α(q[φ(t)φ(s)]α)×(sak(sσ)Eα(q(φ(σ)φ(a))α)dσ)φ(s)ds×supaσtw(σ)Eα(q(φ(σ)φ(a))α)ϖ(a)+pEα(q(φ(t)φ(a))α)w(tν)+Msupaσtw(σ)Eα(q(φ(σ)φ(a))α).

    We will repeatedly utilize the following estimation:

    1Eα(q(φ(t)φ(a))α)taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(sak(sσ)w(σ)dσ)φ(s)ds=1Eα(q(φ(t)φ(a))α)taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(saEα(q[φ(σ)φ(a)]α)k(sσ)w(σ)Eα(q[φ(σ)φ(a)]α)dσ)φ(s)dsMsupaσtw(σ)Eα(q(φ(σ)φ(a))α),t>a. (3.8)

    Then, for t>a, the following inequality holds:

    w(t)Eα(q[φ(t)φ(a)]α)ϖ(a)+pEα(q[φ(t)φ(a)]α)w(tυ)+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α). (3.9)

    This inequality will serve as our initial reference.

    For t[a,a+υ], since Eα(q[φ(t)φ(a)]α) is decreasing, it follows that

    Eα(q[φ(t)φ(a)]α)Eα(q[φ(a+υ)φ(a)]α),

    and hence

    w(t)Eα(q[φ(t)φ(a)]α)(1+pEα(q[φ(a+υ)φ(a)]α)supaυσaϖ(σ)+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α),

    or

    (1M)w(t)Eα(q(φ(t)φ(a))α)(1+pEα(q(φ(a+υ)φ(a))α)supaυσaϖ(σ). (3.10)

    If t[a+υ,a+2υ], owing to relations (3.9) and (3.10), we find

    w(t)Eα(q(φ(t)φ(a))α)supaυσaϖ(σ)+p1M(1+pEα(q(φ(a+υ)φ(a))α)×Eα(q(φ(tυ)φ(a))α)Eα(q(φ(t)φ(a))α)supaνσaϖ(σ)+Msupaσtw(σ)Eα(q(φ(σ)φ(a))α).

    Observe that

    Eα(q(φ(tυ)φ(a))α)Eα(q(φ(t)φ(a))α)1Eα(q(φ(t)φ(a))α)1Eα(q(φ(2υ+a)φ(a))α)1+qΓ(1α)(φ(2υ+a)φ(a))α=:A. (3.11)

    Therefore,

    w(t)Eα(q(φ(t)φ(a))α)[1+A(Eα(q(φ(υ+a)φ(a))α+p)pEα(q(φ(υ+a)φ(a))α(1M)]supaυσaϖ(σ)+Msupaσtw(σ)Eα(q(φ(σ)φ(a))α),

    and consequently,

    w(t)Eα(q(φ(t)φ(a))α)(1M)[1+A(1M)p+AEα(q[φ(a+υ)φ(a)]α)(1M)p2]supaυσaϖ(σ). (3.12)

    Notice that we will write (3.12) as

    w(t)Eα(q(φ(t)φ(a))α)(1M)AEα(q(φ(υ+a)φ(a))α)×[1+p1M+(p1M)2]supaυσaϖ(σ). (3.13)

    When t[a+2ν,a+3ν], the estimations

    φ(t)φ(a)φ(tυ)φ(a)φ(a+3υ)φ(a)φ(a+υ)φ(a),

    together with (2.7), imply for ta+2ν,

    Eα(q(φ(tυ)φ(a))α)Eα(q(φ(t)φ(a))α)1+q(φ(t)φ(a))αΓ(1α)1+q(φ(tυ)φ(a))αΓ(1+α)11+q(φ(t)φ(a))αΓ(1α)qΓ(1+α)1(φ(tυ)φ(a))αΓ(1+α)q(φ(tυ)φ(a))α+Γ(1+α)(φ(t)φ(a))αΓ(1α)(φ(tυ)φ(a))αΓ(1+α)q(φ(a+υ)φ(a))α+(φ(a+3υ)φ(a))αΓ(1+α)Γ(1α)(φ(a+υ)φ(a))αΓ(1+α)(φ(a+υ)φ(a))α×(1q+Γ(1α)(φ(a+3υ)φ(a))α),  (3.14)

    Notice that Γ(1+α) can be approximated by one.

    By virtue of relations (3.13) and (3.14), having in mind (3.9), we infer

    w(t)Eα(q(φ(t)φ(a))α)ϖ(a)+p1MEα(q(φ(tυ)φ(a))α)Eα(q(φ(t)φ(a))α)×AEα(q(φ(a+υ)φ(a))α)×[1+p1M+(p1M)2]supaυσaϖ(σ)+Msupaσtw(σ)Eα(q(φ(σ)φ(a))α),

    or

    w(t)Eα(q[φ(t)φ(a)]α)(1M)supaυσaϖ(σ){1+p1MAVEα(q[φ(υ+a)φ(a)]α)×[1+p1M+(p1M)2]}, (3.15)

    where

    V:=1(φ(a+υ)φ(a))α(1q+Γ(1α)[φ(a+3υ)φ(a)]α).

    As

    AVEα(q[φ(a+υ)φ(a)]α)>1,

    we can rewrite Eq (3.15) as follows:

    (1M)w(t)Eα(q[φ(t)φ(a)]α)supaυσaϖ(σ)AEα(q[φ(υ+a)φ(a)]α)×{1+pV1M+(pV1M)2+(pV1M)3}.

    We now make the following claim.

    Claim. For t[a+(n1)υ,a+nυ],

    (1M)w(t)Eα(q(φ(t)φ(a))α)AEα(q(φ(υ+a)φ(a))α)×nk=0(pV1M)ksupaνσaϖ(σ).

    It is evident that the assertion is valid for the cases n=1, 2, and 3. Assume that it holds for n, i.e., on [a+(n1)υ,a+nυ]. Now, let t[a+nυ,a+υ(n+1)]. Utilizing (3.9), we derive

    w(t)Eα(q[φ(t)φ(a)]α)supaυσaϖ(σ)+pEα(q[φ(tυ)φ(a)]α)(1M)Eα(q[φ(t)φ(a)]α)×AEα(q[φ(a+υ)φ(a)]α)nk=0(pV1M)ksupaυσaϖ(σ)+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α).

    and by (3.14)

    w(t)Eα(q(φ(t)φ(a))α)(1M)[1+Vp1MAEα(q(φ(a+υ)φ(a))α)nk=0(Vp1M)k]supaυσaϖ(σ)AEα(q(φ(a+υ)φ(a))α)[1+n+1k=1(Vp1M)k]supaυσaϖ(σ)=AEα(q[φ(a+υ)φ(a)]α)n+1k=0(Vp1M)ksupaυσaϖ(σ).

    Therefore, the claim holds true. Then, for t>a,

    w(t)[AEα(q[φ(a+υ)φ(a)]α)(1M)k=0(pV1M)ksupaυσaϖ(σ)]×Eα(q(φ(t)φ(a))α). (3.16)

    The series in (3.16) converges due to (3.4) and (3.5). The proof is complete.

    In this section, we identify two classes of functions that satisfy the conditions of the theorem.

    First class: Consider the set of functions k that fulfill the following inequality for all sa:

    saEα(q[φ(σ)φ(a)]α)k(sσ)dσC1[φ(s)φ(a)]λ1,C1,λ>0. (4.1)

    The family of functions k(ts) defined as

    k(ts)C2[φ(t)φ(s)]αeb[φ(s)φ(a)]φ(s)

    satisfies the specified relation when the constants b and C2 are carefully chosen. Indeed, since

    Eα(qtα)11+qtαΓ(1+α)=Γ(1+α)Γ(1+α)+qtαΓ(1+α)qtα,t>0, (4.2)

    it follows that

    saEα(q[φ(σ)φ(a)]α)k(sσ)dσC2Γ(1+α)qsa[φ(σ)φ(a)]α[φ(s)φ(σ)]αeb[φ(σ)φ(a)]φ(σ)dσ2αC2Γ(1+α)Γ(1α)[3α]bα1q[φ(s)φ(a)]α,s>a.

    Therefore, (4.1) holds with

    C1:=2αC2Γ(1+α)Γ(1α)[3α]bα1q,λ:=1α.

    By applying formula (2.6), we obtain

    taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(sak(sσ)Eα(q[φ(σ)φ(a)]α)dσ)φ(s)dsC1taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1[φ(s)φ(a)]αφ(s)dsC1Γ(α)Eα,1(q[φ(t)φ(a)]α). (4.3)

    To ensure that assumption (3.4) is met, we can select C1 (or C2 for the specific example) such that

    C1Γ(α)<11(φ(a+υ)φ(a))α(1q+Γ(1α)[φ(a+3υ)φ(a)]α)p.

    Second class: Assume that k(ts)C3[φ(t)φ(s)]α1Eα,α(b[φ(t)φ(s)]α)φ(s) for some b>0 and C3>0 to be determined. A double use of (2.6) and (4.2) gives

    C3ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(sa[φ(s)φ(σ)]α1Eα,α(b[φ(s)φ(σ)]α)Eα(q[φ(σ)φ(a)]α)φ(σ)dσ)φ(s)dsC3Γ(1+α)qtaEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(sa[φ(s)φ(σ)]α1Eα,α(b[φ(s)φ(σ)]α)[φ(σ)φ(a)]αφ(σ)dσ)φ(s)dsC3Γ(α)Γ(1+α)qtaEα,α(q[φ(t)φ(s)]αEα,1(b[φ(s)φ(a)]α[φ(t)φ(s)]α1φ(s)dsC3Γ2(1+α)Γ(α)qbtaEα,α(q[φ(t)φ(s)]α[φ(t)φ(s)]α1[φ(s)φ(a)]αφ(s)dsC3Γ2(1+α)Γ2(α)qbEα,1(q[φ(t)φ(a)]α. (4.4)

    Clearly, M=C3Γ2(1+α)Γ2(α)qb. It suffices now to impose the condition on C3 and/or the constant b in order to fulfill the condition on M.

    In this section, we will examine the inequality that arises when the neutral delay is distributed,

    {Dφ,αC[u(t)ptau(s)g(ts)ds]qu(t)+tau(s)k(ts)ds, t,υ>a,0<α<1, p>0,u(t)=u00,t[aυ,a], (5.1)

    which we will contrast with

    {Dφ,αC[w(t)ptaw(s)g(ts)ds]=qw(t)+taw(s)k(ts)ds,t,υ>a,0<α<1, p>0,w(t)=w0=u00,t[aυ,a]. (5.2)

    We assume g is a continuous function (to be determined later) and that the solutions are nonnegative.

    Let us reformulate this as

    {Dφ,αC[w(t)ptaw(s)g(ts)ds]=q[w(t)ptaw(s)g(ts)ds]qptaw(s)g(ts)ds+taw(s)k(ts)ds,t,υ>a,0<α<1, p>0w(t)=w00,t[aυ,a].

    Therefore,

    w(t)ptaw(s)g(ts)ds=Eα(q[φ(t)φ(a)]α)w0+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(qpsag(sσ)w(σ)dσ+sak(sσ)w(σ)dσ)φ(s)ds,

    and, for t>a,

    w(t)Eα(q[φ(t)φ(a)]α)w0+ptag(ts)w(s)ds+taEα,α(q[φ(t)φ(s)]α)×[φ(t)φ(s)]α1(sak(sσ)w(σ)dσ)φ(s)ds. (5.3)

    Dividing both sides of (5.3) by Eα(q[φ(t)φ(a)]α), we find

    w(t)Eα(q[φ(t)φ(a)]α)=w0+pEα(q[φ(t)φ(a)]α)taw(s)g(ts)ds+1Eα(q[φ(t)φ(a)]α)ta[φ(t)φ(s)]α1×Eα,α(q[φ(t)φ(s)]α)×(sak(sσ)Eα(q[φ(σ)φ(a)]α)dσ)φ(s)ds×supaσtw(σ)Eα(q[φ(σ)φ(a)]α),

    or, for t>a,

    w(t)Eα(q[φ(t)φ(a)]α)w0+pEα(q[φ(t)φ(a)]α)tag(ts)Eα(q[φ(s)φ(a)]α)×(w(s)Eα(q[φ(s)φ(a)]α))ds+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α).

    The relation

    pEα(q[φ(t)φ(a)]α)tag(ts)Eα(q[φ(s)φ(a)]α)dsM,

    is assumed for some M>0. Then,

    w(t)Eα(q[φ(t)φ(a)]α)w0+(M+M)supaσtw(σ)Eα(q[φ(σ)φ(a)]α),t>a,

    and

    w(t)w01MMEα(q[φ(t)φ(a)]α),t>a,

    in the case that

    M+M<1.

    Example. Take k as above, and select g fulfilling

    g(ts)C4[φ(t)φ(s)]α1Eα,α(c[φ(t)φ(s)]α)φ(s),

    for some C4,c>q. Then,

    taEα(q[φ(s)φ(a)]α)g(ts)dsΓ(1+α)qta[φ(s)φ(a)]αg(ts)dsC4Γ(1+α)qtaEα,α(c[φ(t)φ(s)]α)×[φ(t)φ(s)]α1[φ(s)φ(a)]αφ(s)dsC4Γ(1+α)Γ(α)qEα,1(q[φ(t)φ(a)]α),t>a.

    A value for M would be

    M=C4pΓ(1+α)Γ(α)q.

    Therefore, we have proved the following theorem.

    Theorem 5.1. Let u(t) be a nonnegative solution of (5.1), where q and p are positive and k and g are continuous functions with k(t), g(t)0 for all t such that

    taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(saEα(q[φ(σ)φ(a)]α)k(sσ)dσ)φ(s)dsMEα(q[φ(t)φ(a)]α),t>a,
    ptag(ts)Eα(q[φ(s)φ(a)]α)dsMEα(q[φ(t)φ(a)]α),t>a,

    hold for some M, M>0 with

    M+M<1.

    Then, we can find a positive constant C such that

    w(t)CEα(q[φ(t)φ(a)]α),t>a.

    Before delving into applications, it is important to note that previous research on Halanay inequalities, including our earlier work, often assumes that solutions are non-negative. This supposition is sufficient for applications like neural networks without time delays. To determine the stability of the equilibrium solution, we can simplify the problem by shifting the equilibrium point to the origin using a variable transformation and then analyzing the magnitude of the solutions. However, when dealing with systems that have time delays, this approach becomes more complex. Directly proving stability for solutions that can be positive or negative presents new challenges, as time delays now appear within convolution integrals. The necessary estimations are more intricate and require careful analysis.

    Now, we return to

    {Dφ,αC[u(t)pu(tυ)]qu(t)+tak(ts)u(s)ds, p>0,0<α<1,t,υ>a,u(t)=ϖ(t)0,aυta,

    with |ϖ(s)|w0Eα(q(φ(s+υ)φ(a))α) for s[aυ,a], w0>0. To clarify these concepts, let us suppose that 1>p>0, and examine the following expression:

    w(t)pw(tυ)=[ϖ(a)pϖ(aυ)]Eα(q[φ(t)φ(a)]α)+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(qpw(sυ)+sak(sσ)w(σ)dσ)φ(s)ds.

    Then, for t>a

    |w(t)|2w0Eα(q[φ(t)φ(a)]α)+p|w(tυ)|+qptaEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1|w(sυ)|φ(s)ds+taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(sak(sσ)|w(σ)|dσ)φ(s)ds. (6.1)

    For t[a,a+υ],

    |w(t)|Eα(q[φ(t)φ(a)]α)3w0+qpw0Eα(q[φ(t)φ(a)]α)ta[φ(t)φ(s)]α1×Eα,α(q[φ(t)φ(s)]α)Eα(q[φ(s)φ(a)]α)φ(s)ds+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α),

    where M is defined as in Eq (3.3). Again, as

    taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1Eα(q[φ(s)φ(a)]α)φ(s)dsΓ(1+α)qtaEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1[φ(s)φ(a)]αφ(s)dsΓ(1+α)Γ(α)qEα,1(q[φ(t)φ(a)]α), (6.2)

    we can write

    |w(t)|Eα(q[φ(t)φ(a)]α)3w0+w0Γ(1+α)Γ(α)p+Msupaσtw(σ)Eα(q[φ(σ)φ(a)]α),

    or

    (1M)|w(t)|Eα(q[φ(t)φ(a)]α)3w0+w0Γ(1+α)Γ(α)p. (6.3)

    If t[a+υ,a+2υ], we first observe that

    |w(tυ)|3w0+w0Γ(1+α)Γ(α)p(1M)×Eα(q[φ(tυ)φ(a)]α)Eα(q[φ(t)φ(a)]α)Eα(q[φ(t)φ(a)]α)A3w0+w0Γ(1+α)Γ(α)p(1M)Eα(q(φ(t)φ(a))α),

    where A is as in (3.11). Using the fact that

    w0A3w0+w0Γ(1+α)Γ(α)p1M,

    and relations (6.1) and (6.3), we get

    |w(t)|2w0Eα(q[φ(t)φ(a)]α)+pA3w0+w0Γ(1+α)Γ(α)p(1M)Eα(q(φ(t)φ(a))α)+qpA3w0+w0Γ(1+α)Γ(α)p(1M)×taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×Eα(q(φ(s)φ(a))α)φ(s)ds+taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1×(sak(sσ)|w(σ)|dσ)φ(s)ds.

    Next, in view of (6.2), we find

    |w(t)|2w0Eα(q[φ(t)φ(a)]α)+pA3w0+w0Γ(α)Γ(α+1)p(1M)Eα(q(φ(t)φ(a))α)+qpA3w0+w0Γ(1+α)Γ(α)p(1M)×Γ(1+α)Γ(α)qEα(q[φ(t)φ(a)]α)+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(sak(sσ)|w(σ)|dσ)φ(s)ds.

    or

    (1M)|w(t)|Eα(q[φ(t)φ(a)]α)2w0+pAw0[1+Γ(1+α)Γ(α)](1M)×(3+Γ(1+α)Γ(α)p)2w0+3Aw0[1+Γ(1+α)Γ(α)](1M)p+Aw0[1+Γ(1+α)Γ(α)]2(1M)p2. (6.4)

    For t[a+2υ,a+3υ], by virtue of (3.14),

    Eα(q(φ(tυ)φ(a))α)Eα(q(φ(t)φ(a))α)1(φ(a+υ)φ(a))α×(1q+Γ(1α)(φ(a+3υ)φ(a))α)=:V>1,

    and therefore

    |w(t)|2w0Eα(q[φ(t)φ(a)]α)+pV(1M)×[2w0+3Aw0[1+Γ(1+α)Γ(α)](1M)p+Aw0[1+Γ(1+α)Γ(α)]2(1M)p2]×Eα(q(φ(t)φ(a))+pVΓ(1+α)Γ(α)(1M)×[2w0+3Aw0[1+Γ(1+α)Γ(α)](1M)p+Aw0[1+Γ(1+α)Γ(α)]2(1M)p2]×Eα(q(φ(t)φ(a))+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)(sak(sσ)|w(σ)|dσ)φ(s)ds.

    So,

    (1M)|w(t)|Eα(q[φ(t)φ(a)]α)2w0+pV(1M)[2w0+3Aw0[1+Γ(1+α)Γ(α)](1M)p+Aw0[1+Γ(1+α)Γ(α)]2(1M)p2]+pVΓ(1+α)Γ(α)(1M)×[2w0+3Aw0[1+Γ(1+α)Γ(α)](1M)p+Aw0[1+Γ(1+α)Γ(α)]2(1M)p2],

    or

    (1M)|w(t)|Eα(q[φ(t)φ(a)]α)2w0+2w0pV[1+Γ(1+α)Γ(α)]1M+3w0Ap2V[1+Γ(1+α)Γ(α)]2(1M)2+Aw0V[1+Γ(1+α)Γ(α)]3(1M)2p3. (6.5)

    Writing (6.5) in the form

    |w(t)|Eα(q[φ(t)φ(a)]α)(1M)2w0+2w0pV[1+Γ(1+α)Γ(α)]1M+3w0A(pV[1+Γ(1+α)Γ(α)](1M))2+w0A(pV[1+Γ(1+α)Γ(α)]1M)33w0A[1+pV[1+Γ(1+α)Γ(α)]1M+(pV[1+Γ(1+α)Γ(α)]1M)2+(pV[1+Γ(1+α)Γ(α)]1M)3] (6.6)

    provides the basis for our next claim.

    Claim. On the interval [a+(n1)υ,a+nυ], it is clear that

    |w(t)|Eα(q[φ(t)φ(a)]α)(1Mw0)3Ank=0(Vp[1+Γ(1+α)Γ(α)]1M)k.

    The validity of the claim for n=1,2, and 3 is established by Eqs (6.3), (6.4), and (6.6). Let t[a+nυ,a+(n+1)υ]. Then from (6.1),

    |w(t)|2w0Eα(q[φ(t)φ(a)]α)+3ApVw01Mnk=0(Vp[Γ(α)Γ(1+α)+1]1M)kEα(q[φ(t)φ(a)]α)+3ApΓ(1+α)Γ(α)w0V1Mnk=0(Vp[Γ(α)Γ(1+α)+1]1M)k×Eα(q[φ(t)φ(a)]α)+taEα,α(q[φ(t)φ(s)]α)[φ(t)φ(s)]α1(sak(sσ)|w(σ)|dσ)φ(s)ds,

    or

    (1Mw0)|w(t)|Eα(q[φ(t)φ(a)]α)2+3VpA1Mnk=0(Vp[Γ(1+α)Γ(α)+1]1M)k+3VpA1MΓ(1+α)Γ(α)×nk=0(Vp[Γ(1+α)Γ(α)+1]1M)k.

    Then,

    (1Mw0)|w(t)|Eα(q[φ(t)φ(a)]α)3A{1+[Γ(1+α)Γ(α)+1]pV1Mnk=0(Vp[Γ(1+α)Γ(α)+1]1M)k},

    i.e.,

    (1Mw0)|w(t)|Eα(q[φ(t)φ(a)]α)3A{1+nk=0(Vp[Γ(1+α)Γ(α)+1]1M)1+k}.

    Thus,

    (1Mw0)|w(t)|Eα(q[φ(t)φ(a)]α)3An+1k=0(Vp[Γ(1+α)Γ(α)+1]1M)k,

    demonstrating that the assertion holds. Moreover, the series converges if the following condition is satisfied:

    1+Γ(1+α)Γ(α)1MVp<1.

    We have just proved the following result.

    Theorem 6.1. Suppose that u(t) is a solution of

    {Dφ,αC[u(t)pu(tυ)]qu(t)+t0k(ts)u(s)ds,t,υ>a,p>0,0<α<1,u(t)=ϖ(t),aυta,

    with |ϖ(t)|Eα(q(φ(t+υ)φ(a))α), aυta, q>0, p>0, and k is a nonnegative function verifying

    ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(saEα(q[φ(σ)φ(a)]α)k(sσ)dσ)φ(s)dsMEα(q[φ(t)φ(a)]α),t>a,

    for some M such that

    M<1[Γ(1+α)Γ(α)+1]Vp,

    with

    [Γ(1+α)Γ(α)+1]Vp<1.

    Then,

    |w(t)|CEα(q[φ(t)φ(a)]α),t>a,

    where C>0 is a positive constant.

    Neural networks are a fundamental part of artificial intelligence and are widely used to address complex problems in various fields. In this work, we utilize our findings to analyze the behavior of Cohen-Grossberg neural networks. Specifically, we consider the following problems:

    {Dφ,αC[xi(t)pxi(tυ)]=hi(xi(t))[gi(xi(t))nj=1aijfj(xj(t))nj=1bijlj(xj(tτ))nj=1dijakj(s)Φj(xj(ts))dsIi], t,υ>a, p>0xi(t)=xi0(t),t[aυ,a], i=1,2,...,n,

    and

    {Dφ,αC[xi(t)ptaxi(s)ψi(ts)ds]=hi(xi(t))[gi(xi(t))nj=1bijlj(xj(tτ))nj=1aijfj(xj(t))nj=1dijaΦj(xj(ts))kj(s)dsIi], t>a, p>0,xi(0)=xi0(t), ta, i=1,2,...,n,

    where xi.(t) stands the state of the ith neuron, n is the number of neurons, gi is a suitable function, hi represents an amplification function, bij, aij, dij represent the weights or strengths of the connections from the jth neuron to the ith neuron, Ii is the external input to the ith neuron, ψi are the neutral delay kernels, fj,lj,Φj denote the signal transmission functions, υ is the neutral delay, τ corresponds to the transmission delay, ϕi is the history of the i th state, and kj denotes the delay kernel function. These systems represent a general class of Cohen-Grossberg neural networks with both continuously distributed and discrete delays. To streamline our analysis and highlight our key findings, we have opted to examine simpler systems with fixed time delays. More complex scenarios involving variable delays or multiple delays can be explored in future research. To simplify our analysis, let us examine the simpler case

    {Dφ,αC[xi(t)pxi(tυ)]=hi(xi(t))[gi(xi(t))nj=1dijakj(s)fj(xj(ts))dsIi],xi(t)=xi0(t),t[aυ,a], i=1,2,...,n, (7.1)

    for t,υ>a, p>0.

    We adopt the following standard assumptions.

    (A1) The functions fi are assumed to satisfy the Lipschitz condition

    |fi(x)fi(y)|Li|xy| for every x,yR and for each i=1,2,...,n,

    where Li denotes the Lipschitz constant corresponding to the function fi.

    (A2) The delay kernel functions kj are nonnegative and exhibit piecewise continuity. Additionally, each kj has a finite integral over its domain, expressed as κj=akj(s)ds<, for j=1,...,n.

    (A3) The functions gi have derivatives that are uniformly bounded by a constant G. Specifically,

    |gi(z)|G, for all zR and for each i=1,2,...,n,

    where G>0 is a fixed constant.

    (A4) The functions hi are strictly positive and continuous, and they satisfy the following bounds:

    0<β_ihi(z)¯βi, for all zR and i=1,2,...,n.

    For simplicity, we suppose that the initial values xi0(t) are all zero for times before a.

    Definition 7.1. The point x=(x1,x2,...,xn)T is said to be an equilibrium if, for each i=1,2,...,n, it satisfies the equation

    gi(xi)=nj=1aijfj(xj)+nj=1dijakj(s)fj(xj)ds+Ii=nj=1(aij+dijκj)fj(xj)+Ii, t>a.

    Previous studies have shown that an equilibrium exists and is unique. To facilitate our analysis, we translate the equilibrium point to the origin of the coordinate system by using the substitution x(t)x=y(t). This leads to the following:

    {Dφ,αC[yi(t)pyi(tυ)]=hi(xi+yi(t))[gi(yi(t)+xi)            nj=1dijtafj(xj+yj(ts))kj(s)dsIi], t>a, i=1,...,n,yi(t)=ψi(t):=ϕi(t)xi, t[aυ,a], i=1,...,n,

    or

    {Dφ,αC[yi(t)pyi(tυ)]=Hi(yi(t))[Gi(yi(t))nj=1dijt0Fj(yj(ts))kj(s)ds], t>a, i=1,...,n,yi(t)=ψi(t):=ϕi(t)xi, t[aυ,a], i=1,...,n,

    where

    Fi(yi(t))=fi(yi(t)+xi)fi(xi), Gi(yi(t))=gi(yi(t)+xi)gi(x)Hi(yi(t))=hi(yi(t)+xi), t>a, i=1,...,n.

    Using the mean value theorem, the following inequality can be established:

    Dφ,αC|yi(t)pyi(tυ)|sgn[yi(t)pyi(tυ)]Dφ,αC[yi(t)pyi(tυ)]=sgn[yi(t)pyi(tυ)]Hi(yi(t))[gi(ˉxi(t))yi(t)nj=1dijaFj(yj(ts))kj(s)ds].

    By subtracting and adding the term pgi(ˉxi(t))yi(tυ), we obtain

    Dφ,αC|yi(t)pyi(tυ)|sgn[yi(t)pyi(tυ)]Hi(yi(t))[gi(ˉxi(t))[yi(t)pyi(tυ)]+pgi(ˉxi(t))yi(tυ)nj=1dijaFj(yj(ts))kj(s)ds], t>a, i=1,...,n,

    or

    Dφ,αC|yi(t)pyi(tυ)|Hi(yi(t))G|yi(t)pyi(tυ)|+pGHi(yi(t))|yi(tυ)|+Hi(yi(t))nj=1dijakj(s)Lj|yj(ts)|ds, t>a, i=1,2,...,n.

    Therefore,

    Dφ,αC|yi(t)pyi(tυ)|Gβ_i|yi(t)pyi(tυ)|+pG¯βi|yi(tυ)|+¯βinj=1Ljdijakj(s)|yj(ts)|ds, t>a, i=1,...,n.

    Finally, we consider the equation for wi and rewrite it in the following form:

    |wi(t)pwi(tυ)|=Eα(Gβ_i[φ(t)φ(a)]α)|Φi(a)pΦi(aυ)|+ta[φ(t)φ(s)]α1Eα,α(q[φ(t)φ(s)]α)×(pG¯βi|wi(tυ)|+¯βinj=1Ljdij0kj(s)|wj(ts)|ds)φ(s)ds, t>a, i=1,2,...,n.

    The Mittag-Leffler stability of this problem follows directly from our earlier result.

    We have investigated a general Halanay inequality of fractional order with distributed delays, incorporating delays of neutral type. General sufficient conditions were established to guarantee the Mittag-Leffler stability of the solutions, supported by illustrative examples. The rate of stability obtained appears to be the best achievable, consistent with previous findings in fractional-order problems.

    Furthermore, we applied our theoretical results to a practical problem, demonstrating their applicability. Our analysis suggests that these results can be extended to more general cases, such as variable delays or systems involving additional terms. It is worth noting that the conditions on the various parameters within the system could potentially be improved, as we did not focus on optimizing the estimations and bounds. In this regard, exploring optimal bounds for the delay coefficient p and the kernel k would be an interesting direction for future research.

    The author declares that have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author sincerely appreciates the financial support and facilities provided by Imam Abdulrahman Bin Faisal University.

    The author declares that there is no conflict of interest regarding the publication of this paper.



    [1] C. T. H. Baker, A. Tang, Generalized Halanay inequalities for Volterra functional differential equations and discretized versions, Invited plenary talk, Volterra Centennial Meeting, UTA Arlington, June, 1996.
    [2] A. Boroomand, M. B. Menhaj, Fractional-order Hopfield neural networks, Int. Conf. Neural Inf. Process., 5506 (2008), 883–890.
    [3] R. Caponetto, L. Fortuna, D. Porto, Bifurcation and chaos in noninteger order cellular neural networks, Int. J. Bifurc. Chaos, 8 (1998), 1527–1539.
    [4] B. Chen, J. Chen, Razumikhin-type stability theorems for functional fractional-order differential systems and applications, Appl. Math. Comput., 254 (2015), 63–69. https://doi.org/10.1016/j.amc.2014.12.010 doi: 10.1016/j.amc.2014.12.010
    [5] C. J. Cheng, T. L. Liao, J. J. Yan, C. C. Hwang, Globally asymptotic stability of a class of neutral-type neural networks with delays, IEEE T. Syst. Man Cy. B, 36 (2006), 1191–1195. https://doi.org/10.1109/TSMCB.2006.874677 doi: 10.1109/TSMCB.2006.874677
    [6] M. Concezzi, R. Spigler, Some analytical and numerical properties of the Mittag-Leffler functions, Fract. Calc. Anal. Appl., 18 (2015), 64–94. https://doi.org/10.1515/fca-2015-0006 doi: 10.1515/fca-2015-0006
    [7] O. Faydasicok, S. Arik, An analysis of global stability of a class of neutral-type neural systems with time delays, Internat. J. Math. Comput. Sci., 6 (2012), 391–395.
    [8] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. Y. Rogosin, Mittag-Leffler functions, related topics and applications, Berlin: Springer, 2014. https://doi.org/10.1007/978-3-662-43930-2
    [9] S. Grossberg, Nonlinear neural networks: Principles, mechanisms, and architectures, Neural Networks, 1 (1988), 17–61.
    [10] A. Halanay, Differential equations, New York: Academic Press, 1996.
    [11] B. B. He, H. C. Zhou, Y. Q. Chen, C. H. Kou, Asymptotical stability of fractional order systems with time delay via an integral inequality, IET Control Theory A., 12 (2018), 1748–1754. https://doi.org/10.1049/iet-cta.2017.1144 doi: 10.1049/iet-cta.2017.1144
    [12] L. V. Hien, V. Phat, H. Trinh, New generalized Halanay inequalities with applications to stability of nonlinear non-autonomous time-delay systems, Nonlinear Dynam., 82 (2015), 563–575. https://doi.org/10.1007/s11071-015-2176-0 doi: 10.1007/s11071-015-2176-0
    [13] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-s, 13 (2020), 709–722.
    [14] Y. Ke, C. Miao, Stability analysis of fractional-order Cohen-Grossberg neural networks with time delay, Int. J. Comput. Math., 92 (2015), 1102–1113. http://dx.doi.org/10.1080/00207160.2014.935734 doi: 10.1080/00207160.2014.935734
    [15] R. P. Lippmann, D. M. Shahian, Coronary artery bypass risk prediction using neural networks, Ann. Thorac. Surg., 63 (1997), 1635–1643.
    [16] B. Liu, W. Lu, T. Chen, Generalized Halanay inequalities and their applications to neural networks with unbounded time-varying delays, IEEE T. Neural Networ., 22 (2011), 1508–1513. https://doi.org/10.1109/TNN.2011.2160987 doi: 10.1109/TNN.2011.2160987
    [17] X. Lou, Q. Ye, B. Cui, Exponential stability of genetic regulatory networks with random delays, Neurocomputing, 73 (2010), 759–769.
    [18] X. Luan, P. Shi, F. Liu, Robust adaptive control for greenhouse climate using neural networks, Int. J. Robust Nonlin., 21 (2011), 815–826. https://doi.org/10.1002/hipo.20797 doi: 10.1002/hipo.20797
    [19] F. Mainardi, On some properties of the Mittag-Leffler function Eα(tα), completely monotone for t>0 with 0<α<1, Discrete Cont. Dyn.-B, 10 (2014), 2267–2278. https://doi.org/10.48550/arXiv.1305.0161 doi: 10.48550/arXiv.1305.0161
    [20] M. W. Michalski, Derivatives of noninteger order and their applications, Ph. D. Thesis, Polska Akademia Nauk, 1993.
    [21] S. Mohamed, K. Gopalsamy, Continuous and discrete Halanay-type inequalities, B. Aust. Math. Soc., 61 (2000), 371–385.
    [22] P. Niamsup, Stability of time-varying switched systems with time-varying delay, Nonlinear Anal.-Hybri., 3 (2009), 631–639.
    [23] T. Simon, Comparing Frechet and positive stable laws, Electron. J. Probab., 19 (2014), 1–25. https://doi.org/10.1214/EJP.v19-3058 doi: 10.1214/EJP.v19-3058
    [24] M. S. Ali, S. Saravanan, M. E. Rani, S. Elakkia, J. Cao, A. Alsaedi, et al., Asymptotic stability of Cohen-Grossberg BAM neutral type neural networks with distributed time varying delays, Neural Process. Lett., 46 (2017), 991–1007. https://doi.org/10.1007/s11063-017-9622-6 doi: 10.1007/s11063-017-9622-6
    [25] H. Tian, The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag, J. Math. Anal. Appl., 270 (2002), 143–149. https://doi.org/10.1016/S0022-247X(02)00056-2 doi: 10.1016/S0022-247X(02)00056-2
    [26] L. Wen, Y. Yu, W. Wang, Generalized Halanay inequalities for dissipativity of Volterra functional differential equations, J. Math. Anal. Appl., 347 (2008), 169–178. https://doi.org/10.1016/j.jmaa.2008.05.007 doi: 10.1016/j.jmaa.2008.05.007
    [27] Z. Zeng, J. Wang, X. Liao, Global asymptotic stability and global exponential stability of neural networks with unbounded time-varying delays, IEEE T. Circuits-II, 52 (2005), 168–173. https://doi.org/10.1109/TCSII.2004.842047 doi: 10.1109/TCSII.2004.842047
    [28] B. Zheng, Z. Wang, Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays, Appl. Math. Comput., 430 (2022), 127303. https://doi.org/10.1016/j.amc.2022.127303 doi: 10.1016/j.amc.2022.127303
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(483) PDF downloads(61) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog