
In this paper we consider the Laplace transform of the bivariate inactivity time. We show that a weak bivariate reversed hazard rate order is characterized by the Laplace transform of the bivariate inactivity times in two different frames. The results are used to characterize the weak bivariate reversed hazard rate order using the weak bivariate mean inactivity time order. The results are also used to characterize the decreasing bivariate reversed hazard rate property using the Laplace transform of the bivariate inactivity time.
Citation: Mansour Shrahili, Mohamed Kayid. Laplace transform ordering of bivariate inactivity times[J]. AIMS Mathematics, 2022, 7(7): 13208-13224. doi: 10.3934/math.2022728
[1] | Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921 |
[2] | Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439 |
[3] | Jin Li . Barycentric rational collocation method for fractional reaction-diffusion equation. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451 |
[4] | Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017 |
[5] | Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181 |
[6] | Qasem M. Tawhari . Mathematical analysis of time-fractional nonlinear Kuramoto-Sivashinsky equation. AIMS Mathematics, 2025, 10(4): 9237-9255. doi: 10.3934/math.2025424 |
[7] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[8] | Yangfang Deng, Zhifeng Weng . Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229 |
[9] | M. Mossa Al-Sawalha, Safyan Mukhtar, Albandari W. Alrowaily, Saleh Alshammari, Sherif. M. E. Ismaeel, S. A. El-Tantawy . Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(5): 12357-12374. doi: 10.3934/math.2024604 |
[10] | Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048 |
In this paper we consider the Laplace transform of the bivariate inactivity time. We show that a weak bivariate reversed hazard rate order is characterized by the Laplace transform of the bivariate inactivity times in two different frames. The results are used to characterize the weak bivariate reversed hazard rate order using the weak bivariate mean inactivity time order. The results are also used to characterize the decreasing bivariate reversed hazard rate property using the Laplace transform of the bivariate inactivity time.
Lots of physical phenomena can be expressed by non-linear partial differential equations (PDE), including, inter alia, dissipative and dispersive PDE. In this paper, we consider the Kuramoto-Sivashinsky (KS) equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=φ(s,t)0≤s≤1,0≤t≤T,γ>0, | (1.1) |
ϕ(0,t)=0,ϕ(1,t)=0,ϕss(0,t)=0,ϕss(1,t)=0,0<t<T, | (1.2) |
ϕ(s,0)=φ(s),0≤s≤1, | (1.3) |
where γ∈R is the constant.
The KS equation plays an important role in physics such as in diffusion, convection and so on. Lots of attention has been paid by researchers in recent years. An H1-Galerkin mixed finite element method for the KS equation was proposed in [1], lattice Boltzmann models for the Kuramoto-Sivashinsky equation were studied in [2], Backward difference formulae (BDF) methods for the KS equation were investigate in [3]. Stability regions and results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations were given in [4,5], respectively. In [6], an improvised quintic B-spline extrapolated collocation technique was used to solve the KS equation, and the stability of the technique was analyzed using the von Neumann scheme, which was found to be unconditionally stable. In [7], a septic Hermite collocation method (SHCM) was proposed to simulate the KS equation, and the nonlinear terms of the KS equation were linearized using the quasi-linearization process. In [8], a semidiscrete approach was presented to solve the variable-order (VO) time fractional 2D KS equation, and the differentiation operational matrices and the collocation technique were used to get a linear system of algebraic equations. In [9] the discrete Legendre polynomials (LPs) and the collocation scheme for nonlinear space-time fractional KdV-Burgers-Kuramoto equation were presented.
In order to avoid the Runge's phenomenon, barycentric interpolation [10,11,12] was developed. In recent years, linear rational interpolation (LRI) was proposed by Floater [13,14,15], and error of linear rational interpolation was also proved. The barycentric interpolation collocation method (BICM) has been developed by Wang et al.[22,23,24,25], and the algorithm of BICM has been used for linear/non-linear problems [21]. Volterra integro-differential equation (VIDE)[16,20], heat equation (HE) [17], biharmonic equation (BE) [18], the Kolmogorov-Petrovskii-Piskunov (KPP) equation [19], fractional differential equations [20], fractional reaction-diffusion equation [28], semi-infinite domain problems [27] and biharmonic equation [26], plane elastic problems [29] have been studied by the linear barycentric interpolation collocation method (LBICM), and their convergence rates also have been proved.
In order to solve the KS equation efficiently, the LBRIM is presented. Because the nonlinear part of the KS equation cannot be solved directly, three kinds of linearization methods, including direct linearization, partial linearization and Newton linearization, are presented. Then, the nonlinear part of the KS equation is translated into the linear part, three kinds of iterative schemes are presented, and matrix equation of the linearization schemes are constructed. The convergence rate of the LBRCM for the KS equation is also given. At last, two numerical examples are presented to validate the theoretical analysis.
In the following, the KS equation is changed into the linear equation by the linearization scheme, including direct linearization, partial linearization and Newton linearization.
For the Kuramoto-Sivashinskyr equation with the initial value of nonlinear term ϕ∂ϕ∂s is changed to ϕ0∂ϕ0∂s,
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ0∂ϕ0∂s=φ(s,t), | (2.1) |
and then we get the linear scheme as
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2=−ϕn−1∂ϕn−1∂s+φ(s,t),a≤s≤b,0≤t≤T. | (2.2) |
By the partial linearization, nonlinear term ϕ∂ϕ∂s is changed to ϕ0∂ϕ∂s,
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ0∂ϕ∂s=φ(s,t), | (2.3) |
and then we have
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2+ϕn−1∂ϕn∂s=φ(s,t),a≤s≤b,0≤t≤T. | (2.4) |
For the initial value ϕ∂ϕ∂s=ϕ0∂ϕ0∂s+(∂ϕ0∂s+ϕ0∂ϕ0∂s)(ϕ−ϕ0), we have
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ0∂s+ϕ0∂ϕ0∂sϕ=φ(s,t)+ϕ0∂ϕ0∂sϕ0, | (2.5) |
and then we have
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2+ϕn∂ϕn−1∂s+ϕn−1∂ϕn−1∂sϕn=φ(s,t)+ϕn−1∂ϕn−1∂sϕn−1, | (2.6) |
where n=1,2,⋯.
Interval [a,b] is divided into a=s0<s1<s2<⋯<sm−1<sm=b, for uniform partition with hs=b−am and nonuniform partition to be the second kind of Chebychev point. Time [0,T] is divided into 0=t0<t1<t2<⋯<tn−1<tn=T and ht=Tn for uniform partition. Then, we take ϕnm(s,t) to approximate ϕ(s,t) as
ϕnm(s,t)=m∑i=0n∑j=0ri(s)rj(t)ϕij | (3.1) |
where ϕij=ϕ(si,tj),
ri(s)=wis−sim∑j=0wjs−sj,rj(t)=wjt−tjn∑i=0wit−ti | (3.2) |
is the barycentric interpolation basis [26], and
wi=∑k∈Ji(−1)kk+ds∏j=k,j≠i1si−sj,wj=∑k∈Jj(−1)kk+dt∏i=k,k≠j1tj−ti | (3.3) |
where Ji={k∈I,i−ds≤k≤i},I={0,1,⋯,m−ds}. See [26]. We get the barycentric rational interpolation.
For the case
wi=1∏i≠k(si−sk),wj=1∏j≠k(tj−tk), | (3.4) |
we get the barycentric Lagrange interpolation.
So,
r′j(si)=wj/wisi−sj,j≠i,r′i(si)=−∑j≠ir′j(si), | (3.5) |
r(k)j(si)=k(r(k−1)i(si)r′i(sj)−r(k−1)i(sj)si−sj),j≠i, | (3.6) |
r(k)i(si)=−∑j≠ir(k)j(si). | (3.7) |
Then, we have
D(0,1)ij=r′i(tj), | (3.8) |
D(1,0)ij=r′i(sj), | (3.9) |
D(k,0)ij=r(k)i(sj),k=2,3,⋯. | (3.10) |
Combining (3.1) and (2.2), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In]ϕn=Ψ−diag(ϕn−1)D(1,0)⊗In⋅ϕn−1, | (3.11) |
and then we have
Lϕn=Ψn−1 | (3.12) |
where
L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In, |
Ψn−1=Ψ−diag(ϕn−1)D(1,0)⊗In⋅ϕn−1 |
and ⊗ is the Kronecher product [17].
Combining (3.1) and (2.4), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In]ϕn=Ψ, | (3.13) |
n=1,2,⋯, and then we have
Lϕ=Ψ | (3.14) |
where L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In.
Combining (3.1) and (2.6), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In]ϕn=Ψ+[diag(ϕn)−diag(ϕn−1)]D(1,0)⊗In⋅ϕn−1, | (3.15) |
and then we get
Lϕ=Ψn−1 | (3.16) |
where
L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In, |
and
Ψn−1=Ψ+[diag(ϕn)−diag(ϕn−1)]D(1,0)⊗In⋅ϕn−1. |
In this part, an error estimate of the KS equation is given with rn(s)=n∑i=0ri(s)ϕi to replace ϕ(s), where ri(s) is defined as (3.2), and ϕi=ϕ(si). We also define
e(s):=ϕ(s)−rn(s)=(s−si)⋯(s−si+d)ϕ[si,si+1,…,si+d,s]. | (4.1) |
Then, we have the following.
Lemma 1. For e(s) defined by (4.1) and ϕ(s)∈Cd+2[a,b], there is
|e(k)(s)|≤Chd−k+1,k=0,1,⋯. | (4.2) |
For KS equation, rational interpolation function of ϕ(s,t) is defined as rmn(s,t)
rmn(s,t)=m+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj)ϕi,jm+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj) | (4.3) |
where
wi,j=(−1)i−ds+j−dt∑k1∈Jik1+ds∏h1=k1,h1≠j1|si−sh1|∑k2∈Jik2+dt∏h2=k2,h2≠j1|tj−th2|. | (4.4) |
We define e(s,t) to be the error of ϕ(s,t) as
e(s,t):=ϕ(s,t)−rmn(s,t)=(s−si)⋯(s−si+ds)ϕ[si,si+1,…,si+d1,s,t]+(t−tj)⋯(t−tj+dt)ϕ[s,tj,tj+1,…,tj+d2,t]. | (4.5) |
With similar analysis of Lemma 1, we have the following
Theorem 1. For e(s,t) defined as (4.5) and ϕ(s,t)∈Cds+2[a,b]×Cdt+2[0,T], we have
|e(k1,k2)(s,t)|≤C(hds−k1+1s+hdt−k2+1t),k1,k2=0,1,⋯. | (4.6) |
We take the direct linearization of the KS equation as an example prove the convergence rate. Let ϕ(sm,tn) be the approximate function of ϕ(s,t) and L be a bounded operator. There holds
Lϕ(sm,tn)=φ(sm,tn), | (4.7) |
and
limm,n→∞ϕ(sm,tn)=ϕ(s,t). | (4.8) |
Then, we get the following
Theorem 2. For ϕ(sm,tn):Lϕ(sm,tn)=φ(s,t) and L defined as (4.7), there
|ϕ(s,t)−ϕ(sm,tn)|≤C(hds−3+τdt). |
Proof. As
Lϕ(s,t)−Lϕ(sm,tn)=∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2−ϕ0∂ϕ0∂s−φ(s,t)−[∂ϕ(sm,tn)∂t+γ∂4ϕ(sm,tn)∂s4+∂2ϕ(sm,tn)∂s2+ϕ0(sm,tn)∂ϕ0(sm,tn)∂s−φ(s,t)]=∂ϕ∂t−∂ϕ∂t(sm,tn)+γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)]+∂2ϕ∂s2−∂2ϕ∂s2(sm,tn)+[ϕ0∂ϕ0∂s−ϕ0(sm,tn)∂ϕ0∂s(sm,tn)]:=E1(s,t)+E2(s,t)+E3(s,t)+E4(s,t). | (4.9) |
Here,
E1(s,t)=∂ϕ∂t−∂ϕ∂t(sm,tn), |
E2(s,t)=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)], |
E3(s,t)=∂2ϕ∂s2−∂2ϕ∂s2(sm,tn), |
E4(s,t)=ϕ0∂ϕ0∂s−ϕ0(sm,tn)∂ϕ0∂s(sm,tn). |
With E2(s,t), we have
E2(s,t)=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)]=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,t)+∂4ϕ∂s4(sm,t)−∂4ϕ∂s4(sm,tn)]=m−ds∑i=0(−1)i∂4ϕ∂s4[si,si+1,…,si+d1,sm,t]m−ds∑i=0λi(s)+n−dt∑j=0(−1)j∂4ϕ∂s4[tj,tj+1,…,tj+d2,sm,tn]n−dt∑j=0λj(t)=∂4e∂s4(sm,t)+∂4e∂s4(sm,tn). |
For E2(s,t) we get
|E2(s,t)|≤|∂4e∂s4(sm,x)+∂4e∂s4(sm,tn)|≤C(hds−3+τdt+1). | (4.10) |
Then, we have
|E1(s,t)|≤|∂e∂t(sm,t)+∂e∂t(sm,tn)|≤C(hds+1+τdt). | (4.11) |
Similarly, for E3(s,t) we have
E3(s,t)=∂2ϕ∂s2(s,t)−∂2ϕ∂s2(sm,tn)=∂2e∂s2(s,tn)+∂2e∂s2(sm,tn), | (4.12) |
and
|E3(s,t)|≤|∂2e∂s2(s,tn)+∂2e∂s2(sm,tn)|≤C(hds−1+τdt+1). | (4.13) |
For E4(s,t) we get
|E4(s,t)|=|ϕ0∂ϕ∂s−ϕ0(sm,tn)∂ϕ∂s(sm,tn)|≤|∂e∂t(sm,t)+∂e∂t(sm,tn)|≤C(hds+1+τdt). | (4.14) |
Combining (4.9) and (4.11)–(4.14) together, the proof of Theorem 2 is completed.
All the examples are carried on a computer with Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz operating system, 16 G radon access running memory and a 512 G solid state disk memory. All simulation experiments were realized by the software Matlab (Version: R2016a). In this part, two examples are presented to test the theorem.
Example 1. Consider the KS equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=φ(s,t) |
with the condition is
ϕ(0,t)=0,ϕ(1,t)=0, |
and
ϕ(s,0)=sin(2πs). |
ϕss(0,t)=0,ϕss(1,t)=0, |
and
φ(s,t)=e−tsin(2πs)[2πe−tcos(2πs)−1+16π4−4π2]. |
The solution of the KS equation is
ϕ(s,t)=e−tsin(2πs). |
In Figures 1–3, errors of unform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented. In Figures 4–6, errors of non-uniform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented.
In Tables 1 and 2, errors of LBCM and LBRCM for the KS equation with boundary condition dealt with by the method of substitution and method of addition are given. From Table 1, we know that the accuracy of LBCM is higher than LBRCM, and from Table 2 the accuracy of the method of additional is higher than the method of substitution.
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
In Table 3, we choose the Newton linearization to solve the KS equation, and the error of LBRCM for uniform and nonuniform partitions are presented with t=0.3,0.9,2,4,8,16.
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
The errors of LBRCM of uniform and Chebyshev partitions are presented with (m,n,ds,dt)=(8,8,7,7),(16,16,15,15). From the table, comparing (m,n)=(8,8) with (m,n)=(16,16), the accuracy was higher when the number became bigger.
In the following table, we take Newton linearization to present numerical results. From Tables 4 and 5, with errors of Newton linearization for uniform partition dt=6;t=1 are given and convergence rate is O(hds). From Table 5, with space variable s,ds=6, and there is superconvergence rate O(hds−1) at t=1.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
For Tables 6 and 7, the errors of Chebyshev partition for Newton linearization with s and t are presented. For dt=6, the convergence rate is O(hds) in Table 6, while in Table 7, there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
Example 2. Consider the KS equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=0, |
with the analytic solution
ϕ(s,t)=c+15√1119√19[−3tanh√112√19(s−ct+s0)+tanh3√112√19(s−ct+s0)], |
and boundary condition
ϕ(−10,t)=c+15√1119√19[−3tanh√112√19(−10−ct+s0)+tanh3√112√19(−10−ct+s0)], |
ϕ(10,t)=c+15√1119√19[−3tanh√112√19(10−ct+s0)+tanh3√112√19(10−ct+s0)], |
and initial condition
ϕ(s,0)=c+15√1119√19[−3tanh√112√19(s+s0)+tanh3√112√19(s+s0)], |
with c=2,x0=10.
In Figures 7–9, errors of direct linearization, partial linearization, Newton linearization with m=n=19 KS equation are presented, respectively.
In the following table, direct linearization is chosen to present numerical results. From Tables 8 and 9, errors of direct linearization for uniform partition dt=7 with different ds are given and the convergence rate is O(hds−1). From Table 9, with space variable s,ds=7, and there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
For Tables 10 and 11, the errors of Chebyshev partition for direct linearization with s and t are presented. For dt=7, the convergence rate is O(hds) in Table 10, while in Table 11, there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |
In this paper, LBRCM is used to solve the (1+1) dimensional SK equation. Three kinds of linearization methods are taken to translate the nonlinear part into a linear part. Matrix equations of the discrete SK equation are obtained from corresponding linearization schemes. The convergence rate of LBRCM is also presented. In the future work, LBRCM can be developed for the (2+1) dimensional SK equation and other partial differential equations classes, including Kolmogorov-Petrovskii-Piskunov (KPP) equation and, fractional reaction-diffusion equation and so on.
The work of Jin Li was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003).
The authors also gratefully acknowledges the helpful comments and suggestions of the reviewers, which have improved the presentation.
The author declares no conflict of interest.
[1] |
I. A. Ahmad, M. Kayid, Characterizations of the RHR and MIT orderings and the DRHR and IMIT classes of life distributions, Prcbab. Eng. Inf. Sci., 19 (2005), 447–461. https://doi.org/10.1017/S026996480505028X doi: 10.1017/S026996480505028X
![]() |
[2] |
R. Ahmadi, Reliability and maintenance modeling for a load-sharing k-out-of-n system subject to hidden failures, Comput. Ind. Eng., 150 (2020), 106894. https://doi.org/10.1016/j.cie.2020.106894 doi: 10.1016/j.cie.2020.106894
![]() |
[3] |
H. Ahmed, M. Kayid, Preservation properties for the Laplace transform ordering of residual lives, Stat. Pap., 45 (2004), 583–590. https://doi.org/10.1007/BF02760570 doi: 10.1007/BF02760570
![]() |
[4] |
F. H. Al-Gashgari, A. I. Shawky, M. A. W. Mahmoud, A nonparametric test for testing exponentiality against NBUCA class of life distributions based on Laplace transform, Qual. Reliab. Eng. Int., 32 (2016), 29–36. https://doi.org/10.1002/qre.1723 doi: 10.1002/qre.1723
![]() |
[5] |
A. Alzaid, J. S. Kim, F. Proschan, Laplace ordering and its applications, J. Appl. Probab., 28 (1991), 116–130. https://doi.org/10.2307/3214745 doi: 10.2307/3214745
![]() |
[6] | P. Andersen, O. Borgan, R. Gill, N. Keiding, Statistical models based on counting processes, Springer Series in Statistics, 1991. https://doi.org/10.1007/978-1-4612-4348-9 |
[7] | H. W. Block, T. H. Savits, Burn-in, Stat. Sci., 12 (1997), 1–19. https://doi.org/10.1214/ss/1029963258 |
[8] |
F. Domma, Bivariate reversed hazard rate, notions, and measures of dependence and their relationships, Commun. Stat.-Theor. M., 40 (2011), 989–999. https://doi.org/10.1080/03610920903511777 doi: 10.1080/03610920903511777
![]() |
[9] |
A. Di Crescenzo, P. Di Gironimo, S. Kayal, Analysis of the past lifetime in a replacement model through stochastic comparisons and differential entropy, Mathematics, 8 (2020), 1203. https://doi.org/10.3390/math8081203 doi: 10.3390/math8081203
![]() |
[10] |
L. Eeckhoudt, C. Gollier, Demand for risky assets and the monotone probability ratio order, J. Risk Uncertain., 11 (1995), 113–122. https://doi.org/10.1007/BF01067680 doi: 10.1007/BF01067680
![]() |
[11] |
S. M. El-Arishy, L. S. Diab, E. S. El-Atfy, Characterizations on decreasing Laplace transform of time to failure class and hypotheses testing, Comput. Sci. Comput. Math., 10 (2020), 49–54. https://doi.org/10.20967/jcscm.2020.03.002 doi: 10.20967/jcscm.2020.03.002
![]() |
[12] | M. Finkelstein, On the reversed hazard rate, Reliab. Eng. Syst. Saf., 78 (2002), 71–75. https://doi.org/10.1016/S0951-8320(02)00113-8 |
[13] |
R. Gupta, A. K. Nanda, Some results on reversed hazard rate ordering, Commun. Stat.-Theor. M., 30 (2001), 2447–2457. https://doi.org10.1081/STA-100107697 doi: 10.1081/STA-100107697
![]() |
[14] | Z. Guo, J. Zhang, R. Yan, On inactivity times of failed components of coherent system under double monitoring, Prcbab. Eng. Inf. Sci., 2021, 1–18. https://doi.org/10.1017/S0269964821000152 |
[15] |
Y. Jia, J. H. Jeong, Cause-specific quantile regression on inactivity time, Stat. Med., 40 (2021), 1811–1824. https://doi.org/10.1002/sim.8871 doi: 10.1002/sim.8871
![]() |
[16] |
J. Jiang, Z. J. Zhou, X. X. Han, B. C. Zhang, X. D. Ling, A new BRB based method to establish hidden failure prognosis model by using life data and monitoring observation, Knowl. Based Syst., 67 (2014), 270–277. https://doi.org/10.1016/j.knosys.2014.04.045 doi: 10.1016/j.knosys.2014.04.045
![]() |
[17] | S. Karlin, Total positivity, Stanford University Press, 1968. |
[18] |
M. Kayid, I. A. Ahmad, On the mean inactivity time ordering with reliability applications, Prcbab. Eng. Inf. Sci., 18 (2004), 395–409. https://doi.org/10.1017/S0269964804183071 doi: 10.1017/S0269964804183071
![]() |
[19] |
M. Kayid, S. Izadkhah, Mean inactivity time function, associated orderings, and classes of life distributions, IEEE Trans. Reliab., 63 (2014), 593–602. https://doi.org/10.1109/TR.2014.2315954 doi: 10.1109/TR.2014.2315954
![]() |
[20] |
M. Kayid, S. Izadkhah, S. Alshami, Laplace transform ordering of time to failure in age replacement models, J. Korean Stat. Soc., 45 (2016), 101–113. https://doi.org/10.1016/j.jkss.2015.08.001 doi: 10.1016/j.jkss.2015.08.001
![]() |
[21] |
N. Keiding, R. Gill, Random truncation models and Markov processes, Ann. Stat., 18 (1990), 582–602. https://doi.org/10.1214/aos/1176347617 doi: 10.1214/aos/1176347617
![]() |
[22] |
N. Keiding, Age-specific incidence and prevalence: A statistical perspective, J. R. Stat. Soc. A Stat., 154 (1991), 371–412. https://doi.org/10.2307/2983150 doi: 10.2307/2983150
![]() |
[23] |
M. Kijima, M. Ohnishi, Stochastic orders and their applications in financial optimization, Math. Methods Oper. Res., 50 (1999), 351–372. https://doi.org/10.1007/s001860050102 doi: 10.1007/s001860050102
![]() |
[24] |
C. Li, X. Li, On stochastic dependence in residual lifetime and inactivity time with some applications, Stat. Probab. Lett., 177 (2021), 109120. https://doi.org/10.1016/j.spl.2021.109120 doi: 10.1016/j.spl.2021.109120
![]() |
[25] |
J. Mulero, F. Pellerey, Bivariate aging properties under Archimedean dependence structures, Commun. Stat.-Theor. M., 39 (2010), 3108–3121. https://doi.org/10.1080/03610920903199987 doi: 10.1080/03610920903199987
![]() |
[26] |
A. K. Nanda, Stochastic orders in terms of Laplace transforms, Bull. Calcutta Stat. Assoc., 45 (1995), 195–202. https://doi.org/10.1177/0008068319950306 doi: 10.1177/0008068319950306
![]() |
[27] |
A. K. Nanda, H. Singh, N. Misra, P. Paul, Reliability properties of reversed residual lifetime, Commun. Stat.-Theor. M., 32 (2003), 2031–2042. https://doi.org/10.1081/STA-120023264 doi: 10.1081/STA-120023264
![]() |
[28] |
E. M. Ortega, A note on some functional relationships involving the mean inactivity time order, IEEE Trans. Reliab., 58 (2008), 172–178. https://doi.org/10.1109/TR.2008.2006576 doi: 10.1109/TR.2008.2006576
![]() |
[29] |
A. Patra, C. Kundu, Further results on residual life and inactivity time at random time, Commun. Stat.-Theor. M., 49 (2020), 1261–1271. https://doi.org/10.1080/03610926.2018.1563170 doi: 10.1080/03610926.2018.1563170
![]() |
[30] |
J. M. Ruiz, J. Navarro, Characterizations based on conditional expectations of the double truncated distribution, Ann. Inst. Stat. Math., 48 (1996), 563–572. https://doi.org/10.1007/BF00050855 doi: 10.1007/BF00050855
![]() |
[31] |
E. Salehi, M. Tavangar, Stochastic comparisons on conditional residual lifetime and inactivity time of coherent systems with exchangeable components, Stat. Probab. Lett., 145 (2019), 327–337. https://doi.org/10.1016/j.spl.2018.10.007 doi: 10.1016/j.spl.2018.10.007
![]() |
[32] |
M. Shaked, T. Wong, Stochastic orders based on ratios of Laplace transforms, J. Appl. Probab., 34 (1997), 404–419. https://doi.org/10.2307/3215380 doi: 10.2307/3215380
![]() |
[33] | M. Shaked, J. G. Shanthikumar, Stochastic orders, Springer, New York, 2007. https://doi.org/10.1007/978-0-387-34675-5 |
[34] |
T. Tang, D. Lin, D. Banjevic, A. K. Jardine, Availability of a system subject to hidden failure inspected at constant intervals with non-negligible downtime due to inspection and downtime due to repair/replacement, J. Stat. Plan. Infer., 143 (2013), 176–185. https://doi.org/10.1016/j.jspi.2012.05.011 doi: 10.1016/j.jspi.2012.05.011
![]() |
[35] |
C. Tepedelenlioglu, A. Rajan, Y. Zhang, Applications of stochastic ordering to wireless communications, IEEE Trans. Wirel. Commun., 10 (2011), 4249–4257. https://doi.org/10.1109/TWC.2011.093011.110187 doi: 10.1109/TWC.2011.093011.110187
![]() |
[36] |
Y. Wang, H. Pham, A multi-objective optimization of imperfect preventive maintenance policy for dependent competing risk systems with hidden failure, IEEE Trans. Reliab., 60 (2011), 770–781. https://doi.org/10.1109/TR.2011.2167779 doi: 10.1109/TR.2011.2167779
![]() |
[37] |
Y. Zhang, Z. Sun, R. Qin, H. Xiong, Idle duration prediction for manufacturing system using a gaussian mixture model integrated neural network for energy efficiency improvement, IEEE Trans. Autom. Sci. Eng., 18 (2019), 47–55. https://doi.org/10.1109/TASE.2019.2938662 doi: 10.1109/TASE.2019.2938662
![]() |
1. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |