In this paper, we investigate stochastic comparisons of the second largest order statistics of homogeneous samples coupled by Archimedean copula, and we establish the reversed hazard rate and likelihood ratio orders, and we further generalize the corresponding results to the case of random sample size. Also, we derive some results for relative ageing between parallel systems and 2-out-of-n/2-out-of-(n+1) systems. Finally, some examples are given to illustrate the obtained results.
Citation: Bin Lu, Rongfang Yan. Ordering results of second order statistics from random and non-random number of random variables with Archimedean copulas[J]. AIMS Mathematics, 2021, 6(6): 6390-6405. doi: 10.3934/math.2021375
[1] | Lirong Huang, Jianqing Chen . Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28(1): 383-404. doi: 10.3934/era.2020022 |
[2] | Senli Liu, Haibo Chen . Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system. Electronic Research Archive, 2022, 30(6): 2138-2164. doi: 10.3934/era.2022108 |
[3] | Xiaoyong Qian, Jun Wang, Maochun Zhu . Existence of solutions for a coupled Schrödinger equations with critical exponent. Electronic Research Archive, 2022, 30(7): 2730-2747. doi: 10.3934/era.2022140 |
[4] | Jun Wang, Yanni Zhu, Kun Wang . Existence and asymptotical behavior of the ground state solution for the Choquard equation on lattice graphs. Electronic Research Archive, 2023, 31(2): 812-839. doi: 10.3934/era.2023041 |
[5] | Yixuan Wang, Xianjiu Huang . Ground states of Nehari-Pohožaev type for a quasilinear Schrödinger system with superlinear reaction. Electronic Research Archive, 2023, 31(4): 2071-2094. doi: 10.3934/era.2023106 |
[6] | Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189 |
[7] | Zhiyan Ding, Hichem Hajaiej . On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29(5): 3449-3469. doi: 10.3934/era.2021047 |
[8] | Li Cai, Fubao Zhang . The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, 2021, 29(3): 2475-2488. doi: 10.3934/era.2020125 |
[9] | Hui Guo, Tao Wang . A note on sign-changing solutions for the Schrödinger Poisson system. Electronic Research Archive, 2020, 28(1): 195-203. doi: 10.3934/era.2020013 |
[10] | Qihong Shi, Yaqian Jia, Xunyang Wang . Global solution in a weak energy class for Klein-Gordon-Schrödinger system. Electronic Research Archive, 2022, 30(2): 633-643. doi: 10.3934/era.2022033 |
In this paper, we investigate stochastic comparisons of the second largest order statistics of homogeneous samples coupled by Archimedean copula, and we establish the reversed hazard rate and likelihood ratio orders, and we further generalize the corresponding results to the case of random sample size. Also, we derive some results for relative ageing between parallel systems and 2-out-of-n/2-out-of-(n+1) systems. Finally, some examples are given to illustrate the obtained results.
In this paper, we study a class of Schrödinger-Poisson system with the following version
{−Δu+u+K(x)ϕu=|u|p−1u+μh(x)u in R3,−Δϕ=K(x)u2 in R3, | (1) |
where
{−Δu+u+ϕu=f(u) in R3,−Δϕ=u2 in R3, | (2) |
which has been derived from finding standing waves of the Schrödinger-Poisson system
{iψt−Δψ+ϕψ=f(ψ) in R3,−Δϕ=|ψ|2 in R3. |
A starting point of studying system (1) is the following fact. For any
ϕu(x)=14π∫R3K(y)|u(y)|2|x−y|dy |
such that
−Δu+u+K(x)ϕuu=|u|p−1u+μh(x)u,u∈H1(R3). | (3) |
Problem (3) can be also looked on as a usual semilinear elliptic equation with an additional nonlocal perturbation
From Lemma 2.1, we know that under the condition (A1), the following eigenvalue problem
−Δu+u=μh(x)u,u∈ H1(R3) |
has a first eigenvalue
F(u):=∫R3K(x)ϕu(x)|u(x)|2dx |
and introduce the energy functional
Iμ(u)=12‖u‖2+14F(u)−∫R3(1p+1|u|p+1+μ2h(x)u2)dx, |
where
⟨I′μ(u),v⟩=∫R3(∇u∇v+uv+K(x)ϕuuv−|u|p−1uv+μh(x)uv)dx. |
It is known that there is a one to one correspondence between solutions of (3) and critical points of
Theorem 1.1. Suppose that the assumptions of
The second result is about
Theorem 1.2. Under the assumptions of
The proofs of Theorem 1.1 and Theorem 1.2 are based on critical point theory. There are several difficulties in the road of getting critical points of
While for nonautonomous version of Schrödinger-Poisson system, only a few results are known in the literature. Jiang et.al.[21] have studied the following Schrödinger-Poisson system with non constant coefficient
{−Δu+(1+λg(x))u+θϕ(x)u=|u|p−2u in R3,−Δϕ=u2in R3,lim|x|→∞ϕ(x)=0, |
in which the authors prove the existence of ground state solution and its asymptotic behavior depending on
{−Δu+u+ϕu=V(x)|u|4u+μP(x)|u|q−2uin R3,−Δϕ=u2in R3,2<q<6,μ>0 |
has been studied by Zhao et al. [31]. Besides some other conditions, Zhao et. al. [31] assume that
{−Δu+u+L(x)ϕu=g(x,u) in R3,−Δϕ=L(x)u2 in R3. | (4) |
Besides some other conditions and the assumption
−Δu=a(x)|u|p−2u+˜μk(x)u, in RN, | (5) |
Costa et.al.[14] have proven the mountain pass geometry for the related functional of (5) when
This paper is organized as follows. In Section 2, we give some preliminaries. Special attentions are focused on several lemmas analyzing the Palais-Smale conditions of the functional
Notations. Throughout this paper,
Sp+1=infu∈H1(R3)∖{0}∫R3(|∇u|2+|u|2)dx(∫R3|u|p+1dx)2p+1. |
For any
In this section, we give some preliminary lemmas, which will be helpful to analyze the (PS) conditions for the functional
Lu(v)=∫R3K(x)u2vdx,v∈D1,2(R3), |
one may deduce from the Hölder and the Sobolev inequalities that
|Lu(v)|≤C‖u‖2L125‖v‖L6≤C‖u‖2L125‖v‖D1,2. | (6) |
Hence, for any
ϕu(x)=14π∫R3K(y)u2(y)|x−y|dy. |
Clearly
‖ϕu‖2D1,2=∫R3|∇ϕu|2dx=∫R3K(x)ϕuu2dx. | (7) |
Using (6) and (7), we obtain that
‖ϕu‖L6≤C‖ϕu‖D1,2≤C‖u‖2L125≤C‖u‖2. | (8) |
Then we deduce that
∫R3K(x)ϕu(x)u2(x)dx≤C‖u‖4. | (9) |
Hence on
F(u)=∫R3K(x)ϕu(x)u2(x)dx | (10) |
and
Iμ(u)=12‖u‖2+14F(u)−∫R3(1p+1|u|p+1+μ2h(x)u2)dx | (11) |
are well defined and
⟨I′μ(u),v⟩=∫R3(∇u∇v+uv+K(x)ϕuuv−|u|p−1uv−μh(x)uv)dx. |
The following Lemma 2.1 is a direct consequence of [28,Lemma 2.13].
Lemma 2.1. Assume that the hypothesis
Using the spectral theory of compact symmetric operators on Hilbert space, the above lemma implies the existence of a sequence of eigenvalues
−Δu+u=μh(x)u,inH1(R3) |
with
μ1=infu∈H1(R3)∖{0}‖u‖2∫R3h(x)u2dx,μn=infu∈S⊥n−1∖{0}‖u‖2∫R3h(x)u2dx, |
where
Next we analyze the
Definition 2.2. For
Lemma 2.3. Let
Proof. For
d+1+o(1)‖un‖=Iμ(un)−14⟨I′μ(un),un⟩=14‖un‖2−μ4∫R3h(x)u2ndx+p−34(p+1)∫R3|un|p+1dx. | (12) |
Note that
∫R3h(x)u2ndx≤(∫R3|un|p+1dx)2p+1(∫R3|h(x)|p+1p−1dx)p−1p+1≤2ϑp+1∫R3|un|p+1dx+p−1p+1ϑ−2p−1∫R3|h(x)|p+1p−1dx. |
Choosing
d+1+o(1)‖un‖≥14‖un‖2−D(p,h)μp+1p−1, | (13) |
where
The following lemma is a variant of Brezis-Lieb lemma. One may find the proof in [20].
Lemma 2.4. [20] If a sequence
limn→∞F(un)=F(u0)+limn→∞F(un−u0). |
Lemma 2.5. There is a
Iμ(u)>−p−12(p+1)Sp+1p−1p+1. |
Proof. Since
Iμ(u)=12(‖u‖2−μ∫R3h(x)u2dx)+14F(u)−1p+1∫R3|u|p+1dx=p−12(p+1)(‖u‖2−μ∫R3h(x)u2dx)+p−34(p+1)F(u). |
Noticing that
Iμ1(u)≥p−34(p+1)F(u)>0. |
Next, we claim: there is a
Iμ(u)>−p−12(p+1)Sp+1p−1p+1. |
Suppose this claim is not true, then there is a sequence
Iμ(n)(uμ(n))≤−p−12(p+1)Sp+1p−1p+1. |
Note that
Iμ(n)(uμ(n))+o(1)‖uμ(n)‖≥Iμ(n)(uμ(n))−14⟨I′μ(n)(uμ(n)),uμ(n)⟩≥14‖uμ(n)‖2−D(p,h)(μ(n))p+1p−1. |
This implies that
‖uμ(n)‖2−μ(n)∫R3h(x)(uμ(n))2dx≥(1−μ(n)μ1)‖uμ(n)‖2→0 |
because
Iμ(n)(uμ(n))=p−12(p+1)(‖uμ(n)‖2−μ(n)∫R3h(x)(uμ(n))2dx)+p−34(p+1)F(uμ(n)), |
we deduce that
lim infn→∞Iμ(n)(uμ(n))≥p−34(p+1)lim infn→∞F(uμ(n))≥0, |
which contradicts to the
Iμ(n)(uμ(n))≤−p−12(p+1)Sp+1p−1p+1. |
This proves the claim and the proof of Lemma 2.5 is complete.
Lemma 2.6. If
Proof. Let
d+o(1)=12‖un‖2−μ2∫R3h(x)u2ndx+14F(un)−1p+1∫R3|un|p+1dx |
and
⟨I′μ(un),un⟩=‖un‖2−μ∫R3h(x)u2ndx+F(un)−∫R3|un|p+1dx. |
Then we can prove that
‖un‖2=‖u0‖2+‖wn‖2+o(1), |
F(un)=F(u0)+F(wn)+o(1) |
and
‖un‖p+1Lp+1=‖u0‖p+1Lp+1+‖wn‖p+1Lp+1+o(1). |
Using Lemma 2.1, we also have that
d+o(1)=Iμ(un)=Iμ(u0)+12‖wn‖2+14F(wn)−1p+1∫R3|wn|p+1dx. | (14) |
Noticing
‖u0‖2−μ∫R3h(x)u20dx+F(u0)=∫R3|u0|p+1dx. | (15) |
Since
o(1)=‖un‖2−μ∫R3h(x)u2ndx+F(un)−∫R3|un|p+1dx. |
Combining this with (15) as well as Lemma 2.1, we obtain that
o(1)=‖wn‖2+F(wn)−∫R3|wn|p+1dx. | (16) |
Recalling the definition of
Suppose that the case (ⅰ) occurs. We may obtain from (16) that
\|w_n\|^2 \geq S_{p+1} \left(\|w_n\|^2 + F(w_n) - o(1)\right)^{\frac2{p+1}}. |
Hence we get that for
\begin{equation} \|w_n\|^2 \geq S_{p+1}^{\frac{p+1}{p-1}} + o(1). \end{equation} | (17) |
Therefore using (14), (16) and (17), we deduce that for
\begin{eqnarray} & d& + o(1) = I_\mu(u_n) \\ & = & I_\mu(u_0) + \frac{1}{2}\|w_n\|^2 + \frac{1}{4}F(w_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|w_n|^{p+1}dx. \\ & = & I_\mu(u_0) + \frac{p-1}{2(p+1)}\|w_n\|^2 + \frac{p-3}{4(p+1)}F(w_n) \\ & > & - \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}} + \frac{p-1}{2(p+1)}\|w_n\|^2 + \frac{p-3}{4(p+1)}F(w_n) \\ & > & 0, \end{eqnarray} | (18) |
which contradicts to the condition
Next we give a mountain pass geometry for the functional
Lemma 2.7. There exist
Proof. For any
\begin{equation} u = te_1+v, \; \hbox{where}\; \int_{\mathbb{R}^3} \left(\nabla v \nabla e_1 + ve_1\right)dx = 0. \end{equation} | (19) |
Hence we deduce that
\begin{equation} \|u\|^2 = \|\nabla (te_1+v)\|_{L^2}^2 + \|te_1+v\|_{L^2}^2 = t^2+\|v\|^2, \end{equation} | (20) |
\begin{equation} \mu_2\int_{\mathbb{R}^3} h(x)v^2dx\leq \|v\|^2, \; \; \mu_1\int_{\mathbb{R}^3} h(x)e_1^2dx = \|e_1\|^2 = 1 \end{equation} | (21) |
and
\begin{equation} \mu_1\int_{\mathbb{R}^3} h(x)e_1 v dx = \int_{\mathbb{R}^3} \left(\nabla v \nabla e_1+ve_1\right)dx = 0. \end{equation} | (22) |
We first consider the case of
\begin{array}{rl} I_{\mu_1}(u)& = \frac{1}{2} \|u\|^2+\frac{1}{4}F(u)- \frac{\mu_1}{2}\int_{\mathbb{R}^3}h(x)u^2dx - \frac{1}{p+1}\int_{\mathbb{R}^3} |u|^{p+1}dx\\ & = \frac{1}{2} \|t e_1 + v\|^2 +\frac{1}{4} F(te_1+v)\\ & \quad -\frac{\mu_1}{2}\int_{\mathbb{R}^3}h(x)(te_1+v)^2dx-\frac{1}{p+1}\int_{\mathbb{R}^3} |te_1 + v|^{p+1}dx\\ & \geq\frac{1}{2}\left(1-\frac{\mu_1}{\mu_2}\right) \|v\|^2 +\frac{1}{4} F(te_1+v)-\frac{1}{p+1}\int_{\mathbb{R}^3} |te_1 + v|^{p+1}dx\\ & \geq \theta_1\|v\|^2 +\frac{1}{4} F(te_1+v) - C_1|t|^{p+1} - C_2\|v\|^{p+1}. \end{array} |
Next we estimate the term
F(te_1+v) = \frac{1}{4\pi}\int_{\mathbb{R}^3\times \mathbb{R}^3}\frac{K(x)K(y)(te_1(y)+v(y))^2(te_1(x)+v(x))^2}{|x-y|}dydx. |
Since
\begin{array}{rl} & \left(te_1(y)+v(y)\right)^2\left(te_1(x)+v(x)\right)^2 = t^4 (e_1(y))^2(e_1(x))^2 + (v(y))^2(v(x))^2\\ & \qquad + 2t^3\left(e_1(y)(e_1(x))^2v(y) + e_1(x)(e_1(y))^2v(x)\right)\\ & \qquad + 2t\left(e_1(x)v(x)(v(y))^2 + e_1(y)v(y)(v(x))^2\right)\\ & \qquad +t^2\left((e_1(x))^2(v(y))^2 + 4e_1(y)e_1(x)v(y)v(x) + (e_1(y))^2(v(x))^2\right), \end{array} |
we know that
\begin{equation} \left|\int_{\mathbb{R}^3\times \mathbb{R}^3}\frac{K(x)K(y)\left(e_1(y)(e_1(x))^2v(y) + e_1(x)(e_1(y))^2v(x)\right)}{|x-y|}dydx\right|\leq C\|v\|; \end{equation} | (23) |
\begin{equation} \left|\int_{\mathbb{R}^3\times \mathbb{R}^3}\frac{K(x)K(y)\left(2(e_1(x))^2(v(y))^2 + 4e_1(y)e_1(x)v(y)v(x)\right)}{|x-y|}dydx\right|\leq C\|v\|^2 \end{equation} | (24) |
and
\begin{equation} \left|\int_{\mathbb{R}^3\times \mathbb{R}^3}\frac{K(x)K(y)\left(e_1(x)v(x)(v(y))^2 + e_1(y)v(y)(v(x))^2\right)}{|x-y|}dydx\right|\leq C\|v\|^3. \end{equation} | (25) |
Hence
\begin{array}{rl} I_{\mu_1}(u)& \geq \theta_1\|v\|^2 + \theta_2|t|^4 - C_1|t|^{p+1} - C_2\|v\|^{p+1} \\ & \qquad -C_3|t|^3\|v\| - C_4|t|^2\|v\|^2 - C_5|t|\|v\|^3+\frac{1}{4}F(v), \end{array} |
where
t^2\|v\|^2 \leq \frac2{p+1} |t|^{p+1} + \frac{p-1}{p+1} \|v\|^{\frac{2(p+1)}{p-1}}, |
|t|\|v\|^3 \leq \frac1{p+1} |t|^{p+1} + \frac{p}{p+1}\|v\|^{\frac{3(p+1)}{p}} |
and for some
|t|^3\|v\| \leq \frac{1}{q_0} \|v\|^{q_0} + \frac{q_0 - 1}{q_0} |t|^{\frac{3q_0}{q_0 - 1}}. |
Therefore we deduce that
\begin{equation} \begin{array}{rl} & I_{\mu_1}(u) \geq \theta_1 \|v\|^2 + \theta_2 |t|^4 - \frac{C_3}{q_0} \|v\|^{q_0} - \frac{C_3(q_0 - 1)}{q_0} |t|^{\frac{3q_0}{q_0 - 1}}\\ & \quad -\frac{2C_4}{p+1} |t|^{p+1} - \frac{(p-1)C_4}{p+1}\|v\|^{\frac{2(p+1)}{p-1}} - \frac{C_5}{p+1} |t|^{p+1} \\ & \quad - \frac{pC_5}{p+1}\|v\|^{\frac{3(p+1)}{p}} - C|t|^{p+1} - C\|v\|^{p+1}. \end{array} \end{equation} | (26) |
From
I_{\mu_1}(u) \geq \theta_3 \|v\|^2 + \theta_4 |t|^4 |
provided that
\begin{equation} I_{\mu_1}(u) \geq \theta_5 \|u\|^4\qquad \hbox{for}\quad \|u\|^2 \leq \tilde{\theta}_5^2. \end{equation} | (27) |
Set
\begin{array}{rl} I_\mu (u) & = I_{\mu_1}(u) + \frac{1}{2}(\mu_1 - \mu)\int_{\mathbb{R}}h(x)u^2dx\\ & \geq \theta_5 \|u\|^4 - \frac{\mu - \mu_1}{2\mu_1}\|u\|^2\\ & = \|u\|^2 \left(\theta_5 \|u\|^2 - \frac{\mu - \mu_1}{2\mu_1}\right)\\ & \geq \|u\|^2\left(\frac{1}{2} \theta_5 \tilde{\theta}^2_5 - \frac{1}{4}\theta_5\tilde{\theta}^2_5\right) = \frac{1}{4}\theta_5\tilde{\theta}^2_5\|u\|^2 \end{array} |
for
In this section, our aim is to prove Theorem 1.1. For
Proposition 3.1. Let the assumptions
d_{\mu_1} = \inf\limits_{\gamma \in \Gamma_1}\sup\limits_{t\in [0,1]}I_{\mu_1}(\gamma(t)) |
with
\Gamma_1 = \left\{ \gamma \in C([0,1], H^1(\mathbb{R}^3))\ : \ \gamma(0) = 0,\ I_{\mu_1}(\gamma(1)) < 0 \right\}. |
Then
Before proving Proposition 3.1, we analyze the
Lemma 3.2. If the assumptions
Proof. It suffices to find a path
\sup\limits_{t\in [0,1]}I_{\mu_1}(\gamma(t)) < \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}. |
Define
\|U_R\|^2 -\mu_1\int h(x)U_R^2 dx+ T_R^2F(U_R) - T_R^{p-1}\int U_R^{p+1} dx = 0. |
If
\frac{1}{T_R^2}\left(\|U_R\|^2 -\mu_1\int h(x)U_R^2dx\right)+F(U_R) = T_R^{p-3}\int U_R^{p+1}dx \to \infty, |
which is impossible either. Hence we only need to estimate
I_{\mu_1}(tU_R) \leq g(t) + CF(U_R), |
where
g(t) = \frac{t^2}{2}\left(\|U_R\|^2 - \mu_1 \int_{\mathbb{R}^3} h(x) U_R^2 dx\right) - \frac{|t|^{p+1}}{p+1}\int_{\mathbb{R}^3} U_R^{p+1} dx. |
Noting that under the assumptions
\begin{equation} \begin{array}{rl} F(U_R) & \leq \left(\int_{\mathbb{R}^3}K(x)^{\frac65}U_R^{\frac{12}{5}}dx\right)^{\frac56} \left(\int_{\mathbb{R}^3} \phi_{U_R}^6dx\right)^{\frac16}\\ & \leq C\left(\int_{\mathbb{R}^3} e^{-\frac65 a|x+R\theta|}(U(x))^{\frac{12}{5}} dx\right)^{\frac56}\\ & \leq C\left(\int_{\mathbb{R}^3} e^{-{\frac65}aR}e^{({\frac65}a-{\frac{12}5}(1-\varepsilon))|x|} dx\right)^{\frac56} \leq C e^{-aR} \end{array} \end{equation} | (28) |
since
\begin{equation} \begin{array}{rl} & \int_{\mathbb{R}^3}h(x)U_R^2dx = \int_{\mathbb{R}^3}h(x+R\theta)U^2(x)dx\\ & \geq C\int_{\mathbb{R}^3} e^{-b|x+R\theta|}U^2(x) dx \geq C\int_{\mathbb{R}^3} e^{-b|x| -bR } U^2(x) dx\\ & \geq C e^{-bR} \int_{\mathbb{R}^3} e^{-b|x|} U^2(x)dx \geq C e^{-bR}. \end{array} \end{equation} | (29) |
It is now deduced from (28) and (29) that
\begin{array}{rl} & \sup\limits_{t > 0} I_{\mu_1}(tU_R) \leq \sup\limits_{t > 0} g(t) + C e^{-aR} \\ &\leq \frac{p-1}{2(p+1)} \left(\|U_R\|^2 - \mu_1 \int_{\mathbb{R}^3} h(x) U_R^2 dx\right)^{\frac{p+1}{p-1}}(\|U_R\|_{L^{p+1}}^{-2})^{\frac{p+1}{p-1}} + C e^{-aR} \\ &\leq \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}} - Ce^{-bR} + o(e^{-bR}) + C e^{-aR} \\ & < \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}} \end{array} |
for
Lemma 3.3. Under the assumptions
Proof. Let
d + o(1) = \frac{1}{2}\|u_n\|^2 - \frac{\mu_1}{2}\int_{\mathbb{R}^3}h(x)u_n^2dx + \frac{1}{4}F(u_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|u_n|^{p+1}dx |
and
\langle I'_{\mu_1} (u_n), u_n\rangle = \|u_n\|^2 - \mu_1\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx. |
Hence we can deduce that
\|u_n\|^2 = \|u_0\|^2 + \|w_n\|^2 +o(1),\quad F(u_n) = F(u_0) + F(w_n) +o(1) |
and
\|u_n\|^{p+1}_{L^{p+1}} = \|u_0\|^{p+1}_{L^{p+1}} + \|w_n\|^{p+1}_{L^{p+1}} +o(1). |
Since
\begin{eqnarray} & & d + o(1) = I_{\mu_1}(u_n) = I_{\mu_1}(u_0) + \frac{1}{2}\| w_n\|^2\\ & & \qquad \quad + \frac{1}{4}F(w_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|w_n|^{p+1}dx. \end{eqnarray} | (30) |
From
\|u_0\|^2 - \mu_1\int_{\mathbb{R}^3}h(x)u_0^2dx + F(u_0) = \int_{\mathbb{R}^3}|u_0|^{p+1}dx |
and then
I_{\mu_1}(u_0) \geq \frac{p-1}{2(p+1)}\left(\|u_0\|^2 - \mu_1 \int_{\mathbb{R}^3}h(x)u_0^2dx\right) + \frac{p-3}{4(p+1)}F(u_0) \geq 0. |
Now using an argument similar to the proof of (16), we obtain that
\begin{equation} o(1) = \|w_n\|^2 + F(w_n) - \int_{\mathbb{R}^3}|w_n|^{P+1}dx. \end{equation} | (31) |
By the relation
Suppose that the case (I) occurs. Then up to a sbusequence, we may obtain from (31) that
\|w_n\|^2 \geq S_{p+1} \left(\| w_n\|^2 + F(w_n) - o(1)\right)^{\frac2{p+1}}, |
which implies that for
\|w_n\|^2 \geq S_{p+1}^{\frac{p+1}{p-1}} + o(1). |
It is deduced from this and (30) that
Proof of Proposition 3.1. Since
Proof of Theorem 1.1. By Proposition 3.1, the
\begin{equation} d_{\mu_1} \leq \max\limits_{t\in [0, 1]} I_{\mu_1}(\gamma_n(t)) < d_{\mu_1} + \frac{1}{n}. \end{equation} | (32) |
By Ekeland's variational principle [5], there exists
\begin{equation} \left\{ \begin{array}{ll} d_{\mu_1} \leq \max\limits_{t\in [0, 1]} I_{\mu_1} (\gamma_n^*(t))\leq \max\limits_{t\in [0, 1]} I_{\mu_1} (\gamma_n(t)) < d_{\mu_1} +\frac{1}{n};\\ \max\limits_{t\in [0, 1]}\|\gamma_n(t)-\gamma_n^*(t)\| < \frac{1}{\sqrt{n}}; \\ \hbox{ there exists} \; t_n\in [0, 1]\; \hbox{such that}\; z_n = \gamma_n^*(t_n) \hbox{ satisfies}: \\ I_{\mu_1}(z_n) = \max\limits_{t\in [0, 1]} I_{\mu_1}(\gamma_n^*(t)), \;\hbox{and}\; \|I'_{\mu_1}(z_n)\|\leq\frac{1}{\sqrt{n}}. \end{array} \right. \end{equation} | (33) |
By Lemma 3.2 and Lemma 3.3 we get a convergent subsequence (still denoted by
In this section, we always assume the conditions
\inf\{ I_\mu(u)\ : \ u\in \mathcal{M}\},\quad \mathcal{M} = \{u\in H^1(\mathbb{R}^3)\ :\ \langle I'_\mu(u), u\rangle = 0\} |
to get a ground state solution. But for
\mathcal{N} = \{u\in H^1(\mathbb{R}^3)\backslash\{0\}:I_\mu'(u) = 0\}. |
And then we consider the following minimization problem
\begin{equation} c_{0,\mu} = \inf\{I_\mu(u):u\in\mathcal{N}\}. \end{equation} | (34) |
Lemma 4.1. Let
d_{0, \mu} = \inf\limits_{\|u\| < \rho} I_\mu (u). |
Then the
Proof. Firstly, we prove that
\begin{eqnarray} I_\mu(u) & = &\frac12 \|u\|^2-\frac{\mu}{2}\int_{\mathbb{R}^3} h(x)u^2dx + \frac14 F(u) -\frac{1}{p+1}\int_{\mathbb{R}^3}|u|^{p+1}dx \\ &\geq& \frac12 \|u\|^2-\frac{\mu}{2\mu_1}\|u\|^2 - C\|u\|^{p+1} > -\infty \end{eqnarray} |
as
I_\mu(te_1) = \frac{t^2}2 \|e_1\|^2-\frac{\mu t^2}{2}\int_{\mathbb{R}^3} h(x)e_1^2dx + \frac{t^4}4 F(e_1) - \frac{t^{p+1}}{p+1}\int_{\mathbb{R}^3}|e_1|^{p+1}dx. |
It is now deduced from
I_\mu(te_1) = \frac{t^2}2\left(1-\frac{\mu}{\mu_1}\right)\|e_1\|^2 + \frac{t^4}4 F(e_1) -\frac{t^{p+1}}{p+1}\int_{\mathbb{R}^3}|e_1|^{p+1}dx. |
Since
Secondly, let
I_\mu(u_n) \to d_{0, \mu}\qquad \hbox{and}\qquad I'_\mu(u_n) \to 0. |
Then we can prove that
We emphasize that the above lemma does NOT mean that
Lemma 4.2. For
Proof. By Lemma 4.1, we know that
For any
I_\mu(u) = I_\mu(u) - \frac{1}{4}\langle I'_\mu(u), u\rangle \geq \frac{1}{4}\|u\|^2 - D(p,h) \mu^{\frac{p+1}{p-1}}. |
Therefore the
Now let
I_\mu(u_n) \to c_{0,\mu}\qquad \hbox{and}\qquad I'_\mu(u_n) = 0. |
Since
Next, to analyze further the
Lemma 4.3. There exists
Proof. The proof is divided into two steps. In the first place, for
\|u\|^2 - \mu_1\int_{\mathbb{R}^3} h(x)u^2dx + F(u) = \int_{\mathbb{R}^3} |u|^{p+1}dx |
and hence
I_{\mu_1}(u) = \frac{p-1}{2(p+1)} \left(\|u\|^2 - \mu_1\int_{\mathbb{R}^3} h(x)u^2dx\right) + \frac{p-3}{4(p+1)}F(u). |
Since
I_{\mu_1}(u) \geq \frac{p-3}{4(p+1)}F(u) > 0. |
In the second place, denoted by
I'_{\mu^{(n)}}(u_{0,\mu^{(n)}}) = 0 |
and we also have that
c_{0, \mu^{(n)}} = I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) < 0. |
Hence we deduce that
\begin{array}{rl} I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) & = \frac{p-1}{2(p+1)} \left(\|u_{0,\mu^{(n)}}\|^2 - \mu^{(n)}\int_{\mathbb{R}^3} h(x)(u_{0,\mu^{(n)}})^2dx\right)\\ & \qquad \quad + \frac{p-3}{4(p+1)}F(u_{0,\mu^{(n)}}). \end{array} |
Using the definition of
\|u_{0,\mu^{(n)}}\|^2 - \mu^{(n)}\int_{\mathbb{R}^3} h(x)(u_{0,\mu^{(n)}})^2dx \geq \left(1-\frac{\mu^{(n)}}{\mu_1}\right)\|u_{0,\mu^{(n)}}\|^2\to 0 |
because
Claim. As
Proof of the Claim. From
\begin{eqnarray} o(1) + I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) & = & I_{\mu^{(n)}}(\tilde{u}_0) + \frac{1}{2}\|\tilde{w}_n\|^2 \\ & & + \frac{1}{4}F(\tilde{w}_n) - \frac{1}{p+1}\int_{\mathbb{R}^3}|\tilde{w}_n|^{p+1}dx, \end{eqnarray} | (35) |
where
Now we distinguish two cases:
Suppose that the case (ⅰ) occurs. We may deduce from a proof similar to Lemma 2.6 that
I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) + o(1) \geq I_{\mu_1}(\tilde{u}_0) + \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}, |
which is a contradiction because
Next we prove that
\liminf\limits_{n\to\infty} I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) \geq \frac{p-3}{4(p+1)} F(\tilde{u}_0) > 0, |
which is also a contradiction since
Hence there is
Remark 4.4. The proof of Lemma 4.3 implies that (1) of Theorem 1.2 holds.
In the following, we are going to prove the existence of another nonnegative bound state solution of (3). To obtain this goal, we have to analyze further the
Lemma 4.5. Under the assumptions of
Proof. Let
d + o(1) = \frac{1}{2}\|u_n\|^2 - \frac{\mu}{2}\int_{\mathbb{R}^3}h(x)u_n^2dx + \frac{1}{4}F(u_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|u_n|^{p+1}dx |
and
\langle I'_\mu (u_n), u_n\rangle = \|u_n\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx. |
Similar to the proof in Lemma 2.3, we can deduce that
\|u_n\|^2 = \|u_0\|^2 + \|w_n\|^2 +o(1), |
F(u_n) = F(u_0) + F(w_n) +o(1) |
and
\|u_n\|^{p+1}_{L^{p+1}} = \|u_0\|^{p+1}_{L^{p+1}} + \|w_n\|^{p+1}_{L^{p+1}} +o(1). |
Using Lemma 2.1, we also have that
\begin{eqnarray} & & d + o(1) = I_\mu(u_n) = I_\mu(u_0) + \frac{1}{2}\| w_n\|^2\\ & & \qquad \quad + \frac{1}{4}F(w_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|w_n|^{p+1}dx. \end{eqnarray} | (36) |
Since
I_\mu(u_0) \geq c_{0,\mu} |
and
\|u_0\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_0^2dx + \int_{\mathbb{R}^3}\phi_{u_0}u_0^2 = \int_{\mathbb{R}^3}|u_0|^{p+1}dx. |
Note that
o(1) = \|u_n\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx |
imply that
\begin{equation} o(1) = \| w_n\|^2 + F(w_n) -\int_{\mathbb{R}^3}|w_n|^{p+1}dx. \end{equation} | (37) |
Using
Suppose (I) occurs. Up to a subsequence, we may obtain from (37) that
\|w_n\|^2 \geq S_{p+1} \left(\|w_n\|^2 + F(w_n) - o(1)\right)^{\frac2{p+1}}. |
Hence we get that for
\begin{equation} \|w_n\|^2 \geq S_{p+1}^{\frac{p+1}{p-1}} + o(1). \end{equation} | (38) |
Therefore using (36) and (38), we deduce that for
\begin{eqnarray} & d & + o(1) = I_\mu(u_n) \\ & = & I_\mu(u_0) + \frac{1}{2}\|w_n\|^2 + \frac{1}{4}F(w_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|w_n|^{p+1}dx \\ & = & I_\mu(u_0) + \frac{p-1}{2(p+1)}\|w_n\|^2 + \frac{p-3}{4(p+1)}F(w_n) \\ & \geq & c_{0,\mu} + \frac{p-1}{2(p+1)}\|w_n\|^2 + \frac{p-3}{4(p+1)}F(w_n) \\ & > & c_{0,\mu} + \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}, \end{eqnarray} | (39) |
which contradicts to the assumption
Next, for the
d_{2, \mu} = \inf\limits_{\gamma \in \Gamma_2}\sup\limits_{t\in [0,1]}I_\mu(\gamma(t)) |
with
\Gamma_2 = \{ \gamma \in C([0,1], H^1(\mathbb{R}^3))\ : \ \gamma(0) = w_{0, \mu},\ I_\mu(\gamma(1)) < c_{0,\mu} \}. |
Lemma 4.6. Suppose that the conditions
d_{2, \mu} < c_{0,\mu} + \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}. |
Proof. It suffices to find a path starting from
\begin{array}{rl} I_\mu(w_0 + tU_R) & = \frac{1}{2}\left(\left\|w_0 + tU_R\right\|^2 - \mu \int_{\mathbb{R}^3} h(x)|w_0 + t U_R|^2dx\right) \\ & \quad + \frac{1}{4}F(w_0 + tU_R) - \frac1{p+1} \int_{\mathbb{R}^3}|w_0 + t U_R|^{p+1}dx \\ & = I_\mu(w_0) + A_1 + A_2 + A_3 +\frac{t^2}{2}\|U_R\|^2 - \frac{\mu}{2}\int_{\mathbb{R}^3}h(x)U_R^2dx, \end{array} |
where
A_1 = \langle w_0, tU_R\rangle - \mu t\int_{\mathbb{R}^3} h(x)w_0 U_R dx, |
A_2 = \frac{1}{4}\left(F(w_0 + tU_R) - F(w_0)\right) |
and
A_3 = \frac1{p+1} \int_{\mathbb{R}^3}\left(|w_0|^{p+1} - |w_0 + t U_R|^{p+1}\right)dx. |
Since
A_1 = \int_{\mathbb{R}^3}(w_0)^p t U_R dx - \int_{\mathbb{R}^3} K(x)\phi_{w_0}w_0 t U_R dx. |
From an elementary inequality:
(a+b)^q - a^q \geq b^q + q a^{q-1}b,\qquad q > 1,\ \ a > 0, b > 0, |
we deduce that
|A_3| \leq - \frac1{p+1}\int_{\mathbb{R}^3} |t U_R|^{p+1}dx - \int_{\mathbb{R}^3} |w_0|^p tU_Rdx. |
For the estimate of
\begin{array}{rl} |A_2| &\leq t\int_{\mathbb{R}^3}K(x)\phi_{w_0}w_0 U_R dx + \frac{t^2}{2}\int_{\mathbb{R}^3}K(x)\phi_{w_0} (U_R)^2 dx \\ & \qquad \quad + \frac{t^4}{4}\int_{\mathbb{R}^3} K(x)\phi_{U_R}(U_R)^2 dx + t^3\int_{\mathbb{R}^3} K(x)\phi_{U_R}w_0 U_R dx \\ & \qquad \qquad \quad + t^2\int_{\mathbb{R}^3\times\mathbb{R}^3}\frac{K(x)K(y)w_0(x)w_0(y)U_R(x)U_R(y)}{|x-y|}dxdy. \end{array} |
Since
\begin{array}{rl} & \int_{\mathbb{R}^3\times\mathbb{R}^3}\frac{K(x)K(y)w_0(x)w_0(y)U_R(x)U_R(y)}{|x-y|}dxdy \\ & = \int_{\mathbb{R}^3}K(x)\phi_{\sqrt{w_0 U_R}}w_0 U_R dx\\ & \leq \|\phi_{\sqrt{w_0 U_R}}\|_{L^6} \left(\int_{\mathbb{R}^3} K(x)^{\frac65}(w_0U_R)^{\frac65} dx\right)^{\frac56} \\ & \leq C \left(\int_{\mathbb{R}^3} e^{-\frac65 aR} e^{\left(\frac65 a - \frac65(1-\delta)\right)|x|} dx\right)^{\frac56}\\ & \leq C e^{-a R}\quad \hbox{since}\quad 0 < a < 1. \end{array} |
Similarly we can deduce that for
\int_{\mathbb{R}^3}K(x)\phi_{w_0}w_0 U_R dx \leq C e^{-a R}, \ \ \int_{\mathbb{R}^3}K(x)\phi_{w_0} (U_R)^2 dx \leq C e^{-a R}, |
\int_{\mathbb{R}^3} K(x)\phi_{U_R}(U_R)^2 dx \leq C e^{-a R}\ \ \hbox{and}\ \ \int_{\mathbb{R}^3} K(x)\phi_{U_R}w_0 U_R dx \leq C e^{-a R}. |
Since
\begin{array}{rl} & I_\mu(w_0 + tU_R) \leq I_\mu(w_0) +\frac{t^2}{2}\|U_R\|^2dx - \frac{\mu}{2}\int_{\mathbb{R}^3}h(x)U_R^2dx\\ & \qquad \qquad - \frac1{p+1}\int_{\mathbb{R}^3} |t U_R|^{p+1}dx+C e^{-a R}\\ & \leq I_\mu(w_0) + \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}} +C e^{-a R} - C e^{-b R} + o(e^{-b R})\\ & < c_{0,\mu} + \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}} \end{array} |
for
Proposition 4.7. Under the conditions (A1)-(A4), if
Proof. Since for
Proof of Theorem 1.2. The conclusion (1) of Theorem 1.2 follows from Lemma 4.3 and Remark 4.4. It remains to prove (2) of Theorem 1.2. By Proposition 4.7, the
\begin{equation} d_{2, \mu} \leq \max\limits_{t\in [0, 1]} I_{\mu} (\gamma_n(t)) < d_{2, \mu} + \frac{1}{n}. \end{equation} | (40) |
By Ekeland's variational principle, there exists
\begin{equation} \left\{ \begin{array}{ll} d_{2, \mu} \leq \max\limits_{t\in [0, 1]} I_{\mu} (\gamma_n^*(t))\leq \max\limits_{t\in [0, 1]} I_{\mu} (\gamma_n(t)) < d_{2, \mu} +\frac{1}{n};\\ \max\limits_{t\in [0, 1]}\|\gamma_n(t)-\gamma_n^*(t)\| < \frac{1}{\sqrt{n}}; \\ \hbox{ there exists} \; t_n\in [0, 1]\; \hbox{such that}\; z_n : = \gamma_n^*(t_n) \hbox{ satisfies}: \\ I_{\mu}(z_n) = \max\limits_{t\in [0, 1]} I_{\mu} (\gamma_n^*(t)), \;\hbox{and}\; \|I'_{\mu}(z_n)\|\leq\frac{1}{\sqrt{n}}. \end{array} \right. \end{equation} | (41) |
By Lemma 4.6 we get a convergent subsequence (still denoted by
Next, let
0 < \alpha \leq d_{2, \mu^{(n)}}\leq \max\limits_{s > 0}I_{\mu^{(n)}}(w_{0,\mu^{(n)}} + sU_R) |
and
I_{\mu^{(n)}}(w_{0,\mu^{(n)}} + sU_R) \leq \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}} +C e^{-a R} - C e^{-b R} + o(e^{-b R}), |
\begin{equation} \limsup\limits_{n\to\infty} d_{2, \mu^{(n)}} \leq \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}}. \end{equation} | (42) |
Next, similar to the proof in Lemma 2.3, we can deduce that
I_{\mu^{(n)}}(u_{2,\mu^{(n)}}) \geq I_{\mu_1}(\tilde{u}_2) + \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}}, |
which contradicts to (42). Hence
The author thanks the unknown referee for helpful comments.
[1] | R. E. Barlow, F. Proschan, Statistical theory of reliability and life testing: probability models, Holt Rinehart & Winston of Canada Ltd, 1975. |
[2] |
R. Fang, X. H. Li, Advertising a second-price auction, J. Math. Econ., 61 (2015), 246–252. doi: 10.1016/j.jmateco.2015.04.003
![]() |
[3] |
P. J. Boland, E. El-Neweihi, F. Proschan, Applications of the hazard rate ordering in reliability and order statistics, J. Appl. Prob., 31 (1994), 180–192. doi: 10.2307/3215245
![]() |
[4] | M. Z. Raqab, W. A. Amin, Some ordering results on order statistics and record values, Iapqr Trans., 21 (1996), 1–8. |
[5] |
R. B. Bapat, S. C. Kochar, On likelihood-ratio ordering of order statistics, Linear Algebra Appl., 199 (1994), 281–291. doi: 10.1016/0024-3795(94)90353-0
![]() |
[6] |
X. H. Li, R. Fang, Ordering properties of order statistics from random variables of archimedean copulas with applications, J. Multivariate Anal., 133 (2015), 304–320. doi: 10.1016/j.jmva.2014.09.016
![]() |
[7] |
R. Fang, X. H. Li, Ordering extremes of interdependent random variables, Commun Stat.-Theory M., 47 (2018), 4187–4201. doi: 10.1080/03610926.2017.1371754
![]() |
[8] |
M. Mesfioui, M. Kayid, S. Izadkhah, Stochastic comparisons of order statistics from heterogeneous random variables with archimedean copula, Metrika, 80 (2017), 749–766. doi: 10.1007/s00184-017-0626-z
![]() |
[9] | G. Barmalzan, N. Balakrishnan, S. M. Ayat, A. Akrami, Orderings of extremes dependent modified proportional hazard and modified proportional reversed hazard variables under archimedean copula, Commun Stat.-Theory M., 2020, 1–22. |
[10] | G. Pledger, F. Proschan, Comparisons of order statistics and of spacings from heterogeneous distributions, In: Optimizing methods in statistics, Proceedings of a Symposium Held at the Center for Tomorrow, New York: Academic Press, 1971, 89–113. |
[11] |
B. E. Khaledi, S. Kochar, Some new results on stochastic comparisons of parallel systems, J. Appl. Probab., 37 (2000), 1123–1128. doi: 10.1239/jap/1014843091
![]() |
[12] |
N. Torrado, On magnitude orderings between smallest order statistics from heterogeneous beta distributions, J. Math. Anal. Appl., 426 (2015), 824–838. doi: 10.1016/j.jmaa.2015.02.003
![]() |
[13] |
N. Torrado, Tail behaviour of consecutive 2-within-m-out-of-n systems with nonidentical components, Appl. Math. Model., 39 (2015), 4586–4592. doi: 10.1016/j.apm.2014.12.042
![]() |
[14] |
A. Arriaza, M. A. Sordo, A. Súarez-Llorens, Comparing residual lives and inactivity times by transform stochastic orders, IEEE T. Reliab., 66 (2017), 366–372. doi: 10.1109/TR.2017.2679158
![]() |
[15] |
M. V. Koutras, I. S. Triantafyllou, S. Eryilmaz, Stochastic comparisons between lifetimes of reliability systems with exchangeable components, Methodol. Comput. Appl. Probab., 18 (2016), 1081–1095. doi: 10.1007/s11009-014-9433-4
![]() |
[16] |
J. Navarro, Stochastic comparisons of coherent systems, Metrika, 81 (2018), 465–482. doi: 10.1007/s00184-018-0650-7
![]() |
[17] |
J. Navarro, Y. del Águila, Stochastic comparisons of distorted distributions, coherent systems and mixtures with ordered components, Metrika, 80 (2017), 627–648. doi: 10.1007/s00184-017-0619-y
![]() |
[18] |
R. Fang, C. Li, X. H. Li, Ordering results on extremes of scaled random variables with dependence and proportional hazards, Statistics, 52 (2018), 458–478. doi: 10.1080/02331888.2018.1425998
![]() |
[19] |
J. Navarro, N. Torrado, Y. del Águila, Comparisons between largest order statistics from multiple-outlier models with dependence, Methodol. Comput. Appl. Probab., 20 (2018), 411–433. doi: 10.1007/s11009-017-9562-7
![]() |
[20] | M. M. Zhang, B. Lu, R. F. Yan, Ordering results of extreme order statistics from dependent and heterogeneous modified proportional (reversed) hazard variables, AIMS Mathematics, 6 (2020), 584–606. |
[21] | J. Navarro, F. Durante, J. Fernández-Sánchez, Connecting copula properties with reliability properties of coherent systems, Appl. Stoch. Model. Bus., 2020, DOI: 10.1002/asmb.2579. |
[22] |
J. Navarro, J. Mulero, Comparisons of coherent systems under the time-transformed exponential model, TEST, 29 (2020), 255–281. doi: 10.1007/s11749-019-00656-4
![]() |
[23] |
V. V. Kalashnikov, S. T. Rachev, Characterization of queueing models and their stability, Adv. Appl. Prob., 17 (1985), 868–886. doi: 10.2307/1427091
![]() |
[24] |
M. Rezaei, B. Gholizadeh, S. Izadkhah, On relative reversed hazard rate order, Commun. Stat.-Theory M., 44 (2015), 300–308. doi: 10.1080/03610926.2012.745559
![]() |
[25] |
C. D. Lai, M. Xie, Relative ageing for two parallel systems and related problems, Math. Comput. Model., 38 (2003), 1339–1345. doi: 10.1016/S0895-7177(03)90136-1
![]() |
[26] |
C. Li, X. H. Li, Relative ageing of series and parallel systems with statistically independent and heterogeneous component lifetimes, IEEE T. Reliab., 65 (2016), 1014–1021. doi: 10.1109/TR.2015.2512226
![]() |
[27] |
W. Y. Ding, Y. Y. Zhang, Relative ageing of series and parallel systems: Effects of dependence and heterogeneity among components, Oper. Res. Lett., 46 (2018), 219–224. doi: 10.1016/j.orl.2018.01.005
![]() |
[28] |
D. Sengupta, J. V. Deshpande, Some results on the relative ageing of two life distributions, J. Appl. Prob., 31 (1994), 991–1003. doi: 10.1017/S0021900200099514
![]() |
[29] |
N. Misra, J. Francis, Relative ageing of (n-k+1)-out-of-n systems, Stat. Probabil. Lett., 106 (2015), 272–280. doi: 10.1016/j.spl.2015.07.013
![]() |
[30] |
N. Misra, J. Francis, Relative aging of (n-k+1)-out-of-n systems based on cumulative hazard and cumulative reversed hazard functions, Nav. Res. Log., 65 (2018), 566–575. doi: 10.1002/nav.21822
![]() |
[31] |
N. K. Hazra, N. Misra, On relative ageing of coherent systems with dependent identically distributed components, Adv. Appl. Probab., 52 (2020), 348–376. doi: 10.1017/apr.2019.63
![]() |
[32] | N. K. Hazra, N. Misra, On relative aging comparison of coherent systems with identically distributed components, Probab. Eng. Inform. Sc., 2020, 1–15. |
[33] |
P. C. Consul, On the distributions of order statistics for a random sample size, Stat. Neerl., 38 (1984), 249–256. doi: 10.1111/j.1467-9574.1984.tb01115.x
![]() |
[34] |
M. Shaked, T. Wong, Stochastic orders based on ratios of Laplace transforms, J. Appl. Prob., 34 (1997), 404–419. doi: 10.2307/3215380
![]() |
[35] |
M. Shaked, T. Wong, Stochastic comparisons of random minima and maxima, J. Appl. Prob., 34 (1997), 420–425. doi: 10.2307/3215381
![]() |
[36] |
X. H. Li, M. J. Zuo, Preservation of stochastic orders for random minima and maxima, with applications, Nav. Res. Log., 51 (2004), 332–344. doi: 10.1002/nav.10122
![]() |
[37] | M. Shaked, G. Shanthikumar, Stochastic orders, New York: Springer, 2007. |
[38] | H. J. Li, X. H. Li, Stochastic orders in reliability and risk, New York: Springer, 2013. |
[39] | F. Belzunce, C. Martinez-Riquelme, J. Mulero, An introduction to stochastic orders, London: Elsevier Academic, 2015. |
[40] | C. D. Lai, M. Xie, Stochastic ageing and dependence for reliability, New York: Springer, 2006. |
[41] | R. B. Nelsen, An introduction to copulas, New York: Springer, 2006. |
[42] | S. Karlin, Total positivity, Vol I, Stanford: Stanford University Press, 1968. |
1. | Chao Yang, Sharp condition of global well-posedness for inhomogeneous nonlinear Schrödinger equation, 2021, 14, 1937-1632, 4631, 10.3934/dcdss.2021136 |