Order statistics is a significant research topic within probability and statistics, particularly due to its widespread application in areas such as reliability and actuarial science. Extensive research has been conducted on extreme order statistics, and this paper focused on the second-order statistics. Specifically, the study investigated the second-largest order statistics derived from dependent heterogeneous modified proportional reversed hazard rate samples, utilizing the stochastic properties of the Archimedean copula. This paper first examined the usual stochastic order of the second-largest order statistic between two groups of dependent heterogeneous random variables. These variables were analyzed under conditions involving the same tilt parameters with different proportional reversed hazard rate parameters, and different tilt parameters with the same proportional reversed hazard rate parameters. The study derived the sufficient conditions required for establishing the usual stochastic order in these cases. Next, the paper addressed the reversed hazard rate order relationship for the second- largest order statistic between two groups of independent heterogeneous random variables. This analysis was conducted under various conditions: the same tilt parameters with different proportional reversed hazard rate parameters, different tilt parameters with the same proportional reversed hazard rate parameters, and different sample sizes with the same parameters. The sufficient conditions for establishing the reversed hazard rate order were also derived. Finally, the theoretical findings were substantiated through numerical examples, confirming the main conclusions of the paper.
Citation: Mingxia Yang. Orderings of the second-largest order statistic with modified proportional reversed hazard rate samples[J]. AIMS Mathematics, 2025, 10(1): 311-337. doi: 10.3934/math.2025015
[1] | K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417 |
[2] | Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618 |
[3] | S. O. Olatunji, Hemen Dutta . Coefficient inequalities for pseudo subclasses of analytical functions related to Petal type domains defined by error function. AIMS Mathematics, 2020, 5(3): 2526-2538. doi: 10.3934/math.2020166 |
[4] | Halit Orhan, Nanjundan Magesh, Chinnasamy Abirami . Fekete-Szegö problem for Bi-Bazilevič functions related to Shell-like curves. AIMS Mathematics, 2020, 5(5): 4412-4423. doi: 10.3934/math.2020281 |
[5] | Prathviraj Sharma, Srikandan Sivasubramanian, Nak Eun Cho . Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation. AIMS Mathematics, 2023, 8(12): 29535-29554. doi: 10.3934/math.20231512 |
[6] | Erhan Deniz, Muhammet Kamali, Semra Korkmaz . A certain subclass of bi-univalent functions associated with Bell numbers and q−Srivastava Attiya operator. AIMS Mathematics, 2020, 5(6): 7259-7271. doi: 10.3934/math.2020464 |
[7] | Hava Arıkan, Halit Orhan, Murat Çağlar . Fekete-Szegö inequality for a subclass of analytic functions defined by Komatu integral operator. AIMS Mathematics, 2020, 5(3): 1745-1756. doi: 10.3934/math.2020118 |
[8] | Sadaf Umar, Muhammad Arif, Mohsan Raza, See Keong Lee . On a subclass related to Bazilevič functions. AIMS Mathematics, 2020, 5(3): 2040-2056. doi: 10.3934/math.2020135 |
[9] | Wenzheng Hu, Jian Deng . Hankel determinants, Fekete-Szegö inequality, and estimates of initial coefficients for certain subclasses of analytic functions. AIMS Mathematics, 2024, 9(3): 6445-6467. doi: 10.3934/math.2024314 |
[10] | Anandan Murugan, Sheza M. El-Deeb, Mariam Redn Almutiri, Jong-Suk-Ro, Prathviraj Sharma, Srikandan Sivasubramanian . Certain new subclasses of bi-univalent function associated with bounded boundary rotation involving sǎlǎgean derivative. AIMS Mathematics, 2024, 9(10): 27577-27592. doi: 10.3934/math.20241339 |
Order statistics is a significant research topic within probability and statistics, particularly due to its widespread application in areas such as reliability and actuarial science. Extensive research has been conducted on extreme order statistics, and this paper focused on the second-order statistics. Specifically, the study investigated the second-largest order statistics derived from dependent heterogeneous modified proportional reversed hazard rate samples, utilizing the stochastic properties of the Archimedean copula. This paper first examined the usual stochastic order of the second-largest order statistic between two groups of dependent heterogeneous random variables. These variables were analyzed under conditions involving the same tilt parameters with different proportional reversed hazard rate parameters, and different tilt parameters with the same proportional reversed hazard rate parameters. The study derived the sufficient conditions required for establishing the usual stochastic order in these cases. Next, the paper addressed the reversed hazard rate order relationship for the second- largest order statistic between two groups of independent heterogeneous random variables. This analysis was conducted under various conditions: the same tilt parameters with different proportional reversed hazard rate parameters, different tilt parameters with the same proportional reversed hazard rate parameters, and different sample sizes with the same parameters. The sufficient conditions for establishing the reversed hazard rate order were also derived. Finally, the theoretical findings were substantiated through numerical examples, confirming the main conclusions of the paper.
Recently, fractional calculus has attained assimilated bounteous flow and significant importance due to its rife utility in the areas of technology and applied analysis. Fractional derivative operators have given a new rise to mathematical models such as thermodynamics, fluid flow, mathematical biology, and virology, see [1,2,3]. Previously, several researchers have explored different concepts related to fractional derivatives, such as Riemann-Liouville, Caputo, Riesz, Antagana-Baleanu, Caputo-Fabrizio, etc. As a result, this investigation has been directed at various assemblies of arbitrary order differential equations framed by numerous analysts, (see [4,5,6,7,8,9,10]). It has been perceived that the supreme proficient technique for deliberating such an assortment of diverse operators that attracted incredible presentation in research-oriented fields, for example, quantum mechanics, chaos, thermal conductivity, and image processing, is to manage widespread configurations of fractional operators that include many other operators, see the monograph and research papers [11,12,13,14,15,16,17,18,19,20,21,22].
In [23], the author proposed a novel idea of fractional operators, which is called GPF operator, that recaptures the Riemann-Liouville fractional operators into a solitary structure. In [24], the authors analyzed the existence of the FDEs as well as demonstrated the uniqueness of the GPF derivative by utilizing Kransnoselskii's fixed point hypothesis and also dealt with the equivalency of the mixed type Volterra integral equation.
Fractional calculus can be applied to a wide range of engineering and applied science problems. Physical models of true marvels frequently have some vulnerabilities which can be reflected as originating from various sources. Additionally, fuzzy sets, fuzzy real-valued functions, and fuzzy differential equations seem like a suitable mechanism to display the vulnerabilities marked out by elusiveness and dubiousness in numerous scientific or computer graphics of some deterministic certifiable marvels. Here we broaden it to several research areas where the vulnerability lies in information, for example, ecological, clinical, practical, social, and physical sciences [25,26,27].
In 1965, Zadeh [28] proposed fuzziness in set theory to examine these issues. The fuzzy structure has been used in different pure and applied mathematical analyses, such as fixed-point theory, control theory, topology, and is also helpful for fuzzy automata and so forth. In [29], authors also broadened the idea of a fuzzy set and presented fuzzy functions. This concept has been additionally evolved and the bulk of the utilization of this hypothesis has been deliberated in [30,31,32,33,34,35] and the references therein. The concept of HD has been correlated with fuzzy Riemann-Liouville differentiability by employing the Hausdorff measure of non-compactness in [36,37].
Numerous researchers paid attention to illustrating the actual verification of certain fuzzy integral equations by employing the appropriate compactness type assumptions. Different methodologies and strategies, in light of HD or generalized HD (see [38]) have been deliberated in several credentials in the literature (see for instance [39,40,41,42,43,44,45,46,47,48,49]) and we presently sum up quickly a portion of these outcomes. In [50], the authors proved the existence of solutions to fuzzy FDEs considering Hukuhara fractional Riemann-Liouville differentiability as well as the uniqueness of the aforesaid problem. In [51,52], the authors investigated the generalized Hukuhara fractional Riemann-Liouville and Caputo differentiability of fuzzy-valued functions. Bede and Stefanini [39] investigated and discovered novel ideas for fuzzy-valued mappings that correlate with generalized differentiability. In [43], Hoa introduced the subsequent fuzzy FDE with order ϑ∈(0,1):
{(cDϑσ+1Φ)(ζ)=F(ζ,Φ(ζ)),Φ(σ1)=Φ0∈E, | (1.1) |
where a fuzzy function is F:[σ1,σ2]×E→E with a nontrivial fuzzy constant Φ0∈E. The article addressed certain consequences on clarification of the fractional fuzzy differential equations and showed that the aforesaid equations in both cases (differential/integral) are not comparable in general. A suitable assumption was provided so that this correspondence would be effective. Hoa et al. [53] proposed the Caputo-Katugampola FDEs fuzzy set having the initial condition:
{(cDϑ,ρσ+1Φ)(ζ)=F(ζ,Φ(ζ)),Φ(σ1)=Φ0, | (1.2) |
where 0<σ1<ζ≤σ2, cDϑ,ρσ+1 denotes the fuzzy Caputo-Katugampola fractional generalized Hukuhara derivative and a fuzzy function is F:[σ1,σ2]×E→E. An approach of continual estimates depending on generalized Lipschitz conditions was employed to discuss the actual as well as the uniqueness of the solution. Owing to the aforementioned phenomena, in this article, we consider a novel fractional derivative (merely identified as Hilfer GPF-derivative). Consequently, in the framework of the proposed derivative, we establish the basic mathematical tools for the investigation of GPF-FFHD which associates with a fractional order fuzzy derivative. We investigated the actuality and uniqueness consequences of the clarification to a fuzzy fractional IVP by employing GPF generalized HD by considering an approach of continual estimates via generalized Lipschitz condition. Moreover, we derived the FVFIE using a generalized fuzzy GPF derivative is presented. Finally, we demonstrate the problems of actual and uniqueness of the clarification of this group of equations. The Hilfer-GPF differential equation is presented as follows:
{Dϑ,q,βσ+1Φ(ζ)=F(ζ,Φ(ζ)),ζ∈[σ1,T],0≤σ1<TI1−γ,βσ1Φ(σ1)=m∑j=1RjΦ(νj),ϑ≤γ=ϑ+q−ϑq,νj∈(σ1,T], | (1.3) |
where Dϑ,q,βσ+1(.) is the Hilfer GPF-derivative of order ϑ∈(0,1),I1−γ,βσ1(.) is the GPF integral of order 1−γ>0,Rj∈R, and a continuous function F:[σ1,T]×R→R with νj∈[σ1,T] fulfilling σ<ν1<...<νm<T for j=1,...,m. To the furthest extent that we might actually know, nobody has examined the existence and uniqueness of solution (1.3) regarding FVFIEs under generalized fuzzy Hilfer-GPF-HD with fuzzy initial conditions. An illustrative example of fractional-order in the complex domain is proposed and provides the exact solution in terms of the Fox-Wright function.
The following is the paper's summary. Notations, hypotheses, auxiliary functions, and lemmas are presented in Section 2. In Section 3, we establish the main findings of our research concerning the existence and uniqueness of solutions to Problem 1.3 by means of the successive approximation approach. We developed the fuzzy GPF Volterra-Fredholm integrodifferential equation in Section 4. Section 5 consists of concluding remarks.
Throughout this investigation, E represents the space of all fuzzy numbers on R. Assume the space of all Lebsegue measureable functions with complex values F on a finite interval [σ1,σ2] is identified by χrc(σ1,σ2) such that
‖F‖χrc<∞,c∈R,1≤r≤∞. |
Then, the norm
‖F‖χrc=(σ2∫σ1|ζcF(ζ)|rdζζ)1/r∞. |
Definition 2.1. ([53]) A fuzzy number is a fuzzy set Φ:R→[0,1] which fulfills the subsequent assumptions:
(1) Φ is normal, i.e., there exists ζ0∈R such that Φ(ζ0)=1;
(2) Φ is fuzzy convex in R, i.e, for δ∈[0,1],
Φ(δζ1+(1−δ)ζ2)≥min{Φ(ζ1),Φ(ζ2)}foranyζ1,ζ2∈R; |
(3) Φ is upper semicontinuous on R;
(4) [z]0=cl{z1∈R|Φ(z1)>0} is compact.
C([σ1,σ2],E) indicates the set of all continuous functions and set of all absolutely continuous fuzzy functions signifys by AC([σ1,σ2],E) on the interval [σ1,σ2] having values in E.
Let γ∈(0,1), we represent the space of continuous mappings by
Cγ[σ1,σ2]={F:(σ1,σ2]→E:eβ−1β(ζ−σ1)(ζ−σ1)1−γF(ζ)∈C[σ1,σ2]}. |
Assume that a fuzzy set Φ:R↦[0,1] and all fuzzy mappings Φ:[σ1,σ2]→E defined on L([σ1,σ2],E) such that the mappings ζ→ˉD0[Φ(ζ),ˆ0] lies in L1[σ1,σ2].
There is a fuzzy number Φ on R, we write [Φ]ˇq={z1∈R|Φ(z1)≥ˇq} the ˇq-level of Φ, having ˇq∈(0,1].
From assertions (1) to (4); it is observed that the ˇq-level set of Φ∈E, [Φ]ˇq is a nonempty compact interval for any ˇq∈(0,1]. The ˇq-level of a fuzzy number Φ is denoted by [Φ_(ˇq),ˉΦ(ˇq)].
For any δ∈R and Φ1,Φ2∈E, then the sum Φ1+Φ2 and the product δΦ1 are demarcated as: [Φ1+Φ2]ˇq=[Φ1]ˇq+[Φ2]ˇq and [δ.Φ1]ˇq=δ[Φ1]ˇq, for all ˇq∈[0,1], where [Φ1]ˇq+[Φ2]ˇq is the usual sum of two intervals of R and δ[Φ1]ˇq is the scalar multiplication between δ and the real interval.
For any Φ∈E, the diameter of the ˇq-level set of Φ is stated as diam[μ]ˇq=ˉμ(ˇq)−μ_(ˇq).
Now we demonstrate the notion of Hukuhara difference of two fuzzy numbers which is mainly due to [54].
Definition 2.2. ([54]) Suppose Φ1,Φ2∈E. If there exists Φ3∈E such that Φ1=Φ2+Φ3, then Φ3 is known to be the Hukuhara difference of Φ1 and Φ2 and it is indicated by Φ1⊖Φ2. Observe that Φ1⊖Φ2≠Φ1+(−)Φ2.
Definition 2.3. ([54]) We say that ¯D0[Φ1,Φ2] is the distance between two fuzzy numbers if
¯D0[Φ1,Φ2]=supˇq∈[0,1]H([Φ1]ˇq,[Φ2]ˇq),∀Φ1,Φ2∈E, |
where the Hausdroff distance between [Φ1]ˇq and [Φ2]ˇq is defined as
H([Φ1]ˇq,[Φ2]ˇq)=max{|Φ_(ˇq)−ˉΦ(ˇq)|,|ˉΦ(ˇq)−Φ_(ˇq)|}. |
Fuzzy sets in E is also refereed as triangular fuzzy numbers that are identified by an ordered triple Φ=(σ1,σ2,σ3)∈R3 with σ1≤σ2≤σ3 such that [Φ]ˇq=[Φ_(ˇq),ˉΦ(ˇq)] are the endpoints of ˇq-level sets for all ˇq∈[0,1], where Φ_(ˇq)=σ1+(σ2−σ1)ˇq and ˉΦ(ˇq)=σ3−(σ3−σ2)ˇq.
Generally, the parametric form of a fuzzy number Φ is a pair [Φ]ˇq=[Φ_(ˇq),ˉΦ(ˇq)] of functions Φ_(ˇq),ˉΦ(ˇq),ˇq∈[0,1], which hold the following assumptions:
(1) μ_(ˇq) is a monotonically increasing left-continuous function;
(2) ˉμ(ˇq) is a monotonically decreasing left-continuous function;
(3) μ_(ˇq)≤ˉμ(ˇq),ˇq∈[0,1].
Now we mention the generalized Hukuhara difference of two fuzzy numbers which is proposed by [38].
Definition 2.4. ([38]) The generalized Hukuhara difference of two fuzzy numbers Φ1,Φ2∈E (gH-difference in short) is stated as follows
Φ1⊖gHΦ2=Φ3⇔Φ1=Φ2+Φ3orΦ2=Φ1+(−1)Φ3. |
A function Φ:[σ1,σ2]→E is said to be d-increasing (d-decreasing) on [σ1,σ2] if for every ˇq∈[0,1]. The function ζ→diam[Φ(ζ)]ˇq is nondecreasing (nonincreasing) on [σ1,σ2]. If Φ is d-increasing or d-decreasing on [σ1,σ2], then we say that Φ is d-monotone on [σ1,σ2].
Definition 2.5. ([39])The generalized Hukuhara derivative of a fuzzy-valued function F:(σ1,σ2)→E at ζ0 is defined as
F′gH(ζ0)=limh→0F(ζ0+h)⊖gHF(ζ0)h, |
if (F)′gH(ζ0)∈E, we say that F is generalized Hukuhara differentiable (gH-differentiable) at ζ0.
Moreover, we say that F is [(i)−gH]-differentiable at ζ0 if
[F′gH(ζ0)]ˇq=[[limh→0F_(ζ0+h)⊖gHF_(ζ0)h]ˇq,[limh→0ˉF(ζ0+h)⊖gHˉF(ζ0)h]ˇq]=[(F_)′(ˇq,ζ0),(ˉF)′(ˇq,ζ0)], | (2.1) |
and that F is [(ii)−gH]-differentiable at ζ0 if
[F′gH(ζ0)]ˇq=[(ˉF)′(ˇq,ζ0),(F_)′(ˇq,ζ0)]. | (2.2) |
Definition 2.6. ([49]) We state that a point ζ0∈(σ1,σ2), is a switching point for the differentiability of F, if in any neighborhood U of ζ0 there exist points ζ1<ζ0<ζ2 such that
Type Ⅰ. at ζ1 (2.1) holds while (2.2) does not hold and at ζ2 (2.2) holds and (2.1) does not hold, or
Type Ⅱ. at ζ1 (2.2) holds while (2.1) does not hold and at ζ2 (2.1) holds and (2.2) does not hold.
Definition 2.7. ([23]) For β∈(0,1] and let the left-sided GPF-integral operator of order ϑ of F is defined as follows
Iϑ,βσ+1F(ζ)=1βϑΓ(ϑ)ζ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑ−1F(ν)dν,ζ>σ1, | (2.3) |
where β∈(0,1], ϑ∈C, Re(ϑ)>0 and Γ(.) is the Gamma function.
Definition 2.8. ([23]) For β∈(0,1] and let the left-sided GPF-derivative operator of order ϑ of F is defined as follows
Dϑ,βσ+1F(ζ)=Dn,ββn−ϑΓ(n−ϑ)ζ∫σ1eβ−1β(ζ−ν)(ζ−ν)n−ϑ−1F(ν)dν, | (2.4) |
where β∈(0,1], ϑ∈C,Re(ϑ)>0,n=[ϑ]+1 and Dn,β represents the nth-derivative with respect to proportionality index β.
Definition 2.9. ([23]) For β∈(0,1] and let the left-sided GPF-derivative in the sense of Caputo of order ϑ of F is defined as follows
cDϑ,βσ+1F(ζ)=1βn−ϑΓ(n−ϑ)ζ∫σ1eβ−1β(ζ−ν)(ζ−ν)n−ϑ−1(Dn,βF)(ν)dν, | (2.5) |
where β∈(0,1], ϑ∈C,Re(ϑ)>0 and n=[ϑ]+1.
Let Φ∈L([σ1,σ2],E), then the GPF integral of order ϑ of the fuzzy function Φ is stated as:
Φβϑ(ζ)=(Iϑ,βσ+1Φ)(ζ)=1βϑΓ(ϑ)ζ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑ−1Φ(ν)dν,ζ>σ1. | (2.6) |
Since [Φ(ζ)]ˇq=[Φ_(ˇq,ζ),ˉΦ(ˇq,ζ)] and 0<ϑ<1, we can write the fuzzy GPF-integral of the fuzzy mapping Φ depend on lower and upper mappingss, that is,
[(Iϑ,βσ+1Φ)(ζ)]ˇq=[(Iϑ,βσ+1Φ_)(ˇq,ζ),(Iϑ,βσ+1ˉΦ)(ˇq,ζ)],ζ≥σ1, | (2.7) |
where
(Iϑ,βσ+1Φ_)(ˇq,ζ)=1βϑΓ(ϑ)ζ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑ−1Φ_(ˇq,ν)dν, | (2.8) |
and
(Iϑ,βσ+1ˉΦ)(ˇq,ζ)=1βϑΓ(ϑ)ζ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑ−1ˉΦ(ˇq,ν)dν. | (2.9) |
Definition 2.10. For n∈N, order ϑ and type q hold n−1<ϑ≤n with 0≤q≤1. The left-sided fuzzy Hilfer-proportional gH-fractional derivative, with respect to ζ having β∈(0,1] of a function ζ∈Cβ1−γ[σ1,σ2], is stated as
(Dϑ,q,βσ+1Φ)(ζ)=(Iq(1−ϑ),βσ+1Dβ(I(1−q)(1−ϑ),βσ+1Φ))(ζ), |
where DβΦ(ν)=(1−β)Φ(ν)+βΦ′(ν) and if the gH-derivative Φ′(1−ϑ),β(ζ) exists for ζ∈[σ1,σ2], where
Φβ(1−ϑ)(ζ):=(I(1−ϑ),βσ+1Φ)(ζ)=1β1−ϑΓ(1−ϑ)ζ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑΦ(ν)dν,ζ≥σ1. |
Definition 2.11. Let Φ′∈L([σ1,σ2],E) and the fractional generalized Hukuhara GPF-derivative of fuzzy-valued function Φ is stated as:
(gHDϑ,βσ+1Φ)(ζ)=I1−ϑ,βσ+1(Φ′gH)(ζ)=1β1−ϑΓ(1−ϑ)ϑ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑΦ′gH(ν)dν,ν∈(σ1,ζ). | (2.10) |
Furthermore, we say that Φ is GPF[(i)−gH]-differentiable at ζ0 if
[(gHDϑ,βσ+1)]ˇq=[[1β1−ϑΓ(1−ϑ)ϑ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑΦ_′gH(ν)dν]ˇq,[1β1−ϑΓ(1−ϑ)ϑ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑˉΦ′gH(ν)dν]ˇq]=[(gHD_ϑ,βσ+1)(ˇq,ζ),(gHˉDϑ,βσ+1)(ˇq,ζ)] | (2.11) |
and that Φ is GPF[(i)−gH]-differentiable at ζ0 if
[(gHDϑ,βσ+1)]ˇq=[(gHˉDϑ,βσ+1)(ˇq,ζ),(gHD_ϑ,βσ+1)(ˇq,ζ)]. | (2.12) |
Definition 2.12. We say that a point ζ0∈(σ1,σ2), is a switching point for the differentiability of F, if in any neighborhood U of ζ0 there exist points ζ1<ζ0<ζ2 such that
Type Ⅰ. at ζ1 (2.11) holds while (2.12) does not hold and at ζ2 (2.12) holds and (2.11) does not hold, or
Type Ⅱ. at ζ1 (2.12) holds while (2.11) does not hold and at ζ2 (2.11) holds and (2.12) does not hold.
Proposition 1. ([23]) Let ϑ,ϱ∈C such that Re(ϑ)>0 and Re(ϱ)>0. Then for any β∈(0,1], we have
(Iϑ,βσ+1eβ−1β(s−σ1)ϱ−1)(ζ)=Γ(ϱ)βϑΓ(ϱ+ϑ)eβ−1β(ζ−σ1)(ζ−σ1)ϱ+ϑ−1,(Dϑ,βσ+1eβ−1β(s−σ1)ϱ−1)(ζ)=Γ(ϱ)βϑΓ(ϱ−ϑ)eβ−1β(ζ−σ1)(ζ−σ1)ϱ−ϑ−1,(Iϑ,βσ+1eβ−1β(σ2−s)ϱ−1)(ζ)=Γ(ϱ)βϑΓ(ϱ+ϑ)eβ−1β(σ2−s)(σ2−ζ)ϱ+ϑ−1,(Dϑ,βσ+1eβ−1β(σ2−s)ϱ−1)(ζ)=Γ(ϱ)βϑΓ(ϱ−ϑ)eβ−1β(σ2−s)(σ2−s)ϱ−ϑ−1. |
Lemma 2.13. ([24])For β∈(0,1], ϑ>0, 0≤γ<1. If Φ∈Cγ[σ1,σ2] and I1−ϑσ+1Φ∈C1γ[σ1,σ2], then
(Iϑ,βσ+1Dϑ,βσ+1Φ)(ζ)=Φ(ζ)−eβ−1β(ζ−σ1)(ζ−σ1)ϑ−1βϑ−1Γ(ϑ)(I1−ϑ,βσ+1Φ)(σ1). |
Lemma 2.14. ([24]) Let Φ∈L1(σ1,σ2). If Dq(1−ϑ),βσ+1Φ exists on L1(σ1,σ2), then
Dϑ,q,βσ+1Iϑ,βσ+1Φ=Iq(1−ϑ),βσ+1Dq(1−ϑ),βσ+1Φ. |
Lemma 2.15. Suppose there is a d-monotone fuzzy mapping Φ∈AC([σ1,σ2],E), where [Φ(ζ)]ˇq=[Φ_(ˇq,ζ),ˉΦ(ˇq,ζ)] for 0≤ˇq≤1,σ1≤ζ≤σ2, then for 0<ϑ<1 and β∈(0,1], we have
(i)[(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Dϑ,q,βσ+1Φ_(ˇq,ζ),Dϑ,q,βσ+1ˉΦ(ˇq,ζ)] for ζ∈[σ1,σ2], if Φ is d-increasing;
(ii)[(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Dϑ,q,βσ+1ˉΦ(ˇq,ζ),Dϑ,q,βσ+1Φ_(ˇq,ζ)] for ζ∈[σ1,σ2], if Φ is d-decreasing.
Proof. It is to be noted that if Φ is d-increasing, then [Φ′(ζ)]ˇq=[ddζΦ_(ˇq,ζ),ddζˉΦ(ˇq,ζ)]. Taking into account Definition 2.10, we have
[(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Iq(1−ϑ),βσ+1Dβ(I(1−q)(1−ϑ),βσ+1Φ_)(ˇq,ζ),Iq(1−ϑ),βσ+1Dβ(I(1−q)(1−ϑ),βσ+1ˉΦ)(ˇq,ζ)]=[Dϑ,q,βσ+1Φ_(ˇq,ζ),Dϑ,q,βσ+1ˉΦ(ˇq,ζ)]. |
If Φ is d-decreasing, then [Φ′(ζ)]ˇq=[ddζˉΦ(ˇq,ζ),ddζΦ_(ˇq,ζ)], we have
[(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Iq(1−ϑ),βσ+1Dβ(I(1−q)(1−ϑ),βσ+1ˉΦ)(ˇq,ζ),Iq(1−ϑ),βσ+1Dβ(I(1−q)(1−ϑ),βσ+1Φ_)(ˇq,ζ)]=[Dϑ,q,βσ+1ˉΦ(ˇq,ζ),Dϑ,q,βσ+1Φ_(ˇq,ζ)]. |
This completes the proof.
Lemma 2.16. For β∈(0,1],ϑ∈(0,1). If Φ∈AC([σ1,σ2],E) is a d-monotone fuzzy function. We take
z1(ζ):=(Iϑ,βσ+1Φ)(ζ)=1βϑΓ(ϑ)ζ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑ−1Φ(ν)dν, |
and
z(1−ϑ),β1:=(I(1−ϑ),βσ+1Φ)(ζ)=1β1−ϑΓ(1−ϑ)ϑ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑΦ′gH(ν)dν, |
is d-increasing on (σ1,σ2], then
(Iϑ,βσ+1Dϑ,q,βσ+1Φ)(ζ)=Φ(ζ)⊖m∑j=1RjΦ(ζj)βγΓ(γ)eβ−1β(ζ−σ1)(ζ−σ1)γ−1, |
and
(Dϑ,q,βσ+1Iϑ,βσ+1Φ)(ζ)=Φ(ζ). |
Proof. If z1(ζ) is d-increasing on [σ1,σ2] or z1(ζ) is d-decreasing on [σ1,σ2] and z(1−ϑ),β1(ζ) is d-increasing on (σ1,σ2].
Utilizing the Definitions 2.6, 2.10 and Lemma 2.13 with the initial condition (I1−γ,βσ+1Φ)(σ1)=0, we have
(Iϑ,βσ+1Dϑ,q,βσ+1Φ)(ζ)=(Iϑ,βσ+1Iq(1−ϑ),βσ+1DβI(1−q)(1−ϑ),βσ+1Φ)(ζ)=(Iγ,βσ+1DβI1−γ,βσ+1Φ)(ζ)=(Iγ,βσ+1Dγ,βσ+1Φ)(ζ)=Φ(ζ)⊖I1−γ,βσ+1Φβγ−1Γ(γ)eβ−1β(ζ−σ1)(ζ−σ1)γ−1. | (2.13) |
Now considering Proposition 1, Lemma 2.13 and Lemma 2.14, we obtain
(Dϑ,q,βσ+1Iϑ,βσ+1Φ)(ζ)=(Iq(1−ϑ),βσ+1Dq(1−ϑ),βσ+1Φ)(ζ)=Φ(ζ)⊖(I1−q(1−ϑ),βσ+1Φ)(σ1)eβ−1β(ζ−σ1)βq(1−ϑ)Γ(q(1−ϑ))(ζ−σ1)q(1−ϑ)−1=Φ(ζ). |
On contrast, since Φ∈AC([σ1,σ2],E), there exists a constant K such that K=supζ∈[σ1,σ2]¯D0[Φ(ζ),ˆ0].
Then
¯D0[Iϑ,βσ+1Φ(ζ),ˆ0]≤K1βϑΓ(ϑ)ζ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑ−1dν≤K1βϑΓ(ϑ)ζ∫σ1|eβ−1β(ζ−ν)|(ζ−ν)ϑ−1dν=KβϑΓ(ϑ+1)(ζ−σ1)ϑ, |
where we have used the fact |eβ−1βζ|<1 and Iϑ,βσ+1Φ(ζ)=0 and ζ=σ1.
This completes the proof.
Lemma 2.17. Let there be a continuous mapping Φ:[σ1,σ2]→R+ on [σ1,σ2] and hold Dϑ,q,βσ+1Φ(ζ)≤F(ξ,Φ(ξ)),ξ≥σ1, where F∈C([σ1,σ1]×R+,R+). Assume that m(ζ)=m(ζ,σ1,ξ0) is the maximal solution of the IVP
Dϑ,q,βσ+1ξ(ζ)=F(ζ,ξ),(I1−γ,βσ+1ξ)(σ1)=ξ0≥0, | (2.14) |
on [σ1,σ2]. Then, if Φ(σ1)≤ξ0, we have Φ(ζ)≤m(ζ),ζ∈[σ1,σ2].
Proof. The proof is simple and can be derived as parallel to Theorem 2.2 in [53].
Lemma 2.18. Assume the IVP described as:
Dϑ,q,βσ+1Φ(ζ)=F(ζ,Φ(ζ)),(I1−γ,βσ+1Φ)(σ1)=Φ0=0,ζ∈[σ1,σ2]. | (2.15) |
Let α>0 be a given constant and B(Φ0,α)={Φ∈R:|Φ−Φ0|≤α}. Assume that the real-valued functions F:[σ1,σ2]×[0,α]→R+ satisfies the following assumptions:
(i) F∈C([σ1,σ2]×[0,α],R+),F(ζ,0)≡0,0≤F(ζ,Φ)≤MF for all (ζ,Φ)∈[σ1,σ2]×[0,α];
(ii) F(ζ,Φ) is nondecreasing in Φ for every ζ∈[σ1,σ2]. Then the problem (2.15) has at least one solution defined on [σ1,σ2] and Φ(ζ)∈B(Φ0,α).
Proof. The proof is simple and can be derived as parallel to Theorem 2.3 in [53].
In this investigation, we find the existence and uniqueness of solution to problem 1.3 by utilizing the successive approximation technique by considering the generalized Lipschitz condition of the right-hand side.
Lemma 3.1. For γ=ϑ+q(1−ϑ),ϑ∈(0,1),q∈[0,1] with β∈(0,1], and let there is a fuzzy function F:(σ1,σ2]×E→E such that ζ→F(ζ,Φ) belongs to Cβγ([σ1,σ2],E) for any Φ∈E. Then a d-monotone fuzzy function Φ∈C([σ1,σ2],E) is a solution of IVP (1.3) if and only if Φ satisfies the integral equation
Φ(ζ)⊖gHm∑j=1RjΦ(ζj)βγΓ(γ)eβ−1β(ζ−σ1)(ζ−σ1)γ−1=1βϑΓ(ϑ)ζ∫σ1eβ−1β(ζ−ν)(ζ−ν)ϑ−1F(ν,Φ(ν))dν,ζ∈[σ1,σ2],j=1,2,...,m. | (3.1) |
and the fuzzy function ζ→I1−γσ+1F(ζ,Φ) is d-increasing on (σ1,σ2].
Proof. Let Φ∈C([σ1,σ2],E) be a d-monotone solution of (1.3), and considering z1(ζ):=Φ(ζ)⊖gH(I1−γ,βσ+1Φ)(σ1),ζ∈(σ1,σ2]. Since Φ is d-monotone on [σ1,σ2], it follows that ζ→z1(ζ) is \mathfrak{d} -increasing on [\sigma_{1}, \sigma_{2}] (see [43]).
From (1.3) and Lemma 2.16, we have
\begin{eqnarray} \big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q},\beta}\Phi\big)(\zeta) = \Phi(\zeta)\ominus\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1},\quad\forall \zeta\in[\sigma_{1},\sigma_{2}]. \end{eqnarray} | (3.2) |
Since \mathcal{F}(\zeta, \Phi)\in\mathcal{C}_{\gamma}([\sigma_{1}, \sigma_{2}], \mathfrak{E}) for any \Phi\in\mathfrak{E}, and from (1.3), observes that
\begin{eqnarray} \big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q},\beta}\Phi\big)(\zeta) = \mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\mathcal{F}(\zeta,\Phi(\zeta)) = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu)\big)d\nu,\quad\forall\zeta\in[\sigma_{1},\sigma_{2}]. \end{eqnarray} | (3.3) |
Additionally, since z_{1}(\zeta) is \mathfrak{d} -increasing on (\sigma_{1}, \sigma_{2}]. Also, we observe that \zeta\rightarrow \mathcal{F}^{\vartheta, \beta}(\zeta, \Phi) is also \mathfrak{d} -increasing on (\sigma_{1}, \sigma_{2}].
Reluctantly, merging (3.2) and (3.3), we get the immediate consequence.
Further, suppose \Phi\in\mathcal{C}([\sigma_{1}, \sigma_{2}], \mathfrak{E}) be a \mathfrak{d} -monotone fuzzy function fulfills (3.1) and such that \zeta\rightarrow \mathcal{F}^{\vartheta, \beta}(\zeta, \Phi) is \mathfrak{d} -increasing on (\sigma_{1}, \sigma_{2}]. By the continuity of the fuzzy mapping \mathcal{F}, the fuzzy mapping \zeta\rightarrow \mathcal{F}^{\vartheta, \beta}(\zeta, \Phi) is continuous on (\sigma_{1}, \sigma_{2}] with \mathcal{F}^{\vartheta, \beta}(\sigma_{1}, \Phi(\sigma_{1})) = \lim\limits_{\zeta\rightarrow \sigma_{1}^{+}}\mathcal{F}^{\vartheta, \beta}(\zeta, \Phi) = 0. Then
\begin{eqnarray*} &&\Phi(\zeta) = \frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\mathcal{F}\big(\zeta,\mathcal{\zeta}\big)\big)(\zeta),\nonumber\\&&\mathcal{I}_{\sigma_{1}^{+}}^{1-\gamma,\beta}\Phi(\zeta) = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})+\big(\mathcal{I}_{\sigma_{1}^{+}}^{1-\mathfrak{q}(1-\vartheta)}\mathcal{F}(\zeta,\Phi(\zeta))\big)(\zeta), \end{eqnarray*} |
and
\begin{eqnarray*} \mathcal{I}_{\sigma_{1}^{+}}^{1-\gamma,\beta}\Phi(0) = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j}). \end{eqnarray*} |
Moreover, since \zeta\rightarrow \mathcal{F}^{\vartheta, \beta}(\zeta, \Phi) is \mathfrak{d} -increasing on (\sigma_{1}, \sigma_{2}]. Applying, the operator \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta, \mathfrak{q}, \beta} on (3.1), yields
\begin{eqnarray*} &&\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q},\beta}\bigg(\Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\bigg)\nonumber\\&& = \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q},\beta}\bigg(\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu)\big)d\nu\bigg)\nonumber\\&& = \mathcal{F}\big(\zeta,\Phi(\zeta)\big). \end{eqnarray*} |
This completes the proof.
In our next result, we use the following assumption. For a given constant \hbar > 0 , and let \mathfrak{B}(\Phi_{0}, \hbar) = \big\{\Phi\in\mathfrak{E}:\bar{\mathcal{D}_{0}}[\Phi, \Phi_{0}]\leq\hbar\big\}.
Theorem 3.2. Let \mathcal{F}\in\mathcal{C}\big([\sigma_{1}, \sigma_{2}]\times\mathfrak{B}(\Phi_{0}, \hbar), \mathfrak{E}\big) and suppose that the subsequent assumptions hold:
(i) there exists a positive constant \mathcal{M}_{\mathcal{F}} such that \bar{\mathcal{D}_{0}}[\mathcal{F}(\zeta, z_{1}), \hat{0}]\leq\mathcal{M}_{\mathcal{F}}, for all (\zeta, z_{1})\in[\sigma_{1}, \sigma_{2}]\times\mathfrak{B}(\Phi_{0}, \hbar) ;
(ii) for every \zeta\in[\sigma_{1}, \sigma_{2}] and every z_{1}, \omega\in\mathfrak{B}(\Phi_{0}, \hbar),
\begin{eqnarray} \bar{\mathcal{D}_{0}}\big[\mathcal{F}(\zeta,z_{1}),\mathcal{F}(\zeta,\omega)\big]\leq\mathfrak{g}(\zeta,\bar{\mathcal{D}_{0}}[z_{1},\omega]), \end{eqnarray} | (3.4) |
where \mathfrak{g}(\zeta, .)\in\mathcal{C}\big([\sigma_{1}, \sigma_{2}]\times[0, \beta], \mathbb{R}^{+}\big) satisfies the assumption in Lemma 2.18 given that problem (2.15) has only the solution \phi(\zeta)\equiv0 on [\sigma_{1}, \sigma_{2}]. Then the subsequent successive approximations given by \Phi^{0}(\zeta) = \Phi_{0} and for n = 1, 2, ...,
\begin{eqnarray*} &&\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big)d\nu, \end{eqnarray*} |
converges consistently to a fixed point of problem (1.3) on certain interval [\sigma_{1}, \mathcal{T}] for some \mathcal{T}\in(\sigma_{1}, \sigma_{2}] given that the mapping \zeta\rightarrow \mathcal{I}_{\sigma_{1}^{+}}^{\vartheta, \beta}\mathcal{F}(\zeta, \Phi^{n}(\zeta)) is \mathfrak{d} -increasing on [\sigma_{1}, \mathcal{T}].
Proof. Take \sigma_{1} < \zeta^{*} such that \zeta^{*}\leq\big[\frac{\beta^{\vartheta}\hbar.\Gamma(1+\vartheta)}{\mathcal{M}}+\sigma_{1}\big]^{\frac{1}{\vartheta}}, where \mathcal{M} = \max\big\{\mathcal{M}_{\mathfrak{g}}, \mathcal{M}_{\mathcal{F}}\big\} and put \mathcal{T}: = \min\{\zeta^{*}, \sigma_{2}\}. Let \mathbb{S} be a set of continuous fuzzy functions \Phi such that \omega(\sigma_{1}) = \Phi_{0} and \omega(\zeta)\in\mathfrak{B}(\Phi_{0}, \hbar) for all \zeta\in[\sigma_{1}, \mathcal{T}]. Further, we suppose the sequence of continuous fuzzy function \{\Phi^{n}\}_{n = 0}^{\infty} given by \Phi^{0}(\zeta) = \Phi_{0}, \, \forall \zeta\in[\sigma_{1}, \mathcal{T}] and for n = 1, 2, ..,
\begin{eqnarray} &&\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\\&& = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big)d\nu. \end{eqnarray} | (3.5) |
Firstly, we show that \Phi^{n}(\zeta)\in\mathcal{C}([\sigma_{1}, \mathcal{T}], \mathfrak{B}(\Phi_{0}, \hbar)) . For n\geq1 and for any \zeta_{1}, \zeta_{2}\in[\sigma_{1}, \mathcal{T}] with \zeta_{1} < \zeta_{2}, we have
\begin{eqnarray*} &&\bar{\mathcal{D}_{0}}\Bigg(\Phi^{n}(\zeta_{1})\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1},\Phi^{n}(\zeta_{2})\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\Bigg)\nonumber\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta_{1}}\Big[e^{\frac{\beta-1}{\beta}(\zeta_{1}-\nu)}(\zeta_{1}-\nu)^{\vartheta-1}-e^{\frac{\beta-1}{\beta}(\zeta_{2}-\nu)}(\zeta_{2}-\nu)^{\vartheta-1}\Big]\bar{\mathcal{D}_{0}}\big[\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big),\hat{0}\big]d\nu\nonumber\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{1}}^{\zeta_{2}}e^{\frac{\beta-1}{\beta}(\zeta_{2}-\nu)}(\zeta_{2}-\nu)^{\vartheta-1}\bar{\mathcal{D}_{0}}\big[\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big),\hat{0}\big]d\nu. \end{eqnarray*} |
Using the fact that \vert e^{\frac{\beta-1}{\beta}\zeta}\vert < 1, then, on the right-hand side from the last inequality, the subsequent integral becomes \frac{1}{\beta^{\vartheta}\Gamma(1+\vartheta)}(\zeta_{2}-\zeta_{1})^{\vartheta}. Therefore, with the similar assumption as we did above, the first integral reduces to \frac{1}{\beta^{\vartheta}\Gamma(1+\vartheta)}\big[(\zeta_{1}-\sigma_{1})^{\vartheta}-(\zeta_{2}-\sigma_{1})^{\vartheta}+(\zeta_{2}-\zeta_{1})^{\vartheta}\big]. Thus, we conclude
\begin{eqnarray*} \bar{\mathcal{D}_{0}}\big[\Phi^{n}\big((\zeta_{1}),\Phi^{n}(\zeta_{2})\big)\big]&&\leq\frac{\mathcal{M}_{\mathcal{F}}}{\beta^{\vartheta}\Gamma(1+\vartheta)}\big[(\zeta_{1}-\sigma_{1})^{\vartheta}-(\zeta_{2}-\sigma_{1})^{\vartheta}+2(\zeta_{2}-\zeta_{1})^{\vartheta}\big]\nonumber\\&&\leq\frac{2\mathcal{M}_{\mathcal{F}}}{\beta^{\vartheta}\Gamma(1+\vartheta)}(\zeta_{2}-\zeta_{1})^{\vartheta}. \end{eqnarray*} |
In the limiting case as \zeta_{1}\rightarrow \zeta_{2}, then the last expression of the above inequality tends to 0, which shows \Phi^{n} is a continuous function on [\sigma_{1}, \mathcal{T}] for all n\geq1.
Moreover, it follows that \Phi^{n}\in\mathfrak{B}(\Phi_{0}, \hbar) for all n\geq0, \, \zeta\in[\sigma_{1}, \mathcal{T}] if and only if \Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\in\mathfrak{B}(0, \hbar) for all \zeta\in[\sigma_{1}, \mathcal{T}] and for all n\geq0.
Also, if we assume that \Phi^{n-1}(\zeta)\in\mathbb{S} for all \zeta\in[\sigma_{1}, \mathcal{T}], \, n\geq2, then
\begin{eqnarray*} &&\bar{\mathcal{D}_{0}}\Big[\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}, \hat{0}\Big]\nonumber\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\bar{\mathcal{D}_{0}}\big[\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big),\hat{0}\big]d\nu\nonumber\\&& = \frac{\mathcal{M}_{\mathcal{F}}(\zeta-\sigma_{1})^{\vartheta}}{\beta^{\vartheta}\Gamma(1+\vartheta)}\leq\hbar. \end{eqnarray*} |
It follows that \Phi^{n}(\zeta)\in\mathbb{S}, \, \forall\in[\sigma_{1}, \mathcal{T}].
Henceforth, by mathematical induction, we have \Phi^{n}(\zeta)\in\mathbb{S}, \, \, \forall \zeta\in[\sigma_{1}, \mathcal{T}] and \forall\, n\geq1.
Further, we show that the sequence \Phi^{n}(\zeta) converges uniformly to a continuous function \Phi\in\mathcal{C}([\sigma_{1}, \mathcal{T}], \mathfrak{B}(\Phi_{0}, \hbar)). By assertion (ii) and mathematical induction, we have for \zeta\in[\sigma_{1}, \mathcal{T}]
\begin{eqnarray} &&\bar{\mathcal{D}_{0}}\bigg[\Phi^{n+1}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1},\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\bigg]\\&&\leq \phi^{n}(\zeta),\quad\quad n = 0,1,2,..., \end{eqnarray} | (3.6) |
where \phi^{n}(\zeta) is defined as follows:
\begin{eqnarray} \phi^{n}(\zeta) = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathfrak{g}\big(\nu,\phi^{n-1}(\nu)\big)d\nu, \end{eqnarray} | (3.7) |
where we have used the fact that \vert e^{\frac{\beta-1}{\beta}\zeta}\vert < 1 and \phi^{0}(\zeta) = \frac{\mathcal{M}(\zeta-\sigma_{1})^{\vartheta}}{\beta^{{\vartheta}}\Gamma({\vartheta}+1)}. Thus, we have, for \zeta\in[\sigma_{1}, \mathcal{T}] and for n = 0, 1, 2, ...,
\begin{eqnarray*} &&\bar{\mathcal{D}_{0}}\big[\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n+1}(\zeta),\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n}(\zeta)\big] \nonumber\\&&\leq\bar{\mathcal{D}_{0}}\big[\mathcal{F}(\zeta,\Phi^{n}(\zeta)),\mathcal{F}(\zeta,\Phi^{n-1}(\zeta))\big]\nonumber\\&&\leq\mathfrak{g}\big(\zeta,\bar{\mathcal{D}_{0}}\big[\Phi^{n}(\zeta),\Phi^{n-1}(\zeta)\big]\big)\nonumber\\&&\leq\mathfrak{g}\big(\zeta,\phi^{n-1}(\zeta)\big). \end{eqnarray*} |
Let n\leq m and \zeta\in[\sigma_{1}, \mathcal{T}], then one obtains
\begin{eqnarray*} \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\bar{\mathcal{D}_{0}}\big[\Phi^{n}(\zeta),\Phi^{m}(\zeta)\big]&&\leq\bar{\mathcal{D}_{0}}\big[\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n}(\zeta),\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{m}(\zeta)\big]\nonumber\\&&\leq\bar{\mathcal{D}_{0}}\big[\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n}(\zeta),\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n+1}(\zeta)\big]+\bar{\mathcal{D}_{0}}\big[\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{n+1}(\zeta),\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{m+1}(\zeta)\big]\nonumber\\&&\quad+\bar{\mathcal{D}_{0}}\big[\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{m+1}(\zeta),\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi^{m}(\zeta)\big]\nonumber\\&&\leq2\mathfrak{g}(\zeta,\phi^{n-1}(\zeta))+\mathfrak{g}\big(\zeta,\bar{\mathcal{D}_{0}}[\Phi^{n}(\zeta),\Phi^{m}(\zeta)]\big). \end{eqnarray*} |
From (ii), we observe that the solution \phi(\zeta) = 0 is a unique solution of problem (2.15) and \mathfrak{g}(., \phi^{n-1}):[\sigma_{1}, \mathcal{T}]\rightarrow [0, \mathcal{M}_{\mathfrak{g}}] uniformly converges to 0 , for every \epsilon > 0, there exists a natural number n_{0} such that
\begin{eqnarray*} \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\bar{\mathcal{D}_{0}}\big[\Phi^{n}(\zeta),\Phi^{m}(\zeta)\big]\leq\mathfrak{g}\big(\zeta,\bar{\mathcal{D}_{0}}[\Phi^{n}(\zeta),\Phi^{m}(\zeta)]\big)+\epsilon,\quad\quad for\,n_{0}\leq n\leq m. \end{eqnarray*} |
Using the fact that \bar{\mathcal{D}_{0}}\big[\Phi^{n}(\sigma_{1}), \Phi^{m}(\sigma_{1})\big] = 0 < \epsilon and by using Lemma 2.17, we have for \zeta\in[\sigma_{1}, \mathcal{T}]
\begin{eqnarray} \bar{\mathcal{D}_{0}}\big[\Phi^{n}(\zeta),\Phi^{m}(\zeta)\big]\leq \delta_{\epsilon}(\zeta),\quad n_{0}\leq n\leq m, \end{eqnarray} | (3.8) |
where \delta_{\epsilon}(\zeta) is the maximal solution to the following IVP:
\begin{eqnarray*} \big(\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\delta_{\epsilon}\big)(\zeta) = \mathfrak{g}(\zeta,\delta_{\epsilon}(\zeta))+\epsilon,\quad\quad \big(\mathcal{I}_{\sigma_{1}^{+}}^{1-\gamma}\delta_{\epsilon}\big) = \epsilon. \end{eqnarray*} |
Taking into account Lemma 2.17, we deduce that [\phi_{\epsilon}(., \omega)] converges uniformly to the maximal solution \phi(\zeta) \equiv0 of (2.15) on [\sigma_{1}, \mathcal{T}] as \epsilon\rightarrow 0.
Therefore, in view of (3.8), we can obtain n_{0}\in\mathbb{N} is large enough such that, for n_{0} < n, m,
\begin{eqnarray} &&\sup\limits_{\zeta\in[\sigma_{1},\mathcal{T}]}\bar{\mathcal{D}_{0}}\bigg[\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1},\Phi^{m}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\bigg]\\&&\leq\epsilon. \end{eqnarray} | (3.9) |
Since (\mathfrak{E}, \bar{\mathcal{D}_{0}}) is a complete metric space and (3.9) holds, thus \big\{\Phi^{n}(\zeta)\} converges uniformly to \Phi\in\mathcal{C}([\sigma_{1}, \sigma_{2}], \mathfrak{B}(\Phi_{0}, \hbar)). Hence
\begin{eqnarray} \Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}&& = \lim\limits_{n\rightarrow \infty}\bigg(\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi^{n-1}(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\bigg)\\&& = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big)d\nu. \end{eqnarray} | (3.10) |
Because of Lemma 3.1, the function \Phi(\zeta) is the solution to (1.3) on [\sigma_{1}, \mathcal{T}].
In order to find the unique solution, assume that \Psi:[\sigma_{1}, \mathcal{T}]\rightarrow \mathfrak{E} is another solution of problem (1.3) on [\sigma_{1}, \mathcal{T}]. We denote \kappa(\zeta) = \bar{\mathcal{D}_{0}}[\Phi(\zeta), \Psi(\zeta)]. Then \kappa(\sigma_{1}) = 0 and for every \zeta\in[\sigma_{1}, \mathcal{T}], we have
\begin{eqnarray} \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q},\beta}\kappa(\zeta)\leq\bar{\mathcal{D}_{0}}\big[\mathcal{F}(\zeta,\Phi(\zeta)),\mathcal{F}(\zeta,\Psi(\zeta))\big]\leq\mathfrak{g}(\zeta,\kappa(\zeta)). \end{eqnarray} | (3.11) |
Further, using the comaprison Lemma 2.17, we get \kappa(\zeta)\leq m(\zeta), where m is a maximal solution of the IVP \mathcal{D}_{\sigma_{1}^{+}}^{\vartheta, \mathfrak{q}, \beta}m(\zeta)\leq\mathfrak{g}(\zeta, m(\zeta)), \, \big(\mathcal{I}_{\sigma_{1}^{+}}^{1-\gamma}m\big)(\sigma_{1}) = 0. By asseration (ii), we have m(\zeta) = 0 and hence \Phi(\zeta) = \Psi(\zeta), \, \forall\in[\sigma_{1}, \mathcal{T}].
This completes the proof.
Corollary 1. For \beta\in(0, 1] and let \mathcal{C}([\sigma_{1}, \sigma_{2}], \mathfrak{E}). Assume that there exist positive constants \mathcal{L}, \mathcal{M}_{\mathcal{F}} such that, for every z_{1}, \omega\in\mathfrak{E},
\begin{eqnarray*} \bar{\mathcal{D}_{0}}\big[\mathcal{F}(\zeta,z_{1}),\mathcal{F}(\zeta,\omega)\big]\leq\mathcal{L}\bar{\mathcal{D}_{0}}[z_{1},\omega],\quad\quad \bar{\mathcal{D}_{0}}\big[\mathcal{F}(\zeta,z_{1}),\hat{0}\big]\leq\mathcal{M}_{\mathcal{F}}. \end{eqnarray*} |
Then the subsequent successive approximations given by \Phi^{0}(\zeta) = \Phi_{0} and for n = 1, 2, ..
\begin{eqnarray*} \Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\Phi_{0} = \frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi^{n-1}(\nu)\big)d\nu, \end{eqnarray*} |
converges consistently to a fixed point of problem (1.3) on [\sigma_{1}, \mathcal{T}] for certain \mathcal{T}\in(\sigma_{1}, \sigma_{2}] given that the mapping \zeta\rightarrow \mathcal{I}_{\sigma_{1}^{+}}^{\vartheta, \beta}\mathcal{F}(\zeta, \Phi^{n}(\zeta)) is \mathfrak{d} -increasing on [\sigma_{1}, \mathcal{T}].
Example 3.3. For \beta\in(0, 1], \, \gamma = \vartheta+\mathfrak{q}(1-\vartheta), \, \vartheta\in(0, 1), \, \mathfrak{q}\in[0, 1] and \delta\in\mathbb{R}. Assume that the linear fuzzy \mathcal{GPF} - FDE under Hilfer- \mathcal{GPF} -derivative and moreover, the subsequent assumptions hold:
\begin{eqnarray} \begin{cases} \big(\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\mathfrak{q}}\Phi\big)(\zeta) = \delta\Phi(\zeta)+\eta(\zeta),\quad\quad\quad\quad\quad\quad\zeta\in(\sigma_{1},\sigma_{2}],\\ \big(\mathcal{I}_{\sigma_{1}^{+}}^{1-\gamma,\beta}\Phi\big)(\sigma_{1}) = \Phi_{0} = \sum\limits_{j = 1}^{m}\mathcal{R}_{j}\Phi(\zeta_{j}),\quad\quad \gamma = \vartheta+\mathfrak{q}(1-\vartheta). \end{cases} \end{eqnarray} | (3.12) |
Applying Lemma 3.1, we have
\begin{eqnarray*} &&\Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \delta\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\Phi(\nu)d\nu+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\sigma_{1}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\eta(\nu)d\nu,\quad\zeta\in[\sigma_{1},\sigma_{2}]\nonumber\\&& = \delta\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\Phi\big)(\zeta)+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta), \end{eqnarray*} |
where \eta\in\mathcal{C}((\sigma_{1}, \sigma_{2}], \mathfrak{E}) and furthermore, assuming the diameter on the right part of the aforementioned equation is increasing. Observing \mathcal{F}(\zeta, \Phi): = \delta\Phi+\eta fulfill the suppositions of Corollary 1.
In order to find the analytical view of (3.12), we utilized the technique of successive approximation. Putting \Phi^{0}(\zeta) = \Phi_{0} and
\begin{eqnarray*} &&\Phi^{n}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \delta\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\Phi^{n-1}\big)(\zeta)+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta),\quad n = 1,2,... \end{eqnarray*} |
Letting n = 1, \; \delta > 0, assuming there is a \mathfrak{d} -increasing mapping \Phi, then we have
\begin{eqnarray*} &&\Phi^{1}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \delta\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\frac{(\zeta-\sigma_{1})^{\vartheta}}{\beta^{\vartheta}\Gamma(\vartheta+1)}+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta). \end{eqnarray*} |
In contrast, if we consider \delta < 0 and \Phi is \mathfrak{d} -decreasing, then we have
\begin{eqnarray*} &&(-1)\bigg(\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\ominus_{\mathfrak{g}H}\Phi^{1}(\zeta)\bigg)\nonumber\\&& = \delta\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\frac{(\zeta-\sigma_{1})^{\vartheta}}{\beta^{\vartheta}\Gamma(\vartheta+1)}+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta). \end{eqnarray*} |
For n = 2 , we have
\begin{eqnarray*} &&\Phi^{2}(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\bigg[\frac{\delta(\zeta-\sigma_{1})^{\vartheta}}{\beta^{\vartheta}\Gamma(\vartheta+1)}+\frac{\delta^{2}(\zeta-\sigma_{1})^{2\vartheta}}{\beta^{2\vartheta}\Gamma(2\vartheta+1)}\bigg]+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta)+\big(\mathcal{I}_{\sigma_{1}^{+}}^{2\vartheta,\beta}\eta\big)(\zeta), \end{eqnarray*} |
if \delta > 0 and there is \mathfrak{d} -increasing mapping \Phi , we have
\begin{eqnarray*} &&(-1)\bigg(\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\ominus_{\mathfrak{g}H}\Phi^{2}(\zeta)\bigg)\nonumber\\&& = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\bigg[\frac{\delta(\zeta-\sigma_{1})^{\vartheta}}{\beta^{\vartheta}\Gamma(\vartheta+1)}+\frac{\delta^{2}(\zeta-\sigma_{1})^{2\vartheta}}{\beta^{2\vartheta}\Gamma(2\vartheta+1)}\bigg]+\big(\mathcal{I}_{\sigma_{1}^{+}}^{\vartheta,\beta}\eta\big)(\zeta)+\big(\mathcal{I}_{\sigma_{1}^{+}}^{2\vartheta,\beta}\eta\big)(\zeta), \end{eqnarray*} |
and there is \delta < 0, \, and\, \mathfrak{d} -increasing mapping \Phi. So, continuing inductively and in the limiting case, when n\rightarrow \infty, we attain the solution
\begin{eqnarray*} &&\Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\sum\limits_{l = 1}^{\infty}\frac{\delta^{l}(\zeta-\sigma_{1})^{l\vartheta}}{\beta^{l\vartheta}\Gamma(l\vartheta+1)}+\int\limits_{\sigma_{1}}^{\zeta}\sum\limits_{l = 1}^{\infty}\frac{\delta^{l-1}(\zeta-\sigma_{1})^{l\vartheta}-1}{\beta^{l\vartheta-1}\Gamma(l\vartheta)}\eta(\nu)d\nu\nonumber\\&& = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\sum\limits_{l = 1}^{\infty}\frac{\delta^{l}(\zeta-\sigma_{1})^{l\vartheta}}{\beta^{l\vartheta}\Gamma(l\vartheta+1)}+\int\limits_{\sigma_{1}}^{\zeta}\sum\limits_{l = 0}^{\infty}\frac{\delta^{l}(\zeta-\sigma_{1})^{l\vartheta+(\vartheta-1)}}{\beta^{l\vartheta}+(\vartheta-1)\Gamma(l\vartheta+\vartheta)}\eta(\nu)d\nu\nonumber\\&& = \sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})\sum\limits_{l = 1}^{\infty}\frac{\delta^{l}(\zeta-\sigma_{1})^{l\vartheta}}{\beta^{l\vartheta}\Gamma(l\vartheta+1)}+\frac{1}{\beta^{\vartheta-1}}\int\limits_{\sigma_{1}}^{\zeta}(\zeta-\sigma_{1})^{\vartheta-1}\sum\limits_{l = 0}^{\infty}\frac{\delta^{l}(\zeta-\sigma_{1})^{l\vartheta}}{\beta^{l\vartheta}\Gamma(l\vartheta+\vartheta)}\eta(\nu)d\nu, \end{eqnarray*} |
for every \delta > 0 and \Phi is \mathfrak{d} -increasing, or \delta < 0 and \Phi is \mathfrak{d} -decreasing, accordingly. Therefore, by means of Mittag-Leffler function \mathcal{E}_{\vartheta, \mathfrak{q}}(\Phi) = \sum\limits_{l = 1}^{\infty}\frac{\Phi^{\kappa}}{\Gamma(l\vartheta+\mathfrak{q})}, \, \vartheta, \mathfrak{q} > 0, the solution of problem (3.12) is expressed by
\begin{eqnarray*} &&\Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = {\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}\mathcal{E}_{\vartheta,1}\Big({\delta(\zeta-\sigma_{1})^{\vartheta}}\Big)+\frac{1}{\beta^{\vartheta-1}}\int\limits_{\sigma_{1}}^{\zeta}(\zeta-\sigma_{1})^{\vartheta-1}\mathcal{E}_{\vartheta,\vartheta}\Big({\delta(\zeta-\sigma_{1})^{\vartheta}}\Big)\eta(\nu)d\nu, \end{eqnarray*} |
for every of \delta > 0 and \Phi is \mathfrak{d} -increasing. Alternately, if \delta < 0 and \Phi is \mathfrak{d} -decreasing, then we get the solution of problem (3.12)
\begin{eqnarray*} &&\Phi(\zeta)\ominus_{\mathfrak{g}H}\frac{\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}{\beta^{\gamma}\Gamma(\gamma)}e^{\frac{\beta-1}{\beta}(\zeta-\sigma_{1})}(\zeta-\sigma_{1})^{\gamma-1}\nonumber\\&& = {\sum\limits_{j = 1}^{m}R_{j}\Phi(\zeta_{j})}\mathcal{E}_{\vartheta,1}\Big({\delta(\zeta-\sigma_{1})^{\vartheta}}\Big)\ominus(-1)\frac{1}{\beta^{\vartheta-1}}\int\limits_{\sigma_{1}}^{\zeta}(\zeta-\sigma_{1})^{\vartheta-1}\mathcal{E}_{\vartheta,\vartheta}\Big({\delta(\zeta-\sigma_{1})^{\vartheta}}\Big)\eta(\nu)d\nu. \end{eqnarray*} |
Consider IVP
\begin{equation} \begin{cases} \big(\,_{\mathfrak{g}H}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\beta}\Phi\big)(\zeta) = \mathcal{F}\big(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)\big),\quad\quad \zeta\in[\zeta_{0},\mathcal{T}]\\\Phi(\zeta_{0}) = \Phi_{0}\in\mathfrak{E}, \end{cases} \end{equation} | (4.1) |
where \beta\in(0, 1] and \vartheta\in(0, 1) is a real number and the operation _{\mathfrak{g}H}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta} denote the \mathcal{GPF} derivative of order \vartheta, \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} is continuous in \zeta which fulfills certain supposition that will be determined later, and
\begin{eqnarray} \mathcal{H}_{1}\Phi(\zeta) = \int\limits_{\zeta_{0}}^{\zeta}\mathcal{H}_{1}(\zeta,s)\Phi(s)ds,\quad\quad\quad\mathcal{H}_{2}\Phi(\zeta) = \int\limits_{\zeta_{0}}^{\mathcal{T}}\mathcal{H}_{2}(\zeta,s)\Phi(s)ds, \end{eqnarray} | (4.2) |
with \mathcal{H}_{1}, \mathcal{H}_{2}:[\zeta_{0}, \mathcal{T}]\times[\zeta_{0}, \mathcal{T}]\rightarrow \mathbb{R} such that
\begin{eqnarray*} \mathcal{H}_{1}^{*} = \sup\limits_{\zeta\in[\zeta_{0},\mathcal{T}]}\int\limits_{\zeta_{0}}^{\zeta}\vert\mathcal{H}_{1}(\zeta,s)\vert ds,\quad\quad\quad\mathcal{H}_{2}^{*} = \sup\limits_{\zeta\in[\zeta_{0},\mathcal{T}]}\int\limits_{\zeta_{0}}^{\mathcal{T}}\vert\mathcal{H}_{2}(\zeta,s)\vert ds. \end{eqnarray*} |
Now, we investigate the existence and uniqueness of the solution of problem (4.1). To establish the main consequences, we require the following necessary results.
Theorem 4.1. Let \mathcal{F}:[\sigma_{1}, \sigma_{2}]\rightarrow \mathfrak{E} be a fuzzy-valued function on [\sigma_{1}, \sigma_{2}]. Then
(i) \mathcal{F} is [(i)-\mathfrak{g}H] -differentiable at c\in[\sigma_{1}, \sigma_{2}] iff \mathcal{F} is \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable at c.
(ii) \mathcal{F} is [(ii)-\mathfrak{g}H] -differentiable at c\in[\sigma_{1}, \sigma_{2}] iff \mathcal{F} is \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable at c.
Proof. In view of Definition 2.18 and Definition 2.11, the proof is straightforward.
Lemma 4.2. ([44]) Let there be a fuzzy valued mapping \mathcal{F}:[\zeta_{0}, \mathcal{T}]\rightarrow \mathfrak{E} such that \mathcal{F}^{\prime}_{\mathfrak{g}H}\in\mathfrak{E}\cap\chi_{c}^{r}(\sigma_{1}, \sigma_{2}), then
\begin{eqnarray} \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\big(\,_{\mathfrak{g}H}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\beta}\mathcal{F}\big)(\zeta) = \mathcal{F}(\zeta)\ominus_{\mathfrak{g}H}\mathcal{F}(\zeta_{0}). \end{eqnarray} | (4.3) |
Lemma 4.3. The IVP (4.1) is analogous to subsequent equation
\begin{eqnarray} \Phi(\zeta) = \Phi_{0}+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu, \end{eqnarray} | (4.4) |
if \Phi(\zeta) be \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable,
\begin{eqnarray} \Phi(\zeta) = \Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu, \end{eqnarray} | (4.5) |
if \Phi(\zeta) be \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable, and
\begin{eqnarray} \Phi(\zeta) = \begin{cases} \Phi_{0}+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu,\quad\zeta\in[\sigma_{1},\sigma_{3}],\\ \Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu,\quad\zeta\in[\sigma_{3},\sigma_{2}], \end{cases} \end{eqnarray} | (4.6) |
if there exists a point \sigma_{3}\in(\sigma_{1}, \sigma_{2}) such that \Phi(\zeta) is \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable on [\sigma_{1}, \sigma_{3}] and \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable on [\sigma_{3}, \sigma_{2}] and \mathcal{F}(\sigma_{3}, \Phi(\sigma_{3}, \Phi(\sigma_{3}), \mathcal{H}_{1}\Phi(\sigma_{3}))\in\mathbb{R}.
Proof. By means of the integral operator (2.6) on both sides of (4.1), yields
\begin{eqnarray} \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\big(\,_{\mathfrak{g}H}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\beta}\Phi(\zeta)\big) = \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\big(\mathcal{F}(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)\big). \end{eqnarray} | (4.7) |
Utilizing Lemma 4.2 and Definition 2.6, we gat
\begin{eqnarray} \Phi(\zeta)\ominus_{\mathfrak{g}H}\Phi_{0} = \frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu. \end{eqnarray} | (4.8) |
In view of Defnition 2.17 and Theorem 4.1, if \Phi(\zeta) be \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable,
\begin{eqnarray} \Phi(\zeta) = \Phi_{0}+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu \end{eqnarray} | (4.9) |
and if \Phi(\zeta) be \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable
\begin{eqnarray} \Phi(\zeta) = \Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu. \end{eqnarray} | (4.10) |
In addition, when we have a switchpoint \sigma_{3}\in(\sigma_{1}, \sigma_{2}) of type (I) the \, ^{GPF}[\mathfrak{g}H] -differentiability changes from type (I) to type (II) at \zeta = \sigma_{3}. Then by (4.9) and (4.10) and Definition 2.12, The proof is easy to comprehend.
Also, we proceed with the following assumptions:
({\mathbb{A}_{1}}). \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} is continuous and there exist positive real functions \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3} such that
\begin{eqnarray*} &&\bar{\mathcal{D}_{0}}\Big(\mathcal{F}(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)),\mathcal{F}(\zeta,\Psi(\zeta),\mathcal{H}_{1}\Psi(\zeta),\mathcal{H}_{2}\Psi(\zeta))\Big)\nonumber\\&&\leq\mathcal{L}_{1}(\zeta)\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{L}_{2}(\zeta)\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)+\mathcal{L}_{3}(\zeta)\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi). \end{eqnarray*} |
({\mathbb{A}_{2}}). There exist a number \epsilon such that \delta\leq\epsilon < 1, \, \zeta\in[\zeta_{0}, \mathcal{T}]
\delta = \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*}) |
and
\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P} = \sup\limits_{\zeta\in[0,\mathcal{T}]}\big\{\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{1},\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{2},\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{3}\big\}. |
Theorem 4.4. Let \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} be a bounded continuous functions and holds (\mathbb{A}_{1}). Then the IVP (4.1) has a unique solution which is \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable on [\zeta_{0}, \mathcal{T}], given that \delta < 1, where \delta is given in (\mathbb{A}_{2}).
Proof. Assuming \Phi(\zeta) is \, ^{GPF}[(i)-\mathfrak{g}H] -differentiability and \Phi_{0}\in\mathfrak{E} be fixed. Propose a mapping \mathfrak{F}:\mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E})\rightarrow \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) by
\begin{eqnarray} \big(\mathfrak{F}\Phi\big)(\zeta) = \Phi_{0}+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu,\quad for\,all\,\zeta\in[\zeta_{0},\mathcal{T}]. \end{eqnarray} | (4.11) |
Next we prove that \mathfrak{F} is contraction. For \Phi, \Psi\in\mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) by considering of (\mathbb{A}_{1}) and by distance properties (2.3), one has
\begin{eqnarray} &&\bar{\mathcal{D}_{0}}\big(\mathfrak{F}\Phi(\zeta),\mathfrak{F}\Psi(\zeta)\big)\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert \bar{\mathcal{D}_{0}}\big(\mathcal{F}(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)),\mathcal{F}(\zeta,\Psi(\zeta),\mathcal{H}_{1}\Psi(\zeta),\mathcal{H}_{2}\Psi(\zeta))\Big)d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\big[\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)+\mathcal{L}_{3}\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi) \big]d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)d\nu+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi)d\nu. \end{eqnarray} | (4.12) |
Now, we find that
\begin{eqnarray} &&\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\Big(\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\Phi,\Psi)\int\limits_{\zeta_{0}}^{\nu}\vert\mathcal{H}_{1}(\nu,x)\vert dx \Big)d\nu\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{2}\mathcal{H}_{1}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi). \end{eqnarray} | (4.13) |
Analogously,
\begin{eqnarray} &&\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi)d\nu\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{3}\mathcal{H}_{1}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi),\\ &&\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)d\nu = \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi). \end{eqnarray} | (4.14) |
Then we have
\begin{eqnarray} \bar{\mathcal{D}_{0}}\big(\mathfrak{F}\Phi,\mathfrak{F}\Psi\big)&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{2}\mathcal{H}_{1}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{3}\mathcal{H}_{2}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi)\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})\bar{\mathcal{D}_{0}}(\Phi,\Psi)\\&& < \bar{\mathcal{D}_{0}}(\Phi,\Psi). \end{eqnarray} | (4.15) |
Consequently, \mathfrak{F} is a contraction mapping on \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) having a fixed point \mathfrak{F}\Phi(\zeta) = \Phi(\zeta). Henceforth, the IVP (4.1) has unique solution.
Theorem 4.5. For \beta\in(0, 1] and let \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} be a bounded continuous functions and satisfies (\mathbb{A}_{1}). Let the sequence \Phi_{n}:[\zeta_{0}, \mathcal{T}]\rightarrow \mathfrak{E} is given by
\begin{eqnarray} \Phi_{n+1}(\zeta)&& = \Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi_{n}(\nu),\mathcal{H}_{1}\Phi_{n}(\nu),\mathcal{H}_{2}\Phi_{n}(\nu)\big)d\nu,\quad\\ \Phi_{0}(\zeta)&& = \Phi_{0}, \end{eqnarray} | (4.16) |
is described for any n\in\mathbb{N}. Then the sequence \{\Phi_{n}\} converges to fixed point of problem (4.1) which is \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable on [\zeta_{0}, \mathcal{T}], given that \delta < 1, where \delta is defined in (\mathbb{A}_{2}).
Proof. We now prove that the sequence \{\Phi_{n}\} , given in (4.16), is a Cauchy sequence in \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}). To do just that, we'll require
\begin{eqnarray} \bar{\mathcal{D}_{0}}(\Phi_{1},\Phi_{0})&& = \bar{\mathcal{D}_{0}}\bigg(\Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi_{0}(\nu),\mathcal{H}_{1}\Phi_{0}(\nu),\mathcal{H}_{2}\Phi_{0}(\nu)\big)d\nu,\Phi_{0}\bigg)\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\bar{\mathcal{D}_{0}}\Big(\mathcal{F}\big(\nu,\Phi_{0}(\nu),\mathcal{H}_{1}\Phi_{0}(\nu),\mathcal{H}_{2}\Phi_{0}(\nu)\big), \hat{0}\Big)d\nu\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{M}, \end{eqnarray} | (4.17) |
where \mathcal{M} = \sup_{\zeta\in[\zeta_{0}, \mathcal{T}]}\bar{\mathcal{D}_{0}}\big(\mathcal{F}(\zeta, \Phi, \mathcal{H}_{1}\Phi, \mathcal{H}_{2}\Phi), \hat{0}\big).
Since \mathcal{F} is Lipschitz continuous, In view of Definition (2.3), we show that
\begin{eqnarray} &&\bar{\mathcal{D}_{0}}(\Phi_{n+1},\Phi_{n})\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert \bar{\mathcal{D}_{0}}\big(\mathcal{F}\big(\nu,\Phi_{n}(\nu),\mathcal{H}_{1}\Phi_{n}(\nu),\mathcal{H}_{2}\Phi_{n}(\nu)\big),\mathcal{F}\big(\nu,\Phi_{n-1}(\nu),\mathcal{H}_{1}\Phi_{n-1}(\nu),\mathcal{H}_{2}\Phi_{n-1}(\nu)\big)\Big)d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}.\bar{\mathcal{D}_{0}}\big(\Phi_{n},\Phi_{n-1}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{1}\Phi_{n},\mathcal{H}_{1}\Phi_{n-1}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{2}\Phi_{n},\mathcal{H}_{2}\Phi_{n-1}\big)d\nu\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})\bar{\mathcal{D}_{0}}(\Phi_{n},\Phi_{n-1})\leq\delta \bar{\mathcal{D}_{0}}(\Phi_{n},\Phi_{n-1})\leq\delta^{n}\bar{\mathcal{D}_{0}}(\Phi_{1},\Phi_{0})\leq\delta^{n}\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{M}. \end{eqnarray} | (4.18) |
Since \delta < 1 promises that the sequence \{\Phi_{n}\} is a Cauchy sequence in \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}). Consequently, there exist \Phi\in\mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) such that \{\Phi_{n}\} converges to \Phi. Thus, we need to illustrate that \Phi is a solution of the problem (4.1).
\begin{eqnarray} &&\bar{\mathcal{D}}_{0}\bigg(\Phi(\zeta)+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu, \Phi_{0}\bigg)\\&& = \bar{\mathcal{D}}_{0}\bigg(\Phi(\zeta)+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu, \Phi_{n+1}\\&&\quad+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi_{n}(\nu),\mathcal{H}_{1}\Phi_{n}(\nu),\mathcal{H}_{2}\Phi_{n}(\nu)\big)d\nu\bigg)\\&&\leq \bar{\mathcal{D}_{0}}\big(\Phi(\zeta),\Phi_{n+1}\big)+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}.\bar{\mathcal{D}_{0}}\big(\Phi(\nu),\Phi_{n}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{1}\Phi_{n}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{2}\Phi(\nu),\mathcal{H}_{2}\Phi_{n}\big)d\nu\\&&\leq \bar{\mathcal{D}_{0}}\big(\Phi(\zeta),\Phi_{n+1}\big)+\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})\bar{\mathcal{D}_{0}}(\Phi(\zeta),\Phi_{n}). \end{eqnarray} | (4.19) |
In the limiting case, when n\rightarrow \infty. Thus we have
\begin{eqnarray} \Phi(\zeta)+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu = \Phi_{0}. \end{eqnarray} | (4.20) |
By Lemma 4.3, we prove that \Phi is a solution of the problem (4.1). In order to prove the uniqness of \Phi(\zeta), let \Psi(\zeta) be another solution of problem (4.1) on [\zeta_{0}, \mathcal{T}]. Utilizing Lemma 4.3, gets
\begin{eqnarray*} \bar{\mathcal{D}_{0}}(\Phi,\Psi)\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert \bar{\mathcal{D}}_{0}\bigg(\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu),\mathcal{F}\big(\nu,\Psi(\nu),\mathcal{H}_{1}\Psi(\nu),\mathcal{H}_{2}\Psi(\nu)\big)\bigg)d\nu. \end{eqnarray*} |
Analogously, by employing the distance properties \bar{\mathcal{D}}_{0} and Lipschitiz continuity of \mathcal{F}, consequently, we deduce that (1-\delta)\bar{\mathcal{D}_{0}}(\Phi, \Psi)\leq0, since \delta < 1, we have \Phi(\zeta) = \Psi(\zeta) for all \zeta\in[\zeta_{0}, \mathcal{T}]. Hence, the proof is completed.
Example 4.6. Suppose the Cauchy problem by means of differential operator (2.4)
\begin{eqnarray} \mathcal{D}_{z}^{\vartheta,\beta}\Phi(z) = \mathcal{F}(z,\Phi(z)), \end{eqnarray} | (4.21) |
where \mathcal{F}(z, \Phi(z)) is analytic in \Phi and \Phi(z) is analytic in the unit disk. Therefore, \mathcal{F} can be written as
\begin{eqnarray*} \mathcal{F}(z,\Phi) = \varphi \Phi(z). \end{eqnarray*} |
Consider \mathcal{Z} = z^{\vartheta}. Then the solution can be formulated as follows:
\begin{eqnarray} \Phi(\mathcal{Z}) = \sum\limits_{j = 0}^{\infty}\Phi_{j}\mathcal{Z}^{j}, \end{eqnarray} | (4.22) |
where \Phi_{j} are constants. Putting (4.22) in (4.21), yields
\begin{eqnarray*} \frac{\partial}{\partial z}\sum\limits_{j = 0}^{\infty}\Upsilon_{\vartheta,\beta,j}\Phi_{j}\mathcal{Z}^{j}-\varphi\sum\limits_{j = 0}^{\infty}\Phi_{j}\mathcal{Z}^{j} = 0. \end{eqnarray*} |
Since
\begin{eqnarray*} \Upsilon_{\vartheta,\beta,j} = \frac{\beta^{\vartheta}\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}{j\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}, \end{eqnarray*} |
then the simple computations gives the expression
\begin{eqnarray*} \frac{\beta^{\vartheta}\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}{\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}\Phi_{j}-\varphi\Phi_{j-1} = 0. \end{eqnarray*} |
Consequently, we get
\begin{eqnarray*} \Phi_{j} = \Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}. \end{eqnarray*} |
Therefore, we have the subsequent solution
\begin{eqnarray*} \Phi(\mathcal{Z}) = \sum\limits_{j = 0}^{\infty}\Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}\mathcal{Z}^{j}, \end{eqnarray*} |
or equivalently
\begin{eqnarray*} \Phi(\mathcal{Z}) = \sum\limits_{j = 0}^{\infty}\Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma(j+1)\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}\frac{\mathcal{Z}^{j}}{j!}, \end{eqnarray*} |
where \varphi is assumed to be arbitrary constant, we take
\varphi: = \beta^{\vartheta}. |
Therefore, for appropriate \vartheta, we have
\begin{eqnarray*} \Phi(\mathcal{Z})&& = \sum\limits_{j = 0}^{\infty}\Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma(j+1)\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}\frac{\mathcal{Z}^{j}}{j!}\nonumber\\&& = \,_{3}\Psi_{2}\begin{bmatrix} (1,1),\Big(1-\vartheta-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta}\Big),\Big(1-\vartheta,\frac{\vartheta}{\beta}\Big);\\\qquad\qquad\qquad\quad\quad\quad\quad\quad\qquad\qquad\qquad\qquad\mathcal{Z}\\\Big(1-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta},\Big),\Big(1,\frac{\vartheta}{\beta}\Big); \end{bmatrix}\nonumber\\&& = \,_{3}\Psi_{2}\begin{bmatrix} (1,1),\Big(1-\vartheta-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta}\Big),\Big(1-\vartheta,\frac{\vartheta}{\beta}\Big);\\\qquad\qquad\qquad\quad\quad\quad\quad\quad\qquad\qquad\qquad\qquad z^{\vartheta\beta}\\\Big(1-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta},\Big),\Big(1,\frac{\vartheta}{\beta}\Big); \end{bmatrix}, \end{eqnarray*} |
where \vert z\vert < 1.
The present investigation deal with an IVP for \mathcal{GPF} fuzzy FDEs and we employ a new scheme of successive approximations under generalized Lipschitz condition to obtain the existence and uniqueness consequences of the solution to the specified problem. Furthermore, another method to discover exact solutions of \mathcal{GPF} fuzzy FDEs by utilizing the solutions of integer order differential equations is considered. Additionally, the existence consequences for \mathcal{FVFIDE}s under \mathcal{GPF} - \mathcal{HD} with fuzzy initial conditions are proposed. Also, the uniqueness of the so-called integrodifferential equations is verified. Meanwhile, we derived the equivalent integral forms of the original fuzzy \mathcal{FVFIDE}s whichis utilized to examine the convergence of these arrangements of conditions. Two examples enlightened the efficacy and preciseness of the fractional-order \mathcal{HD} and the other one presents the exact solution by means of the Fox-Wright function. For forthcoming mechanisms, we will relate the numerical strategies for the estimated solution of nonlinear fuzzy FDEs.
The authors would like to express their sincere thanks to the support of Taif University Researchers Supporting Project Number (TURSP-2020/217), Taif University, Taif, Saudi Arabia.
The authors declare that they have no competing interests.
[1] | R. E. Barlow, F. Proschan, Mathematical theory of reliability, SIAM, 1996. http://dx.doi.org/10.1016/0041-5553(66)90051-6 |
[2] |
A. Paul, G. Gutierrez, Mean sample spacings, sample size and variability in an auction-theoretic framework, Oper. Res. Lett., 32 (2004), 103–108. http://dx.doi.org/10.1016/S0167-6377(03)00071-3 doi: 10.1016/S0167-6377(03)00071-3
![]() |
[3] |
P. J. Boland, E. El-Neweihi, F. Proschan, Applications of the hazard rate ordering in reliability and order statistics, J. Appl. Probab., 31 (1994), 180–192. http://dx.doi.org/10.2307/3215245 doi: 10.2307/3215245
![]() |
[4] |
M. J. Raqab, W. A. Amin, Some ordering results on order statistics and record values, IAPQR Trans., 21 (1996), 1–8. http://dx.doi.org/10.1080/02331888.1996.10067832 doi: 10.1080/02331888.1996.10067832
![]() |
[5] |
S. Kochar, Stochastic comparisons of order statistics and spacings: A review, Int. Scholarly Res. Not., 2012 (2012), 839473. http://dx.doi.org/10.5402/2012/839473 doi: 10.5402/2012/839473
![]() |
[6] |
N. Balakrishnan, P. Zhao, Ordering properties of order statistics from heterogeneous populations: A review with an emphasis on some recent developments, Probab. Eng. Inform. Sc., 27 (2013), 403–443. http://dx.doi.org/10.1017/s0269964813000193 doi: 10.1017/s0269964813000193
![]() |
[7] |
R. Yan, G. Da, P. Zhao, Further results for parallel systems with two heterogeneous exponential components, Statistics, 47 (2013), 1128–1140. http://dx.doi.org/10.1080/02331888.2012.704632 doi: 10.1080/02331888.2012.704632
![]() |
[8] |
M. Mesfioui, M. Kayid, S. Izadkhah, Stochastic comparisons of order statistics from heterogeneous random variables with archimedean copula, Metrika, 80 (2017), 749–766. http://dx.doi.org/10.1007/s00184-017-0626-z doi: 10.1007/s00184-017-0626-z
![]() |
[9] |
N. K. Hazra, M. R. Kuiti, M. Finkelstein, A. K. Nanda, On stochastic comparisons of maximum order statistics from the location-scale family of distributions, J. Multivariate Anal., 160 (2017), 31–41. http://dx.doi.org/10.1016/j.jmva.2017.06.001 doi: 10.1016/j.jmva.2017.06.001
![]() |
[10] |
X. Cai, Y. Zhang, P. Zhao, Hazard rate ordering of the second-order statistics from multiple-outlier phr samples, Statistics, 51 (2017), 615–626. http://dx.doi.org/10.1080/02331888.2016.1265969 doi: 10.1080/02331888.2016.1265969
![]() |
[11] |
P. Zhao, L. Wang, Y. Zhang, On extreme order statistics from heterogeneous beta distributions with applications, Commun. Stat.-Theor. M., 46 (2017), 7020–7038. http://dx.doi.org/10.1080/03610926.2016.1143007 doi: 10.1080/03610926.2016.1143007
![]() |
[12] |
J. Zhang, R. Yan, Stochastic comparison at component level and system level series system with two proportional hazards rate components, J. Quant. Econ., 35 (2018), 91–95. http://dx.doi.org/10.1007/s40953-018-0108-3 doi: 10.1007/s40953-018-0108-3
![]() |
[13] |
J. Wang, R. Yan, B. Lu, Stochastic comparisons of parallel and series systems with type Ⅱ half logistic-resilience scale components, Mathematics, 8 (2020), 470. http://dx.doi.org/10.3390/math8040470 doi: 10.3390/math8040470
![]() |
[14] |
A. Panja, P. Kundu, B. Pradhan, Stochastic comparisons of lifetimes of series and parallel systems with dependent and heterogeneous components, Oper. Res. Lett., 49 (2021), 176–183. http://dx.doi.org/10.1016/j.orl.2021.02.005 doi: 10.1016/j.orl.2021.02.005
![]() |
[15] |
L. Liu, R. Yan, Orderings of extreme claim amounts from heterogeneous and dependent Weibull-G insurance portfolios, J. Math., 2022 (2022), 2768316. http://dx.doi.org/10.1155/2022/2768316 doi: 10.1155/2022/2768316
![]() |
[16] |
J. Zhang, R. Yan, J. Wang, Reliability optimization of parallel-series and series-parallel systems with statistically dependent components, Appl. Math. Model., 102 (2022), 618–639. http://dx.doi.org/10.1016/j.apm.2021.12.042 doi: 10.1016/j.apm.2021.12.042
![]() |
[17] |
S. Das, S. Kayal, N. Torrado, Ordering results between extreme order statistics in models with dependence defined by Archimedean [survival] copulas, Ric. Mat., 2022 (2022), 1–37. http://dx.doi.org/10.1007/s11587-022-00715-3 doi: 10.1007/s11587-022-00715-3
![]() |
[18] |
R. J. Samanta, S. Das, N. Balakrishnan, Orderings of extremes among dependent extended Weibull random variables, Probab. Eng. Inform. Sc., 2023 (2023), 1–28. http://dx.doi.org/10.1017/s026996482400007x doi: 10.1017/s026996482400007x
![]() |
[19] |
R. Yan, J. Niu, Stochastic comparisons of second-order statistics from dependent and heterogeneous modified proportional hazard rate observations, Statistics, 57 (2023), 328–353. http://dx.doi.org/10.1080/02331888.2023.2177999 doi: 10.1080/02331888.2023.2177999
![]() |
[20] |
J. Zhang, R. Yan, Y. Zhang, Reliability analysis of fail-safe systems with heterogeneous and dependent components subject to random shocks, Proc. I. Mech. Eng. Part, 237 (2023), 1073–1087. http://dx.doi.org/10.1177/1748006x221122033 doi: 10.1177/1748006x221122033
![]() |
[21] |
G. Barmalzan, A. A. Hosseinzadeh, N. Balakrishnan, Orderings and ageing of reliability systems with dependent components under Archimedean copulas, REVSTAT-Stat. J., 21 (2023), 197–217. http://dx.doi.org/10.57805/revstat.v21i2.404 doi: 10.57805/revstat.v21i2.404
![]() |
[22] |
B. Hawlader, P. Kundu, A. Kundu, Stochastic comparisons of lifetimes of fail-safe systems with dependent and heterogeneous components under random shocks, Statistics, 57 (2023), 694–709. http://dx.doi.org/10.1080/02331888.2023.2203926 doi: 10.1080/02331888.2023.2203926
![]() |
[23] |
H. Wang, W. Chen, B. Li, Large sample properties of maximum likelihood estimator using moving extremes ranked set sampling, J. Korean Stat. Soc., 53 (2024), 398–415. http://dx.doi.org/10.1007/s42952-023-00251-2 doi: 10.1007/s42952-023-00251-2
![]() |
[24] |
N. K. Hazra, G. Barmalzan, A. A. Hosseinzadeh, Ordering properties of the second smallest and the second largest order statistics from a general semiparametric family of distributions, Commun. Stat.-Theor. M., 53 (2024), 328–345. http://dx.doi.org/10.1080/03610926.2022.2077964 doi: 10.1080/03610926.2022.2077964
![]() |
[25] |
Z. Guo, J. Zhang, R. Yan, The residual lifetime of surviving components of coherent systems under periodical inspections, Mathematics, 8 (2020), 2181. http://dx.doi.org/10.3390/math8122181 doi: 10.3390/math8122181
![]() |
[26] |
G. Barmalzan, S. Kosari, A. A. Hosseinzadeh, N. Balakrishnan, Ordering fail-safe systems having dependent components with Archimedean copula and exponentiated location-scale distributions, Statistics, 56 (2022), 631–661. http://dx.doi.org/10.1080/02331888.2022.2061488 doi: 10.1080/02331888.2022.2061488
![]() |
[27] |
Z. Guo, J. Zhang, R. Yan, On inactivity times of failed components of coherent systems under double monitoring, Probab. Eng. Inform. Sc., 36 (2022), 923–940. http://dx.doi.org/10.1017/s0269964821000152 doi: 10.1017/s0269964821000152
![]() |
[28] |
B. Lu, J. Zhang, R. Yan, Optimal allocation of a coherent system with statistical dependent subsystems, Probab. Eng. Inform. Sc., 37 (2023), 29–48. http://dx.doi.org/10.1017/s0269964821000437 doi: 10.1017/s0269964821000437
![]() |
[29] |
N. Balakrishnan, G. Barmalzan, A. Haidari, Modified proportional hazard rates and proportional reversed hazard rates models via Marshall-Olkin distribution and some stochastic comparisons, J. Korean Stat. Soc., 47 (2018), 127–138. http://dx.doi.org/10.1016/j.jkss.2017.07.002 doi: 10.1016/j.jkss.2017.07.002
![]() |
[30] |
M. Zhang, B. Lu, R. Yan, Ordering results of extreme order statistics from dependent and heterogeneous modified proportional (reversed) hazard variables, AIMS Math., 6 (2021), 584–606. http://dx.doi.org/10.3934/math.2021036 doi: 10.3934/math.2021036
![]() |
[31] |
G. Barmalzan, N. Balakrishnan, S. M. Ayat, A. Akrami, Orderings of extremes dependent modified proportional hazard and modified proportional reversed hazard variables under Archimedean copula, Commun. Stat.-Theor. M., 50 (2021), 5358–5379. http://dx.doi.org/10.1080/03610926.2020.1728331 doi: 10.1080/03610926.2020.1728331
![]() |
[32] |
J. Zhang, R. Yan, Y. Zhang, Stochastic comparisons of largest claim amount from heterogeneous and dependent insurance portfolios, J. Comput. Appl. Math., 431 (2023), 115265. http://dx.doi.org/10.1016/j.cam.2023.115265 doi: 10.1016/j.cam.2023.115265
![]() |
[33] |
M. Shrahili, M. Kayid, M. Mesfioui, Relative orderings of modified proportional hazard rate and modified proportional reversed hazard rate models, Mathematics, 11 (2023), 4652. http://dx.doi.org/10.3390/math11224652 doi: 10.3390/math11224652
![]() |
[34] |
J. Zhang, Y. Zhang, Stochastic comparisons of revelation allocation policies in coherent systems, TEST, 2023 (2023), 1–43. http://dx.doi.org/10.1007/s11749-023-00855-0 doi: 10.1007/s11749-023-00855-0
![]() |
[35] |
M. Y. Guo, J. Zhang, Y. Zhang, P. Zhao, Optimal redundancy allocations for series systems under hierarchical dependence structures, Qual. Reliab. Eng. Int., 40 (2024), 1540–1565. http://dx.doi.org/10.1002/qre.3508 doi: 10.1002/qre.3508
![]() |
[36] |
G. Lv, R. Yan, J. Zhang, Usual stochastic orderings of the second-order statistics with dependent heterogeneous semi-parametric distribution random variables, Mathematics, 2024 (2024). http://dx.doi.org/10.48550/arXiv.2407.18801 doi: 10.48550/arXiv.2407.18801
![]() |
[37] |
E. A. Seresht, E. Nasiroleslami, N. Balakrishnan, Comparison of extreme order statistics from two sets of heterogeneous dependent random variables under random shocks, Metrika, 87 (2024), 133–153. http://dx.doi.org/10.1007/s00184-023-00905-5 doi: 10.1007/s00184-023-00905-5
![]() |
[38] |
H. Song, J. Zhang, R. Yan, Dispersive and star orders on extreme order statistics from location-scale samples, Chin. J. Appl. Probab. Stat., 2024 (2024), 1–15. http://dx.doi.org/10.1007/s11746-023-02547-6 doi: 10.1007/s11746-023-02547-6
![]() |
[39] |
J. Zhang, Y. Zhang, A copula-based approach on optimal allocation of hot standbys in series systems, Nav. Res. Logist., 69 (2022), 902–913. http://dx.doi.org/10.1002/nav.22055 doi: 10.1002/nav.22055
![]() |
[40] |
J. Zhang, Z. Guo, J. Niu, R. Yan, Increasing convex order of capital allocation with dependent assets under threshold model, Stat. Theory Relat. Fields, 2024 (2024), 1–12. http://dx.doi.org/10.1080/24754269.2023.2301630 doi: 10.1080/24754269.2023.2301630
![]() |
[41] |
M. Y. Guo, J. Zhang, R. Yan, Stochastic comparisons of second largest order statistics with dependent heterogeneous random variables, Commun. Stat.-Theor. M., 2024 (2024), 1–19. http://dx.doi.org/10.1080/03610926.2024.2392858 doi: 10.1080/03610926.2024.2392858
![]() |
[42] | A. Müller, D. Stoyan, Comparison methods for stochastic models and risks, 2002. http://dx.doi.org/10.1198/tech.2003.s176 |
[43] | M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007. |
[44] | A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, Academic Press, 1979. http://dx.doi.org/10.1017/s0269964812000113 |
[45] | R. B. Nelsen, An introduction to copulas, New York: Springer, 2006. |
1. | Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif, New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method, 2022, 7, 2473-6988, 2044, 10.3934/math.2022117 | |
2. | Saima Rashid, Rehana Ashraf, Zakia Hammouch, New generalized fuzzy transform computations for solving fractional partial differential equations arising in oceanography, 2023, 8, 24680133, 55, 10.1016/j.joes.2021.11.004 | |
3. | Saima Rashid, Rehana Ashraf, Ahmet Ocak Akdemir, Manar A. Alqudah, Thabet Abdeljawad, Mohamed S. Mohamed, Analytic Fuzzy Formulation of a Time-Fractional Fornberg–Whitham Model with Power and Mittag–Leffler Kernels, 2021, 5, 2504-3110, 113, 10.3390/fractalfract5030113 | |
4. | Saima Rashid, Rehana Ashraf, Fatimah S. Bayones, A Novel Treatment of Fuzzy Fractional Swift–Hohenberg Equation for a Hybrid Transform within the Fractional Derivative Operator, 2021, 5, 2504-3110, 209, 10.3390/fractalfract5040209 | |
5. | Saima Rashid, Sobia Sultana, Bushra Kanwal, Fahd Jarad, Aasma Khalid, Fuzzy fractional estimates of Swift-Hohenberg model obtained using the Atangana-Baleanu fractional derivative operator, 2022, 7, 2473-6988, 16067, 10.3934/math.2022880 | |
6. | Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Khadija Tul Kubra, Abdullah M. Alsharif, Initial boundary value problems for a multi-term time fractional diffusion equation with generalized fractional derivatives in time, 2021, 6, 2473-6988, 12114, 10.3934/math.2021703 | |
7. | Manar A. Alqudah, Rehana Ashraf, Saima Rashid, Jagdev Singh, Zakia Hammouch, Thabet Abdeljawad, Novel Numerical Investigations of Fuzzy Cauchy Reaction–Diffusion Models via Generalized Fuzzy Fractional Derivative Operators, 2021, 5, 2504-3110, 151, 10.3390/fractalfract5040151 | |
8. | Ravichandran VIVEK, Kangarajan K., Dvivek VİVEK, Elsayed ELSAYED, Dynamics and Stability of \Xi-Hilfer Fractional Fuzzy Differential Equations with Impulses, 2023, 6, 2651-4001, 115, 10.33434/cams.1257750 | |
9. | Saima Rashid, Fahd Jarad, Hind Alamri, New insights for the fuzzy fractional partial differential equations pertaining to Katugampola generalized Hukuhara differentiability in the frame of Caputo operator and fixed point technique, 2024, 15, 20904479, 102782, 10.1016/j.asej.2024.102782 |