
The Stokes equation is fundamental in fluid mechanics. We used bivariate Bernstein polynomial bases to construct the function space for mixed finite element methods to solve the 2D Stokes equation. Our results show that the numerical accuracy and convergence order using bicubic and lower-order Lagrange interpolation polynomials are comparable to those achieved with Bernstein polynomial bases. However, high-order Lagrange interpolation functions often suffer from the Runge's phenomenon, which limits their effectiveness. By employing high-order Bernstein polynomial bases, we have significantly improved the numerical solutions, effectively mitigating the Runge phenomenon. This approach highlights the advantages of Bernstein polynomial bases in achieving stable and accurate solutions for the 2D Stokes equation.
Citation: Lanyin Sun, Siya Wen. Applications of mixed finite element method based on Bernstein polynomials in numerical solution of Stokes equations[J]. AIMS Mathematics, 2024, 9(12): 35978-36000. doi: 10.3934/math.20241706
[1] | Gonca Kizilaslan . The altered Hermite matrix: implications and ramifications. AIMS Mathematics, 2024, 9(9): 25360-25375. doi: 10.3934/math.20241238 |
[2] | Hasan Gökbaş . Some properties of the generalized max Frank matrices. AIMS Mathematics, 2024, 9(10): 26826-26835. doi: 10.3934/math.20241305 |
[3] | Qin Zhong, Ling Li . Notes on the generalized Perron complements involving inverse N0-matrices. AIMS Mathematics, 2024, 9(8): 22130-22145. doi: 10.3934/math.20241076 |
[4] | Salima Kouser, Shafiq Ur Rehman, Mabkhoot Alsaiari, Fayyaz Ahmad, Mohammed Jalalah, Farid A. Harraz, Muhammad Akram . A smoothing spline algorithm to interpolate and predict the eigenvalues of matrices extracted from the sequence of preconditioned banded symmetric Toeplitz matrices. AIMS Mathematics, 2024, 9(6): 15782-15795. doi: 10.3934/math.2024762 |
[5] | Sumaira Hafeez, Rashid Farooq . On generalized inverse sum indeg index and energy of graphs. AIMS Mathematics, 2020, 5(3): 2388-2411. doi: 10.3934/math.2020158 |
[6] | Yuwen He, Jun Li, Lingsheng Meng . Three effective preconditioners for double saddle point problem. AIMS Mathematics, 2021, 6(7): 6933-6947. doi: 10.3934/math.2021406 |
[7] | Chih-Hung Chang, Ya-Chu Yang, Ferhat Şah . Reversibility of linear cellular automata with intermediate boundary condition. AIMS Mathematics, 2024, 9(3): 7645-7661. doi: 10.3934/math.2024371 |
[8] | Yongge Tian . Miscellaneous reverse order laws and their equivalent facts for generalized inverses of a triple matrix product. AIMS Mathematics, 2021, 6(12): 13845-13886. doi: 10.3934/math.2021803 |
[9] | Ahmad Y. Al-Dweik, Ryad Ghanam, Gerard Thompson, M. T. Mustafa . Algorithms for simultaneous block triangularization and block diagonalization of sets of matrices. AIMS Mathematics, 2023, 8(8): 19757-19772. doi: 10.3934/math.20231007 |
[10] | Wanlin Jiang, Kezheng Zuo . Revisiting of the BT-inverse of matrices. AIMS Mathematics, 2021, 6(3): 2607-2622. doi: 10.3934/math.2021158 |
The Stokes equation is fundamental in fluid mechanics. We used bivariate Bernstein polynomial bases to construct the function space for mixed finite element methods to solve the 2D Stokes equation. Our results show that the numerical accuracy and convergence order using bicubic and lower-order Lagrange interpolation polynomials are comparable to those achieved with Bernstein polynomial bases. However, high-order Lagrange interpolation functions often suffer from the Runge's phenomenon, which limits their effectiveness. By employing high-order Bernstein polynomial bases, we have significantly improved the numerical solutions, effectively mitigating the Runge phenomenon. This approach highlights the advantages of Bernstein polynomial bases in achieving stable and accurate solutions for the 2D Stokes equation.
The spectral properties of tridiagonal matrices is a well-studied topic for which a vast literature can be found (e.g. [1,5,16,17,19,25,27,35], among others), and even formulae for the corresponding inverse of these matrices has also been discussed over the last decades of twentieth century (see [15] and references therein). Recently, taking advantage of basic properties of the Chebyshev polynomials, some authors have established localization theorems for the eigenvalues of real pentadiagonal and heptadiagonal symmetric Toeplitz matrices by expressing them as the zeros of explicit rational functions [12,32]. The eigenvalues of a special kind of heptadiagonal matrices were still derived in [26] by employing other methods, namely, determinant properties and recurrence relations.
In fact, the above-mentioned matrices are typical examples of a much more wider class called band matrices (see [30], page 13), and the idea of having explicit formulas to compute its eigenvalues, eigenvectors or establishing some other properties is both appealing and challenging by reason of their usefulness in many areas of science and engineering (see, for instance, [4,10,11,14,20,24,33]).
In order to give a contribution on this matter, we shall obtain the eigenvalues of the following n×n heptadiagonal matrix
Hn=[ξηcd0……………0ηabcd⋱⋮cbabc⋱⋱⋮dcbab⋱⋱⋱⋮0dcba⋱⋱⋱⋱⋮⋮⋱⋱⋱⋱⋱⋱⋱⋱⋱⋮⋮⋱⋱⋱⋱abcd0⋮⋱⋱⋱babcd⋮⋱⋱cbabc⋮⋱dcbaη0……………0dcηξ] | (1.1) |
as the zeros of explicit rational functions, also providing upper/lower bounds non-depending of any unknown parameter to each of them. Further, we shall compute eigenvectors for these sort of matrices at the expense of the prescribed eigenvalues. To accomplish these purposes, we will obtain an orthogonal block diagonalization for matrix (1.1) where each block is a sum of a diagonal matrix plus dyads, i.e.
diag(d1,d2,…,dκ)+u1v⊤1+u2v⊤2+…+umv⊤m, | (1.2) |
where uj,vj, j=1,…,m are κ×1 matrices, by exploiting the modification technique introduced by Fasino in [13] for matrices of the type (1.1). This key ingredient allows us to get formulas for the characteristic polynomial of Hn on one hand, and for the inverse of Hn on the other (assuming, of course, its nonsingularity). With the aim of getting expressions as explicit as possible, we will use not only results concerning the secular equation of diagonal matrices perturbed by the addition of rank-one matrices developed by Anderson in the nineties [2], but also a Miller's formula of the eighties for the inverse of the sum of matrices [29]. In section four of the paper, applications are given for the established results, showing its potential usage.
Since the class of matrices Hn includes the ones considered in [12] and [32], our statements will extend necessarily the results of these papers. Moreover, the current approach also points a way to achieve localization formulas for the eigenvalues of general symmetric quasi-Toeplitz matrices. In detail, the eigenvalues of any symmetric quasi-Toeplitz matrix enjoying a block diagonalization with diagonal elements of the form (1.2) are precisely the eigenvalues of each one of these diagonal blocks, which in turn can be located/computed by rational functions via Anderson's secular equation.
In this paper, n is generally assumed to be an integer greater or equal to four and a,b,c,d,ξ,η in (1.1) will be taken as real numbers; in fact, this last restriction can be discarded because the majority of forthcoming statements remain valid when a,b,c,d,ξ,η are complex numbers. Moreover, Sn will be the n×n symmetric, involutory and orthogonal matrix defined by
[Sn]k,ℓ:=√2n+1sin(kℓπn+1). | (2.1) |
Our first auxiliary result is an orthogonal diagonalization for the following n×n heptadiagonal symmetric matrix
ˆHn=[a−cb−dcd0……………0b−dabcd⋱⋮cbabc⋱⋱⋮dcbab⋱⋱⋱⋮0dcba⋱⋱⋱⋱⋮⋮⋱⋱⋱⋱⋱⋱⋱⋱⋱⋮⋮⋱⋱⋱⋱abcd0⋮⋱⋱⋱babcd⋮⋱⋱cbabc⋮⋱dcbab−d0……………0dcb−da−c]. | (2.2) |
Lemma 1. Let a,b,c,d be real numbers and
λk=a+2bcos(kπn+1)+2ccos(2kπn+1)+2dcos(3kπn+1),k=1,…,n. | (2.3) |
If ˆHn is the n×n matrix (2.2), then
ˆHn=SnΛnSn, |
where Λn=diag(λ1,…,λn), and Sn is the matrix (2.1).
Proof. Supposing the n×n matrix
Ωn=[010………0101⋱⋮010⋱⋱⋮⋮⋱⋱⋱⋱⋱⋮⋮⋱⋱010⋮⋱1010………010], |
it is a simple matter of routine to verify that
ˆHn=(a−2c)In+(b−3d)Ωn+cΩ2n+dΩ3n. |
Using the spectral decomposition
Ωn=n∑ℓ=12cos(ℓπn+1)sℓs⊤ℓ, |
where
sℓ=[√2n+1sin(ℓπn+1)√2n+1sin(2ℓπn+1)⋮√2n+1sin(nℓπn+1)] |
(i.e. the ℓth column of Sn), it follows
ˆHn=n∑ℓ=1[(a−2c)+2(b−3d)cos(ℓπn+1)+4ccos2(ℓπn+1)+8dcos3(ℓπn+1)]sℓs⊤ℓ=n∑ℓ=1λℓsℓs⊤ℓ=SnΛnSn, |
where Λn=diag(λ1,…,λn), and Sn is the matrix (2.1). The proof is complete.
The next statement is an orthogonal block diagonalization for matrices Hn of the form (1.1) and it extends Proposition 3.1 in [7], which is valid only for heptadiagonal symmetric Toeplitz matrices.
Lemma 2. Let a,b,c,d,ξ,η be real numbers, λk, k=1,…,n be given by (2.3) and Hn be the n×n matrix (1.1).
(a) If n is even,
x=[2√n+1sin(πn+1)2√n+1sin(3πn+1)⋮2√n+1sin[(n−1)πn+1]],y=[2√n+1sin(2πn+1)2√n+1sin(6πn+1)⋮2√n+1sin[(2n−2)πn+1]] | (2.4a) |
and
v=[2√n+1sin(2πn+1)2√n+1sin(4πn+1)⋮2√n+1sin(nπn+1)],w=[2√n+1sin(4πn+1)2√n+1sin(8πn+1)⋮2√n+1sin(2nπn+1)], | (2.4b) |
then
Hn=SnPn[Φn2OOΨn2]P⊤nSn, |
where Sn is the n×n matrix (2.1), Pn is the n×n permutation matrix defined by
[Pn]k,ℓ={1ifk=2ℓ−1ork=2ℓ−n0,otherwise | (2.4c) |
and
Φn2=diag(λ1,λ3,…,λn−1)+(c+ξ−a)xx⊤+(d+η−b)xy⊤+(d+η−b)yx⊤ | (2.4d) |
Ψn2=diag(λ2,λ4,…,λn)+(c+ξ−a)vv⊤+(d+η−b)vw⊤+(d+η−b)wv⊤. | (2.4e) |
(b) If n is odd,
x=[2√n+1sin(πn+1)2√n+1sin(3πn+1)⋮2√n+1sin(nπn+1)],y=[2√n+1sin(2πn+1)2√n+1sin(6πn+1)⋮2√n+1sin(2nπn+1)] | (2.5a) |
and
v=[2√n+1sin(2πn+1)2√n+1sin(4πn+1)⋮2√n+1sin[(n−1)πn+1]],w=[2√n+1sin(4πn+1)2√n+1sin(8πn+1)⋮2√n+1sin[2(n−1)πn+1]], | (2.5b) |
then
Hn=SnPn[Φn+12OOΨn−12]P⊤nSn, |
where Sn is the n×n matrix (2.1), Pn is the n×n permutation matrix defined by
[Pn]k,ℓ={1ifk=2ℓ−1ork=2ℓ−n−10,otherwise | (2.5c) |
and
Φn+12=diag(λ1,λ3,…,λn)+(c+ξ−a)xx⊤+(d+η−b)xy⊤+(d+η−b)yx⊤ | (2.5d) |
Ψn−12=diag(λ2,λ4,…,λn−1)+(c+ξ−a)vv⊤+(d+η−b)vw⊤+(d+η−b)wv⊤. | (2.5e) |
Proof. Consider a,b,c,d,ξ,η as real numbers, λk, k=1,…,n given by (2.3) and Hn as the n×n matrix (1.1). Setting θ:=c+ξ−a, ϑ:=d+η−b,
ˆEn=[c+ξ−a0……000⋱⋮⋮⋱⋱⋱⋮⋮⋱000……0c+ξ−a] |
and
ˆFn=[0d+η−b0……0d+η−b00⋱⋮00⋱⋱⋱⋮⋮⋱⋱⋱00⋮⋱00d+η−b0……0d+η−b0], |
we have from Lemma 1
SnHnSn=Sn(ˆHn+ˆEn+ˆFn)Sn=Λn+Gn+Kn, |
where Sn is the n×n matrix (2.1), ˆHn is the n×n matrix (2.2),
Λn=diag(λ1,…,λn),[Gn]k,ℓ=2θn+1sin(kπn+1)sin(ℓπn+1)[1+(−1)k+ℓ] |
and
[Kn]k,ℓ=2ϑn+1[sin(kπn+1)sin(2ℓπn+1)+sin(2kπn+1)sin(ℓπn+1)][1+(−1)k+ℓ]. |
Since [Gn]k,ℓ=[Kn]k,ℓ=0 whenever k+ℓ is odd, we can permute rows and columns of Λn+Gn+Kn according to the permutation matrices (2.4c) and (2.5c), yielding: for n even,
Hn=SnPn[Υn2+θxx⊤+ϑxy⊤+ϑyx⊤OOΔn2+θvv⊤+ϑvw⊤+ϑwv⊤]P⊤nSn, |
where Pn is the matrix (2.4c), Υn2=diag(λ1,λ3,…,λn−1), Δn2=diag(λ2,λ4,…,λn) and x, y are given by (2.4a); for n odd,
Hn=SnPn[Υn+12+θxx⊤+ϑxy⊤+ϑyx⊤OOΔn−12+θvv⊤+ϑvw⊤+ϑwv⊤]P⊤nSn, |
with Pn defined in (2.5c), Υn+12=diag(λ1,λ3,…,λn), Δn−12=diag(λ2,λ4,…,λn−1) and v, w defined by (2.5a). The proof is complete.
Remark 1. Let us point out that the decomposition for real heptadiagonal symmetric Toeplitz matrices established in Proposition 3.1 of [7] at the expense of the bordering technique is no more useful for matrices having the shape (1.1). As consequence, some results stated by these authors will be necessarily extended, particularly, the referred decomposition and a formula to compute the determinant of real heptadiagonal symmetric Toeplitz matrices (Corollary 3.1 of [7]).
The orthogonal block diagonalization established in Lemma 2 will lead us to an explicit formula for the determinant of the matrix Hn.
Theorem 1. Let a,b,c,d,ξ,η be real numbers, λk, k=1,…,n be given by (2.3), xk=sin(kπn+1), k=1,…,2n and Hn the n×n matrix (1.1). If θ:=c+ξ−a, ϑ:=d+η−b and
(a) n is even, then
det(Hn)=[n2∏j=1λ2j+n2∑k=14θx22k+8ϑx2kx4k(n+1)n2∏j=1j≠kλ2j−∑1⩽k<ℓ⩽n216ϑ2(x2kx4ℓ−x2ℓx4k)2(n+1)2n2∏j=1j≠k,ℓλ2j]×[n2∏j=1λ2j−1+n2∑k=14θx22k−1+8ϑx2k−1x4k−2(n+1)n2∏j=1j≠kλ2j−1−∑1⩽k<ℓ⩽n216ϑ2(x2k−1x4ℓ−2−x2ℓ−1x4k−2)2(n+1)2n2∏j=1j≠k,ℓλ2j−1]. |
(b) n is odd, then
det(Hn)=[n−12∏j=1λ2j+n−12∑k=14θx22k+8ϑx2kx4k(n+1)n−12∏j=1j≠kλ2j−∑1⩽k<ℓ⩽n−1216ϑ2(x2kx4ℓ−x2ℓx4k)2(n+1)2n−12∏j=1j≠k,ℓλ2j]×[n+12∏j=1λ2j−1+n+12∑k=14θx22k−1+8ϑx2k−1x4k−2(n+1)n+12∏j=1j≠kλ2j−1−∑1⩽k<ℓ⩽n+1216ϑ2(x2k−1x4ℓ−2−x2ℓ−1x4k−2)2(n+1)2n+12∏j=1j≠k,ℓλ2j−1]. |
Proof. Since both assertions can be proven in the same way, we only prove (a). Consider a,b,c,d,ξ,η are real numbers, xk=sin(kπn+1), k=1,…,2n, λk, k=1,…,n as given by (2.3), θ:=c+ξ−a, ϑ:=d+η−b and the notations used in Lemma 2. The determinant formula for block-triangular matrices (see [21], page 185) and Lemma 2 ensure det(Hn)=det(Φn2)det(Ψn2). We shall first assume λk≠0 for all k=1,…,n,
4θn+1n2∑k=1x22k−1λ2k−1≠−1 | (3.1a) |
4θn+1n2∑k=1x22k−1λ2k−1+4ϑn+1n2∑k=1x2k−1x4k−2λ2k−1≠−1 | (3.1b) |
n2∑k=14θx22k−1+8ϑx2k−1x4k−2(n+1)λ2k−1−16ϑ2(n+1)2∑1⩽k<ℓ⩽n2(x2k−1x4ℓ−2−x2ℓ−1x4k−2)2λ2k−1λ2ℓ−1≠−1 | (3.1c) |
and
4θn+1n2∑k=1x22kλ2k≠−1 | (3.2a) |
4θn+1n2∑k=1x22kλ2k+4ϑn+1n2∑k=1x2kx4kλ2k≠−1 | (3.2b) |
n2∑k=14θx22k+8ϑx2kx4k(n+1)λ2k−16ϑ2(n+1)2∑1⩽k<ℓ⩽n2(x2kx4ℓ−x2ℓx4k)2λ2kλ2ℓ≠−1. | (3.2c) |
Putting Υn2:=diag(λ1,λ3,…,λn−1) and Δn2:=diag(λ2,λ4,…,λn), we have
det(Φn2)=det(Υn2+θxx⊤+ϑxy⊤+ϑyx⊤)=[1+θx⊤Υ−1n2x+2ϑx⊤Υ−1n2y+ϑ2(x⊤Υ−1n2y)2−ϑ2(x⊤Υ−1n2x)(y⊤Υ−1n2y)]det(Υn2)=[n2∏j=1λ2j−1+n2∑k=14θx22k−1+8ϑx2k−1x4k−2(n+1)n2∏j=1j≠kλ2j−1−∑1⩽k<ℓ⩽n216ϑ2(x2k−1x4ℓ−2−x2ℓ−1x4k−2)2(n+1)2n2∏j=1j≠k,ℓλ2j−1] |
and
det(Ψn2)=det(Δn2+θvv⊤+ϑvw⊤+ϑwv⊤)=[1+θv⊤Δ−1n2v+2ϑv⊤Δ−1n2w+ϑ2(v⊤Δ−1n2w)2−ϑ2(v⊤Δ−1n2v)(w⊤Δ−1n2w)]det(Δn2)=[n2∏j=1λ2j+n2∑k=14θx22k+8ϑx2kx4k(n+1)n2∏j=1j≠kλ2j−∑1⩽k<ℓ⩽n216ϑ2(x2kx4ℓ−x2ℓx4k)2(n+1)2n2∏j=1j≠k,ℓλ2j] |
(see [29], pages 69 and 70), i.e.
det(Hn)=[n2∏j=1λ2j+n2∑k=14θx22k+8ϑx2kx4k(n+1)n2∏j=1j≠kλ2j−∑1⩽k<ℓ⩽n216ϑ2(x2kx4ℓ−x2ℓx4k)2(n+1)2n2∏j=1j≠k,ℓλ2j]×[n2∏j=1λ2j−1+n2∑k=14θx22k−1+8ϑx2k−1x4k−2(n+1)n2∏j=1j≠kλ2j−1−∑1⩽k<ℓ⩽n216ϑ2(x2k−1x4ℓ−2−x2ℓ−1x4k−2)2(n+1)2n2∏j=1j≠k,ℓλ2j−1]. | (3.3) |
Since both sides of (3.3) are polynomials in the variables a,b,c,d,ξ,η, conditions (3.1a)–(3.2c) as well as λk≠0 can be dropped, and (3.3) is valid more generally.
Example 1. Suppose the following symmetric quasi-Toeplitz matrix
Tn=[ξbc0…………0babc⋱⋮cbab⋱⋱⋮0cba⋱⋱⋱⋮⋮⋱⋱⋱⋱⋱⋱⋱⋮⋮⋱⋱⋱abc0⋮⋱⋱babc⋮⋱cbab0…………0cbξ] |
(when ξ=a, we have a pentadiagonal symmetric Toeplitz matrix). Let us notice that Theorem 3 of [12] cannot be employed to compute det(Tn). However, according to our Theorem 1 we get (with d=0, η=b and ϑ=0)
det(Tn)={[n2∏j=1λ2j+n2∑k=14(c+ξ−a)x22k(n+1)n2∏j=1j≠kλ2j][n2∏j=1λ2j−1+n2∑k=14(c+ξ−a)x22k−1(n+1)n2∏j=1j≠kλ2j−1],neven[n−12∏j=1λ2j+n−12∑k=14(c+ξ−a)x22k(n+1)n−12∏j=1j≠kλ2j][n+12∏j=1λ2j−1+n+12∑k=14(c+ξ−a)x22k−1(n+1)n+12∏j=1j≠kλ2j−1],nodd |
where
λk=a+2bcos(kπn+1)+2ccos(2kπn+1),k=1,…,n |
and xk=sin(kπn+1), k=1,…,2n. Moreover, if ξ=a−c in Tn, then det(Tn) simply turns into λ1λ2…λn (let us stress that this includes the particular case c=0, i.e. the determinant of tridiagonal symmetric Toeplitz matrices).
The following lemma will allows us to express the eigenvalues of key matrices in this paper as the zeros of explicit rational functions providing, additionally, explicit upper and lower bounds for each one. We will denote the Euclidean norm by ‖.
Lemma 3. Let a, b, c, d, \xi, \eta be real numbers and \lambda_{k} , k = 1, \ldots, n be given by (2.3).
(a) If n is even,
ⅰ. {{\bf{x}}}, {{\bf{y}}} are given by (2.4a) and the eigenvalues of
\begin{equation} {{\mathrm{diag}}} \left(\lambda_{1},\lambda_{3},\ldots,\lambda_{n-1} \right) + (c + \xi - a) {{\bf{x}}} {{\bf{x}}}^{\top} + (d + \eta - b) {{\bf{x}}} {{\bf{y}}}^{\top} + (d + \eta - b) {{\bf{y}}} {{\bf{x}}}^{\top} \end{equation} | (3.4a) |
are not of the form a + 2b \cos \left[\frac{(2k-1)\pi}{n+1} \right] + 2c \cos \left[\frac{2(2k-1) \pi}{n+1} \right] + 2d \cos \left[\frac{3(2k-1) \pi}{n+1} \right] , k = 1, \ldots, \frac{n}{2} , then the eigenvalues of (3.4a) are precisely the zeros of the rational function
\begin{equation} \begin{split} f(t) & = 1 + \frac{4}{n+1} \sum\limits_{k = 1}^{\frac{n}{2}} \frac{(c + \xi - a) \sin^{2} \left[\frac{(2k - 1)\pi}{n+1} \right] + 2(d + \eta - b)\sin \left[\frac{(2k - 1)\pi}{n+1} \right] \sin \left[\frac{(4k - 2)\pi}{n+1} \right]}{\lambda_{2k - 1} - t} \\ & \quad - \frac{16(d + \eta - b)^{2}}{(n+1)^{2}} \sum\limits_{1 \leqslant k < \ell \leqslant \frac{n}{2}} \frac{\left\{\sin \left[\frac{(2k - 1)\pi}{n+1} \right] \sin \left[\frac{(4 \ell - 2)\pi}{n+1} \right] - \sin \left[\frac{(4k - 2)\pi}{n+1} \right] \sin \left[\frac{(2 \ell - 1)\pi}{n+1} \right] \right\}^{2}}{(\lambda_{2k - 1} - t)(\lambda_{2\ell - 1} - t)}. \end{split} \end{equation} | (3.4b) |
Moreover, if \mu_{1} \leqslant \mu_{2} \leqslant \ldots \leqslant \mu_{\frac{n}{2}} are the eigenvalues of (3.4a) and \lambda_{\tau(1)} \leqslant \lambda_{\tau(3)} \leqslant \ldots \leqslant \lambda_{\tau(n-1)} are arranged in a nondecreasing order by some bijection \tau defined in \{1, 3, \ldots, n-1\} , then
\begin{equation} \lambda_{\tau(2k-1)} + \tfrac{(c + \xi - a) - \sqrt{(c + \xi - a)^{2} + 4(d + \eta - b)^{2}}}{2} \leqslant \mu_{k} \leqslant \lambda_{\tau(2k-1)} + \tfrac{(c + \xi - a) + \sqrt{(c + \xi - a)^{2} + 4(d + \eta - b)^{2}}}{2} \end{equation} | (3.4c) |
for each k = 1, \ldots, \tfrac{n}{2} .
ⅱ. {{\bf{v}}}, {{\bf{w}}} are given by (2.4b) and the eigenvalues of
\begin{equation} {{\mathrm{diag}}} \left(\lambda_{2},\lambda_{4},\ldots,\lambda_{n} \right) + (c + \xi - a) {{\bf{v}}} {{\bf{v}}}^{\top} + (d + \eta - b) {{\bf{v}}} {{\bf{w}}}^{\top} + (d + \eta - b) {{\bf{w}}} {{\bf{v}}}^{\top} \end{equation} | (3.5a) |
are not of the form a + 2b \cos \left(\frac{2k\pi}{n+1} \right) + 2c \cos \left(\frac{4k \pi}{n+1} \right) + 2d \cos \left(\frac{6k \pi}{n+1} \right) , k = 1, \ldots, \frac{n}{2} , then the eigenvalues of (3.5a) are precisely the zeros of the rational function
\begin{equation} \begin{split} g(t) & = 1 + \frac{4}{n+1} \sum\limits_{k = 1}^{\frac{n}{2}} \frac{(c + \xi - a) \sin^{2} \left(\frac{2k\pi}{n+1} \right) + 2(d + \eta - b)\sin \left(\frac{2k\pi}{n+1} \right) \sin \left(\frac{4k\pi}{n+1} \right)}{\lambda_{2k} - t} \\ & \quad - \frac{16(d + \eta - b)^{2}}{(n+1)^{2}} \sum\limits_{1 \leqslant k < \ell \leqslant \frac{n}{2}} \frac{\left[\sin \left(\frac{2k\pi}{n+1} \right) \sin \left(\frac{4 \ell\pi}{n+1} \right) - \sin \left(\frac{4k\pi}{n+1} \right) \sin \left(\frac{2 \ell\pi}{n+1} \right) \right]^{2}}{(\lambda_{2k} - t)(\lambda_{2\ell} - t)}. \end{split} \end{equation} | (3.5b) |
Furthermore, if \nu_{1} \leqslant \nu_{2} \leqslant \ldots \leqslant \nu_{\frac{n}{2}} are the eigenvalues of (3.5a) and \lambda_{\sigma(2)} \leqslant \lambda_{\sigma(4)} \leqslant \ldots \leqslant \lambda_{\sigma(n)} are arranged in a nondecreasing order by some bijection \sigma defined in \{2, 4, \ldots, n\} , then
\begin{equation} \lambda_{\sigma(2k)} + \tfrac{(c + \xi - a) - \sqrt{(c + \xi - a)^{2} + 4(d + \eta - b)^{2}}}{2} \leqslant \nu_{k} \leqslant \lambda_{\sigma(2k)} + \tfrac{(c + \xi - a) + \sqrt{(c + \xi - a)^{2} + 4(d + \eta - b)^{2}}}{2} \end{equation} | (3.5c) |
for every k = 1, \ldots, \tfrac{n}{2} .
(b) If n is odd,
ⅰ. {{\bf{x}}}, {{\bf{y}}} are given by (2.5a) and the eigenvalues of
\begin{equation} {{\mathrm{diag}}} \left(\lambda_{1},\lambda_{3},\ldots,\lambda_{n} \right) + (c + \xi - a) {{\bf{x}}} {{\bf{x}}}^{\top} + (d + \eta - b) {{\bf{x}}} {{\bf{y}}}^{\top} + (d + \eta - b) {{\bf{y}}} {{\bf{x}}}^{\top} \end{equation} | (3.6a) |
are not of the form a + 2b \cos \left[\frac{(2k-1)\pi}{n+1} \right] + 2c \cos \left[\frac{2(2k-1) \pi}{n+1} \right] + 2d \cos \left[\frac{3(2k-1) \pi}{n+1} \right] , k = 1, \ldots, \frac{n+1}{2} , then the eigenvalues of (3.6a) are precisely the zeros of the rational function
\begin{equation} \begin{split} f(t) & = 1 + \frac{4}{n+1} \sum\limits_{k = 1}^{\frac{n+1}{2}} \frac{(c + \xi - a) \sin^{2} \left[\frac{(2k - 1)\pi}{n+1} \right] + 2(d + \eta - b)\sin \left[\frac{(2k - 1)\pi}{n+1} \right] \sin \left[\frac{(4k - 2)\pi}{n+1} \right]}{\lambda_{2k - 1} - t} \\ & \quad - \frac{16(d + \eta - b)^{2}}{(n+1)^{2}} \sum\limits_{1 \leqslant k < \ell \leqslant \frac{n+1}{2}} \frac{\left\{\sin \left[\frac{(2k - 1)\pi}{n+1} \right] \sin \left[\frac{(4 \ell - 2)\pi}{n+1} \right] - \sin \left[\frac{(4k - 2)\pi}{n+1} \right] \sin \left[\frac{(2 \ell - 1)\pi}{n+1} \right] \right\}^{2}}{(\lambda_{2k - 1} - t)(\lambda_{2\ell - 1} - t)}. \end{split} \end{equation} | (3.6b) |
Moreover, if \mu_{1} \leqslant \mu_{2} \leqslant \ldots \leqslant \mu_{\frac{n+1}{2}} are the eigenvalues of (3.6a) and \lambda_{\tau(1)} \leqslant \lambda_{\tau(3)} \leqslant \ldots \leqslant \lambda_{\tau(n)} are arranged in a nondecreasing order by some bijection \tau defined in \{1, 3, \ldots, n\} , then
\begin{equation} \lambda_{\tau(2k-1)} + \tfrac{(c + \xi - a) - \sqrt{(c + \xi - a)^{2} + 4(d + \eta - b)^{2}}}{2} \leqslant \mu_{k} \leqslant \lambda_{\tau(2k-1)} + \tfrac{(c + \xi - a) + \sqrt{(c + \xi - a)^{2} + 4(d + \eta - b)^{2}}}{2} \end{equation} | (3.6c) |
for any k = 1, \ldots, \tfrac{n+1}{2} .
ⅱ. {{\bf{v}}}, {{\bf{w}}} are given by (2.5b) and the eigenvalues of
\begin{equation} {{\mathrm{diag}}} \left(\lambda_{2},\lambda_{4},\ldots,\lambda_{n-1} \right) + (c + \xi - a) {{\bf{v}}} {{\bf{v}}}^{\top} + (d + \eta - b) {{\bf{v}}} {{\bf{w}}}^{\top} + (d + \eta - b) {{\bf{w}}} {{\bf{v}}}^{\top} \end{equation} | (3.7a) |
are not of the form a + 2b \cos \left(\frac{2k\pi}{n+1} \right) + 2c \cos \left(\frac{4k \pi}{n+1} \right) + 2d \cos \left(\frac{6k \pi}{n+1} \right) , k = 1, \ldots, \frac{n-1}{2} , then the eigenvalues of (3.7a) are precisely the zeros of the rational function
\begin{equation} \begin{split} g(t) & = 1 + \frac{4}{n+1} \sum\limits_{k = 1}^{\frac{n-1}{2}} \frac{(c + \xi - a) \sin^{2} \left(\frac{2k\pi}{n+1} \right) + 2(d + \eta - b)\sin \left(\frac{2k\pi}{n+1} \right) \sin \left(\frac{4k\pi}{n+1} \right)}{\lambda_{2k} - t} \\ & \quad - \frac{16(d + \eta - b)^{2}}{(n+1)^{2}} \sum\limits_{1 \leqslant k < \ell \leqslant \frac{n-1}{2}} \frac{\left[\sin \left(\frac{2k\pi}{n+1} \right) \sin \left(\frac{4 \ell\pi}{n+1} \right) - \sin \left(\frac{4k\pi}{n+1} \right) \sin \left(\frac{2 \ell\pi}{n+1} \right) \right]^{2}}{(\lambda_{2k} - t)(\lambda_{2\ell} - t)}. \end{split} \end{equation} | (3.7b) |
Furthermore, if \nu_{1} \leqslant \nu_{2} \leqslant \ldots \leqslant \nu_{\frac{n-1}{2}} are the eigenvalues of (3.7a) and \lambda_{\sigma(2)} \leqslant \lambda_{\sigma(4)} \leqslant \ldots \leqslant \lambda_{\sigma(n-1)} are arranged in a nondecreasing order by some bijection \sigma defined in \{2, 4, \ldots, n-1\} , then
\begin{equation} \lambda_{\sigma(2k)} + \tfrac{(c + \xi - a) - \sqrt{(c + \xi - a)^{2} + 4(d + \eta - b)^{2}}}{2} \leqslant \nu_{k} \leqslant \lambda_{\sigma(2k)} + \tfrac{(c + \xi - a) + \sqrt{(c + \xi - a)^{2} + 4(d + \eta - b)^{2}}}{2} \end{equation} | (3.7c) |
for all k = 1, \ldots, \tfrac{n-1}{2} .
Proof. Suppose real numbers a, b, c, d, \xi, \eta , \lambda_{k} , k = 1, \ldots, n given by (2.3) and put \theta : = c + \xi - a , \vartheta : = d + \eta - b . We shall denote by \mathcal{S}(k, m) the collection of all k -element subsets of \{1, 2, \ldots, m \} written in increasing order; additionally, for any rectangular matrix {{\bf{M}}} , we shall indicate by \det \left({{\bf{M}}}[I, J] \right) the minor determined by the subsets I = \left\{i_{1} < i_{2} < \ldots < i_{k} \right\} and J = \left\{j_{1} < j_{2} < \ldots < j_{k} \right\} . Supposing \theta \neq 0 ,
\begin{equation*} {{\bf{X}}} = \left[ \begin{array}{cccc} 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{\pi}{n+1} \right) & 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{3\pi}{n+1} \right) & \ldots & 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{n\pi}{n+1} \right) \\ 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{\pi}{n+1} \right) & 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{3\pi}{n+1} \right) & \ldots & 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{n\pi}{n+1} \right) \\ \frac{2\vartheta}{\sqrt{\theta (n+1)}} \sin \left(\frac{2\pi}{n+1} \right) & \frac{2\vartheta}{\sqrt{\theta (n+1)}} \sin \left(\frac{6\pi}{n+1} \right) & \ldots & \frac{2\vartheta}{\sqrt{\theta (n+1)}} \sin \left[\frac{(4n-2)\pi}{n+1} \right] \end{array} \right] \end{equation*} |
and
\begin{equation*} {{\bf{Y}}} = \left[ \begin{array}{cccc} 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{\pi}{n+1} \right) & 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{3\pi}{n+1} \right) & \ldots & 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{n\pi}{n+1} \right) \\ \frac{2\vartheta}{\sqrt{\theta (n+1)}} \sin \left(\frac{2\pi}{n+1} \right) & \frac{2\vartheta}{\sqrt{\theta (n+1)}} \sin \left(\frac{6\pi}{n+1} \right) & \ldots & \frac{2\vartheta}{\sqrt{\theta (n+1)}} \sin \left[\frac{(4n-2)\pi}{n+1} \right] \\ 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{\pi}{n+1} \right) & 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{3\pi}{n+1} \right) & \ldots & 2\sqrt{\frac{\theta}{n+1}} \sin \left(\frac{n\pi}{n+1} \right) \end{array} \right]. \end{equation*} |
Theorem 1 of [2] ensures that \zeta is an eigenvalue of (3.4a) if, and only if,
\begin{equation*} 1 + \sum\limits_{k = 1}^{\frac{n}{2}} \sum\limits_{J \in \mathcal{S}\left(k,\frac{n}{2} \right)} \sum\limits_{I \in \mathcal{S}(k,3)} \frac{\det\left({{\bf{X}}}[I,J] \right) \det\left({{\bf{Y}}}[I,J] \right)}{\prod_{j \in J}(\lambda_{2j-1} - \zeta)} = 0, \end{equation*} |
provided that \zeta is not an eigenvalue of {{\mathrm{diag}}} \left(\lambda_{1}, \lambda_{3}, \ldots, \lambda_{n-1} \right) . Since
\begin{equation*} \begin{split} &1 + \sum\limits_{k = 1}^{\frac{n}{2}} \sum\limits_{J \in \mathcal{S}\left(k,\frac{n}{2} \right)} \sum\limits_{I \in \mathcal{S}(k,3)} \frac{\det\left({{\bf{X}}}[I,J] \right) \det\left({{\bf{Y}}}[I,J] \right)}{\prod_{j \in J}(\lambda_{2j-1} - \zeta)} = \\ &\quad 1 + \frac{4}{n+1} \sum\limits_{k = 1}^{\frac{n}{2}} \frac{\theta \sin^{2} \left[\frac{(2k - 1)\pi}{n+1} \right] + 2\vartheta\sin \left[\frac{(2k - 1)\pi}{n+1} \right] \sin \left[\frac{(4k - 2)\pi}{n+1} \right]}{\lambda_{2k - 1} - \zeta} \\ &\quad \quad - \frac{16\vartheta^{2}}{(n+1)^{2}} \sum\limits_{1 \leqslant k < \ell \leqslant \frac{n}{2}} \frac{\left\{\sin \left[\frac{(2k - 1)\pi}{n+1} \right] \sin \left[\frac{(4 \ell - 2)\pi}{n+1} \right] - \sin \left[\frac{(4k - 2)\pi}{n+1} \right] \sin \left[\frac{(2 \ell - 1)\pi}{n+1} \right] \right\}^{2}}{(\lambda_{2k - 1} - \zeta)(\lambda_{2\ell - 1} - \zeta)}, \end{split} \end{equation*} |
we obtain (3.4b). Considering now \theta = 0 and setting
\begin{gather*} {{\bf{X}}} = \left[ \begin{array}{cccc} 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left(\frac{\pi}{n+1} \right) & 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left(\frac{3\pi}{n+1} \right) & \ldots & 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left(\frac{n\pi}{n+1} \right) \\ 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left(\frac{2\pi}{n+1} \right) & 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left(\frac{6\pi}{n+1} \right) & \ldots & 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left[\frac{(4n-2)\pi}{n+1} \right] \end{array} \right], \\ {{\bf{Y}}} = \left[ \begin{array}{cccc} 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left(\frac{2\pi}{n+1} \right) & 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left(\frac{6\pi}{n+1} \right) & \ldots & 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left[\frac{(4n-2)\pi}{n+1} \right] \\ 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left(\frac{\pi}{n+1} \right) & 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left(\frac{3\pi}{n+1} \right) & \ldots & 2\sqrt{\frac{\vartheta}{n + 1}} \sin \left(\frac{n\pi}{n+1} \right) \end{array} \right] \end{gather*} |
we still have that \zeta is an eigenvalue of (3.4a) if, and only if,
\begin{equation*} 1 + \sum\limits_{k = 1}^{\frac{n}{2}} \sum\limits_{J \in \mathcal{S}\left(k,\frac{n}{2} \right)} \sum\limits_{I \in \mathcal{S}(k,2)} \frac{\det\left({{\bf{X}}}[I,J] \right) \det\left({{\bf{Y}}}[I,J] \right)}{\prod_{j \in J}(\lambda_{2j-1} - \zeta)} = 0, \end{equation*} |
assuming that \zeta is not an eigenvalue of {{\mathrm{diag}}} \left(\lambda_{1}, \lambda_{3}, \ldots, \lambda_{n-1} \right) . Hence,
\begin{equation*} \begin{split} &1 + \sum\limits_{k = 1}^{\frac{n}{2}} \sum\limits_{J \in \mathcal{S}\left(k,\frac{n}{2} \right)} \sum\limits_{I \in \mathcal{S}(k,2)} \frac{\det\left({{\bf{X}}}[I,J] \right) \det\left({{\bf{Y}}}[I,J] \right)}{\prod_{j \in J}(\lambda_{2j-1} - \zeta)} = \\ &\quad 1 + \frac{8\vartheta}{n+1} \sum\limits_{k = 1}^{\frac{n}{2}} \frac{\sin \left[\frac{(2k - 1)\pi}{n+1} \right] \sin \left[\frac{(4k - 2)\pi}{n+1} \right]}{\lambda_{2k - 1} - \zeta} \\ & \quad \quad - \frac{16\vartheta^{2}}{(n+1)^{2}} \sum\limits_{1 \leqslant k < \ell \leqslant \frac{n}{2}} \frac{\left\{\sin \left[\frac{(2k - 1)\pi}{n+1} \right] \sin \left[\frac{(4 \ell - 2)\pi}{n+1} \right] - \sin \left[\frac{(4k - 2)\pi}{n+1} \right] \sin \left[\frac{(2 \ell - 1)\pi}{n+1} \right] \right\}^{2}}{(\lambda_{2k - 1} - \zeta)(\lambda_{2\ell - 1} - \zeta)}, \end{split} \end{equation*} |
and (3.4b) is established. Let \mu_{1} \leqslant \mu_{2} \leqslant \ldots \leqslant \mu_{\frac{n}{2}} be the eigenvalues of (3.4a) and \lambda_{\tau(1)} \leqslant \lambda_{\tau(3)} \leqslant \ldots \leqslant \lambda_{\tau(n-1)} be arranged in a nondecreasing order by some bijection \tau defined in \{1, 3, \ldots, n-1\} . Thus,
\begin{equation} \lambda_{\tau(2k-1)} + \lambda_{\min} \left(\theta {{\bf{x}}} {{\bf{x}}}^{\top} + \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} + \vartheta {{\bf{y}}} {{\bf{x}}}^{\top} \right) \leqslant \mu_{k} \leqslant \lambda_{\tau(2k-1)} + \lambda_{\max} \left(\theta {{\bf{x}}} {{\bf{x}}}^{\top} + \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} + \vartheta {{\bf{y}}} {{\bf{x}}}^{\top} \right) \end{equation} | (3.8) |
for each k = 1, \ldots, \tfrac{n}{2} (see [23], page 242). Since the characteristic polynomial of \theta {{\bf{x}}} {{\bf{x}}}^{\top} + \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} + \vartheta {{\bf{y}}} {{\bf{x}}}^{\top} is
\begin{equation*} \begin{split} \det \left[t {{\bf{I}}}_{\frac{n}{2}} - \theta {{\bf{x}}} {{\bf{x}}}^{\top} - \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} - \vartheta {{\bf{y}}} {{\bf{x}}}^{\top} \right] & = t^{\frac{n}{2} - 2} \Big[t^{2} - \left(\theta {{\bf{x}}}^{\top} {{\bf{x}}} + \vartheta {{\bf{y}}}^{\top} {{\bf{x}}} + \vartheta {{\bf{x}}}^{\top} {{\bf{y}}} \right)t + \vartheta^{2} \left({{\bf{x}}}^{\top} {{\bf{y}}} \right) \left({{\bf{y}}}^{\top} {{\bf{x}}} \right) - \vartheta^{2} \left({{\bf{x}}}^{\top} {{\bf{x}}} \right) \left({{\bf{y}}}^{\top} {{\bf{y}}} \right) \Big] \\ & = t^{\frac{n}{2} - 2} \Big\{t^{2} - \left(\theta \left\lVert{{{\bf{x}}}} \right\rVert^{2} + 2\vartheta \, {{\bf{x}}}^{\top} {{\bf{y}}} \right)t + \vartheta^{2} \left[\left({{\bf{x}}}^{\top} {{\bf{y}}} \right)^{2} - \left\lVert{{{\bf{x}}}} \right\rVert^{2} \left\lVert{{{\bf{y}}}} \right\rVert^{2} \right] \Big\}, \end{split} \end{equation*} |
we have that its spectrum is
\begin{equation} {{\mathrm{Spec}}} \left(\theta {{\bf{x}}} {{\bf{x}}}^{\top} + \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} + \vartheta {{\bf{y}}} {{\bf{x}}}^{\top} \right) = \left\{0, \alpha^{-}, \alpha^{+} \right\}, \end{equation} | (3.9) |
where \alpha^{\pm} : = \frac{\theta \left\lVert{{{\bf{x}}}} \right\rVert^{2} + 2 \vartheta {{\bf{x}}}^{\top} {{\bf{y}}} \pm \sqrt{\left(\theta \left\lVert{{{\bf{x}}}} \right\rVert^{2} + 2 \vartheta {{\bf{x}}}^{\top} {{\bf{y}}}\right)^{2} - 4\vartheta^{2} \left[\left({{\bf{x}}}^{\top} {{\bf{y}}} \right)^{2} - \left\lVert{{{\bf{x}}}} \right\rVert^{2} \left\lVert{{{\bf{y}}}} \right\rVert^{2} \right]}}{2} . From the identities
\begin{gather*} \sum\limits_{k = 1}^{\frac{n}{2}} \sin^{2} \left[\frac{(2k - 1) \pi}{n + 1} \right] = \frac{n + 1}{4} = \sum\limits_{k = 1}^{\frac{n}{2}} \sin^{2} \left[\frac{(4k - 2) \pi}{n + 1} \right], \\ \sum\limits_{k = 1}^{\frac{n}{2}} \sin \left[\frac{(2k - 1) \pi}{n + 1} \right] \sin \left[\frac{(4k - 2) \pi}{n + 1} \right] = 0, \end{gather*} |
it follows \lVert {{\bf{x}}} \rVert = \lVert {{\bf{y}}} \rVert = 1 and {{\bf{x}}}^{\top} {{\bf{y}}} = 0 . Hence, (3.8) and (3.9) yields (3.4c). The proofs of the remaining assertions are performed in the same way and so will be omitted.
The next statement allows us to locate the eigenvalues of {{\bf{H}}}_{n} , providing also explicit bounds for each of them.
Theorem 2. Let a, b, c, d, \xi, \eta be real numbers, \lambda_{k} , k = 1, \ldots, n be given by (2.3) and {{\bf{H}}}_{n} be the n \times n matrix (1.1).
(a) If n is even, the eigenvalues of {\boldsymbol{\Phi}}_{\frac{n}{2}} in (2.4d) are not of the form \lambda_{2k-1} , k = 1, \ldots, \frac{n}{2} and the eigenvalues of {\boldsymbol{\Psi}}_{\frac{n}{2}} in (2.4e) are not of the form \lambda_{2k} , k = 1, \ldots, \frac{n}{2} , then the eigenvalues of {{\bf{H}}}_{n} are precisely the zeros of the rational functions f(t) and g(t) given by (3.4b) and (3.5b), respectively. Moreover, if \mu_{1} \leqslant \mu_{2} \leqslant \ldots \leqslant \mu_{\frac{n}{2}} are the zeros of f(t) and \nu_{1} \leqslant \nu_{2} \leqslant \ldots \leqslant \nu_{\frac{n}{2}} are the zeros of g(t) (counting multiplicities in both cases), then \mu_{k} , k = 1, \ldots, \tfrac{n}{2} and \nu_{k} , k = 1, \ldots, \tfrac{n}{2} satisfy (3.4c) and (3.5c), respectively.
(b) If n is odd, the eigenvalues of {\boldsymbol{\Phi}}_{\frac{n+1}{2}} in (2.5d) are not of the form \lambda_{2k-1} , k = 1, \ldots, \frac{n+1}{2} and the eigenvalues of {\boldsymbol{\Psi}}_{\frac{n-1}{2}} in (2.5e) are not of the form \lambda_{2k} , k = 1, \ldots, \frac{n-1}{2} , then the eigenvalues of {{\bf{H}}}_{n} are precisely the zeros of the rational functions f(t) and g(t) given by (3.6b) and (3.7b), respectively. Furthermore, if \mu_{1} \leqslant \mu_{2} \leqslant \ldots \leqslant \mu_{\frac{n+1}{2}} are the zeros of f(t) and \nu_{1} \leqslant \nu_{2} \leqslant \ldots \leqslant \nu_{\frac{n-1}{2}} are the zeros of g(t) (counting multiplicities in both cases), then \mu_{k} , k = 1, \ldots, \tfrac{n+1}{2} and \nu_{k} , k = 1, \ldots, \tfrac{n-1}{2} satisfy (3.6c) and (3.7c), respectively.
Proof. Suppose a, b, c, d, \xi, \eta are real numbers and \lambda_{k} , k = 1, \ldots, n as given by (2.3).
(a) According to Lemma 2 and the determinant formula for block-triangular matrices (see [21], page 185), the characteristic polynomial of {{\bf{H}}}_{n} for n even is
\begin{equation*} \det \left(t {{\bf{I}}}_{n} - {{\bf{H}}}_{n} \right) = \det \left(t {{\bf{I}}}_{\frac{n}{2}} - {\boldsymbol{\Phi}}_{\frac{n}{2}} \right) \det \left(t {{\bf{I}}}_{\frac{n}{2}} - {\boldsymbol{\Psi}}_{\frac{n}{2}} \right), \end{equation*} |
where {\boldsymbol{\Phi}}_{\frac{n}{2}} and {\boldsymbol{\Psi}}_{\frac{n}{2}} are given by (2.4d) and (2.4e), respectively, so that the thesis is a direct consequence of Lemma 2.
(b) For n odd, we obtain
\begin{equation*} \det \left(t {{\bf{I}}}_{n} - {{\bf{H}}}_{n} \right) = \det \left(t {{\bf{I}}}_{\frac{n+1}{2}} - {\boldsymbol{\Phi}}_{\frac{n+1}{2}} \right) \det \left(t {{\bf{I}}}_{\frac{n-1}{2}} - {\boldsymbol{\Psi}}_{\frac{n-1}{2}} \right), \end{equation*} |
where {\boldsymbol{\Phi}}_{\frac{n+1}{2}} and {\boldsymbol{\Psi}}_{\frac{n-1}{2}} are given by (2.5d) and (2.5e), respectively. The conclusion follows from Lemma 2.
From Geršgorin theorem (see [23], Theorem 6.1.1), it can also be stated that all eigenvalues of {{\bf{H}}}_{n} (n \geqslant 7) belong to [h_{\min}, h_{\max}] , where
\begin{equation*} h_{\min} : = \min\{\xi - \lvert c \rvert - \lvert d \rvert - \lvert \eta \rvert, a - \lvert b \rvert - \lvert c \rvert - \lvert d \rvert - \lvert \eta \rvert, a - 2\lvert b \rvert - 2\lvert c \rvert - 2\lvert d \rvert \} \end{equation*} |
and
\begin{equation*} h_{\max} : = \max\{\xi + \lvert c \rvert + \lvert d \rvert + \lvert \eta \rvert, a + \lvert b \rvert + \lvert c \rvert + \lvert d \rvert + \lvert \eta \rvert, a + 2\lvert b \rvert + 2\lvert c \rvert + 2\lvert d \rvert \}. \end{equation*} |
Further, all eigenvalues of the n \times n heptadiagonal symmetric Toeplitz matrix
\begin{equation*} {{\mathrm{hepta}}}_{n}(d,c,b,a,b,c,d) = \left[ \begin{array}{ccccccccccc} a & b & c & d & 0 & \ldots & \ldots & \ldots & \ldots & \ldots & 0 \\ b & a & b & c & d & \ddots & & & & & \vdots \\ c & b & a & b & c & \ddots & \ddots & & & & \vdots \\ d & c & b & a & b & \ddots & \ddots & \ddots & & & \vdots \\ 0 & d & c & b & a & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & a & b & c & d & 0 \\ \vdots & & & \ddots & \ddots & \ddots & b & a & b & c & d \\ \vdots & & & & \ddots & \ddots & c & b & a & b & c \\ \vdots & & & & & \ddots & d & c & b & a & b \\ 0 & \ldots & \ldots & \ldots & \ldots & \ldots & 0 & d & c & b & a \end{array} \right] \end{equation*} |
are contained in the interval
\left[\underset{-\pi \leqslant t \leqslant \pi}{\min} \varphi(t), \underset{-\pi \leqslant t \leqslant \pi}{\max} \varphi(t) \right] , |
where \varphi(t) = a + 2b \cos(t) + 2c \cos(2t) + 2d \cos(3t) , -\pi \leqslant t \leqslant \pi (see [18], Theorem 6.1). As illustrated, eigenvalues of {{\bf{H}}}_{n} and those of {{\mathrm{hepta}}}_{n}(d, c, b, a, b, c, d) with a = 0 , b = -2 , c = -1 , d = 2 , \xi = 9 , \eta = -7 are depicted in complex plane for increasing values of n .
A distinctive feature of the blue graphics is the existence of two outliers for {{\bf{H}}}_{n} , i.e. eigenvalues that do not belong to the interval \left[-\frac{154}{27}, 7 \right] , which seems to become just one as n \rightarrow \infty . This numerical experiment also reveals that as the matrix size increases, the spectrum of quasi-Toeplitz matrix {{\bf{H}}}_{n} approaches the spectrum of Toeplitz matrix {{\mathrm{hepta}}}_{n}(2, -1, -2, 1, -2, -1, 2) plus the outliers; this is the scenario that is consistent with the study presented in [6].
Remark 2. In [12] and [32], similar localization results were established for the eigenvalues of symmetric Toeplitz matrices (pentadiagonal and heptadiagonal, respectively). The referred papers make use of Chebyshev polynomials and their properties to earn rational functions with a more concise form. However, its statements do not cover the broader class of matrices (1.1).
The decomposition presented in Lemma 2 allows us also to compute eigenvectors for {{\bf{H}}}_{n} in (1.1).
Theorem 3. Let a, b, c, d, \xi, \eta be real numbers, \lambda_{k} , k = 1, \ldots, n be given by (2.3) and {{\bf{H}}}_{n} be the n \times n matrix (1.1).
(a) If n is even, {{\bf{S}}}_{n} is the n \times n matrix (2.1), {{\bf{P}}}_{n} is the n \times n permutation matrix (2.4c), the zeros \mu_{1}, \ldots, \mu_{\frac{n}{2}} of (3.4b) are not of the form \lambda_{2k-1} , k = 1, \ldots, \frac{n}{2} , the zeros \nu_{1}, \ldots, \nu_{\frac{n}{2}} of (3.5b) are not of the form \lambda_{2k} , k = 1, \ldots, \frac{n}{2} ,
\begin{gather*} \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin^{2} \left[\frac{(2j - 1)\pi}{n + 1} \right] + (d + \eta - b) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\} \neq \frac{n+1}{4}, \\ \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right] \neq \frac{n+1}{4} \end{gather*} |
and b \neq d + \eta , then
\begin{equation} {{\bf{S}}}_{n} {{\bf{P}}}_{n} \left[ \begin{array}{c} \frac{2\sin\left(\frac{2\pi}{n+1} \right)}{\sqrt{n+1}(\mu_{k} - \lambda_{1})} + \frac{8 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right] + (d + \eta - b) \sin^{2} \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin^{2} \left[\frac{(2j - 1)\pi}{n + 1} \right] + (d + \eta - b) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}} \frac{\sin \left(\frac{\pi}{n+1} \right)}{\sqrt{n+1}(\mu_{k} - \lambda_{1})} \\[25pt] \frac{2\sin\left(\frac{6\pi}{n+1} \right)}{\sqrt{n+1}(\mu_{k} - \lambda_{3})} + \frac{8 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right] + (d + \eta - b) \sin^{2} \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin^{2} \left[\frac{(2j - 1)\pi}{n + 1} \right] + (d + \eta - b) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}} \frac{\sin \left(\frac{3\pi}{n+1} \right)}{\sqrt{n+1}(\mu_{k} - \lambda_{3})} \\ \vdots \\[3pt] \frac{2\sin\left[\frac{(2n-2)\pi}{n+1} \right]}{\sqrt{n+1}(\mu_{k} - \lambda_{n-1})} + \frac{8 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right] + (d + \eta - b) \sin^{2} \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin^{2} \left[\frac{(2j - 1)\pi}{n + 1} \right] + (d + \eta - b) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}} \frac{\sin \left[\frac{(n-1)\pi}{n+1} \right]}{\sqrt{n+1}(\mu_{k} - \lambda_{n-1})} \\[15pt] 0 \\ \vdots \\[3pt] 0 \end{array} \right] \end{equation} | (3.10a) |
is an eigenvector of {{\bf{H}}}_{n} associated to \mu_{k} , k = 1, \ldots, \frac{n}{2} , and
\begin{equation} {{\bf{S}}}_{n} {{\bf{P}}}_{n} \left[ \begin{array}{c} 0 \\ \vdots \\[3pt] 0 \\ \frac{2\sin\left(\frac{4\pi}{n+1} \right)}{\sqrt{n+1}(\nu_{k} - \lambda_{2})} + \frac{8 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]} \frac{\sin \left(\frac{2\pi}{n+1} \right)}{\sqrt{n+1}(\nu_{k} - \lambda_{2})} \\[20pt] \frac{2\sin\left(\frac{8\pi}{n+1} \right)}{\sqrt{n+1}(\nu_{k} - \lambda_{4})} + \frac{8 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]} \frac{\sin \left(\frac{4\pi}{n+1} \right)}{\sqrt{n+1}(\nu_{k} - \lambda_{4})} \\ \vdots \\ \frac{2\sin\left(\frac{2n\pi}{n+1} \right)}{\sqrt{n+1}(\nu_{k} - \lambda_{n})} + \frac{8 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]} \frac{\sin \left(\frac{n\pi}{n+1} \right)}{\sqrt{n+1}(\nu_{k} - \lambda_{n})} \end{array} \right] \end{equation} | (3.10b) |
is an eigenvector of {{\bf{H}}}_{n} associated to \nu_{k} , k = 1, \ldots, \frac{n}{2} .
(b) If n is odd, {{\bf{S}}}_{n} is the n \times n matrix (2.1), {{\bf{P}}}_{n} is the n \times n permutation matrix (2.4c), the zeros \mu_{1}, \ldots, \mu_{\frac{n+1}{2}} of (3.6b) are not of the form \lambda_{2k-1} , k = 1, \ldots, \frac{n+1}{2} , the zeros \nu_{1}, \ldots, \nu_{\frac{n-1}{2}} of (3.7b) are not of the form \lambda_{2k} , k = 1, \ldots, \frac{n-1}{2} ,
\begin{equation*} \underset{j = 1}{\overset{\frac{n+1}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin^{2} \left[\frac{(2j - 1)\pi}{n + 1} \right] + (d + \eta - b) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\} \neq \frac{n+1}{4}, \end{equation*} |
\begin{equation*} \underset{j = 1}{\overset{\frac{n-1}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right] \neq \frac{n+1}{4} \end{equation*} |
and b \neq d + \eta , then
\begin{equation} {{\bf{S}}}_{n} {{\bf{P}}}_{n} \left[ \begin{array}{c} \frac{2\sin\left(\frac{2\pi}{n+1} \right)}{\sqrt{n+1}(\mu_{k} - \lambda_{1})} + \frac{8 \underset{j = 1}{\overset{\frac{n+1}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right] + (d + \eta - b) \sin^{2} \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n+1}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin^{2} \left[\frac{(2j - 1)\pi}{n + 1} \right] + (d + \eta - b) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}} \frac{\sin \left(\frac{\pi}{n+1} \right)}{\sqrt{n+1}(\mu_{k} - \lambda_{1})} \\[25pt] \frac{2\sin\left(\frac{6\pi}{n+1} \right)}{\sqrt{n+1}(\mu_{k} - \lambda_{3})} + \frac{8 \underset{j = 1}{\overset{\frac{n+1}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right] + (d + \eta - b) \sin^{2} \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n+1}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin^{2} \left[\frac{(2j - 1)\pi}{n + 1} \right] + (d + \eta - b) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}} \frac{\sin \left(\frac{3\pi}{n+1} \right)}{\sqrt{n+1}(\mu_{k} - \lambda_{3})} \\ \vdots \\[3pt] \frac{2\sin\left(\frac{2n\pi}{n+1} \right)}{\sqrt{n+1}(\mu_{k} - \lambda_{n-1})} + \frac{8 \underset{j = 1}{\overset{\frac{n+1}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right] + (d + \eta - b) \sin^{2} \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n+1}{2}}{\sum}} \left\{\frac{(c + \xi - a) \sin^{2} \left[\frac{(2j - 1)\pi}{n + 1} \right] + (d + \eta - b) \sin \left[\frac{(2j - 1)\pi}{n + 1} \right] \sin \left[\frac{(4j - 2)\pi}{n + 1} \right]}{\mu_{k} - \lambda_{2j-1}} \right\}} \frac{\sin \left(\frac{n\pi}{n+1} \right)}{\sqrt{n+1}(\mu_{k} - \lambda_{n-1})} \\[15pt] 0 \\ \vdots \\[3pt] 0 \end{array} \right] \end{equation} | (3.11a) |
is an eigenvector of {{\bf{H}}}_{n} associated to \mu_{k} , k = 1, \ldots, \frac{n+1}{2} , and
\begin{equation} {{\bf{S}}}_{n} {{\bf{P}}}_{n} \left[ \begin{array}{c} 0 \\ \vdots \\[3pt] 0 \\ \frac{2\sin\left(\frac{4\pi}{n+1} \right)}{\sqrt{n+1}(\nu_{k} - \lambda_{2})} + \frac{8 \underset{j = 1}{\overset{\frac{n-1}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n-1}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]} \frac{\sin \left(\frac{2\pi}{n+1} \right)}{\sqrt{n+1}(\nu_{k} - \lambda_{2})} \\[20pt] \frac{2\sin\left(\frac{8\pi}{n+1} \right)}{\sqrt{n+1}(\nu_{k} - \lambda_{4})} + \frac{8 \underset{j = 1}{\overset{\frac{n-1}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n-1}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]} \frac{\sin \left(\frac{4\pi}{n+1} \right)}{\sqrt{n+1}(\nu_{k} - \lambda_{4})} \\ \vdots \\ \frac{2\sin\left[\frac{2(n-1)\pi}{n+1} \right]}{\sqrt{n+1}(\nu_{k} - \lambda_{n})} + \frac{8 \underset{j = 1}{\overset{\frac{n-1}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]}{n + 1 - 4 \underset{j = 1}{\overset{\frac{n-1}{2}}{\sum}} \left[\frac{(c + \xi - a) \sin \left(\frac{2j\pi}{n + 1} \right) \sin \left(\frac{4j\pi}{n + 1} \right) + (d + \eta - b) \sin^{2} \left(\frac{4j\pi}{n + 1} \right)}{\nu_{k} - \lambda_{2j}} \right]} \frac{\sin \left[\frac{(n-1)\pi}{n+1} \right]}{\sqrt{n+1}(\nu_{k} - \lambda_{n})} \end{array} \right] \end{equation} | (3.11b) |
is an eigenvector of {{\bf{H}}}_{n} associated to \nu_{k} , k = 1, \ldots, \frac{n-1}{2} .
Proof. Since both assertions can be proven in the same way, we only prove (a). Let n be even. We can rewrite the matricial equation (\mu_{k} {{\bf{I}}}_{n} - {{\bf{H}}}_{n}) {{\bf{q}}} = {{\bf{0}}} as
\begin{equation} {{\bf{S}}}_{n} {{\bf{P}}}_{n} \left[ \begin{array}{c|c} \mu_{k} {{\bf{I}}}_{\frac{n}{2}} - {\boldsymbol{\Phi}}_{\frac{n}{2}} & {{\bf{O}}} \\[2pt] \hline {{\bf{O}}} & \mu_{k} {{\bf{I}}}_{\frac{n}{2}} - {\boldsymbol{\Psi}}_{\frac{n}{2}} \end{array} \right] {{\bf{P}}}_{n}^{\top} {{\bf{S}}}_{n} {{\bf{q}}} = {{\bf{0}}}, \end{equation} | (3.12) |
where {{\bf{S}}}_{n} is the matrix (2.1), {{\bf{P}}}_{n} is the permutation matrix (2.4c) and {\boldsymbol{\Phi}}_{\frac{n}{2}} and {\boldsymbol{\Psi}}_{\frac{n}{2}} are given by (2.4d) and (2.4e), respectively. Thus,
\begin{gather*} \left[\mu_{k} {{\bf{I}}}_{\frac{n}{2}} - {{\mathrm{diag}}} \left(\lambda_{1},\lambda_{3},\ldots,\lambda_{n-1} \right) - (c + \xi - a) {{\bf{x}}} {{\bf{x}}}^{\top} - (d + \eta - b) {{\bf{x}}} {{\bf{y}}}^{\top} - (d + \eta - b) {{\bf{y}}} {{\bf{x}}}^{\top} \right] {{\bf{q}}}_{1} = {{\bf{0}}}, \\ \left[\mu_{k} {{\bf{I}}}_{\frac{n}{2}} - {{\mathrm{diag}}} \left(\lambda_{2},\lambda_{4},\ldots,\lambda_{n} \right) - (c + \xi - a) {{\bf{v}}} {{\bf{v}}}^{\top} - (d + \eta - b) {{\bf{v}}} {{\bf{w}}}^{\top} - (d + \eta - b) {{\bf{w}}} {{\bf{v}}}^{\top} \right] {{\bf{q}}}_{2} = {{\bf{0}}}, \\ \left[ \begin{array}{c} {{\bf{q}}}_{1} \\ {{\bf{q}}}_{2} \end{array} \right] = {{\bf{P}}}_{n}^{\top} {{\bf{S}}}_{n} {{\bf{q}}}. \end{gather*} |
That is,
\begin{gather*} {{\bf{q}}}_{1} = \alpha \left[\mu_{k} {{\bf{I}}}_{\frac{n}{2}} - {{\mathrm{diag}}} \left(\lambda_{1},\lambda_{3},\ldots,\lambda_{n-1} \right) - (c + \xi - a) {{\bf{x}}} {{\bf{x}}}^{\top} - (d + \eta - b) {{\bf{x}}} {{\bf{y}}}^{\top} \right]^{-1} {{\bf{y}}} \\ {{\bf{q}}}_{2} = {{\bf{0}}} \end{gather*} |
for \alpha \neq 0 (see [8], page 41), and
\begin{equation*} {{\bf{q}}} = {{\bf{S}}}_{n} {{\bf{P}}}_{n} \left[ \begin{array}{c} \alpha \left[\mu_{k} {{\bf{I}}}_{\frac{n}{2}} - {{\mathrm{diag}}} \left(\lambda_{1},\lambda_{3},\ldots,\lambda_{n-1} \right) - (c + \xi - a) {{\bf{x}}} {{\bf{x}}}^{\top} - (d + \eta - b) {{\bf{x}}} {{\bf{y}}}^{\top} \right]^{-1} {{\bf{y}}} \\ {{\bf{0}}} \end{array} \right] \end{equation*} |
is a nontrivial solution of (3.12). Thus, choosing \alpha = 1 , we conclude that (3.10a) is an eigenvector of {{\bf{H}}}_{n} associated to the eigenvalue \mu_{k} . Similarly, from (\nu_{k} {{\bf{I}}}_{n} - {{\bf{H}}}_{n}) {{\bf{q}}} = {{\bf{0}}} , we have
\begin{equation*} {{\bf{S}}}_{n} {{\bf{P}}}_{n} \left[ \begin{array}{c|c} \nu_{k} {{\bf{I}}}_{\frac{n}{2}} - {\boldsymbol{\Phi}}_{\frac{n}{2}} & {{\bf{O}}} \\[2pt] \hline {{\bf{O}}} & \nu_{k} {{\bf{I}}}_{\frac{n}{2}} - {\boldsymbol{\Psi}}_{\frac{n}{2}} \end{array} \right] {{\bf{P}}}_{n}^{\top} {{\bf{S}}}_{n} {{\bf{q}}} = {{\bf{0}}} \end{equation*} |
and
\begin{equation*} {{\bf{q}}} = {{\bf{S}}}_{n} {{\bf{P}}}_{n} \left[ \begin{array}{c} {{\bf{0}}} \\ \alpha \left[\nu_{k} {{\bf{I}}}_{\frac{n}{2}} - {{\mathrm{diag}}} \left(\lambda_{2},\lambda_{4},\ldots,\lambda_{n} \right) - (c + \xi - a) {{\bf{v}}} {{\bf{v}}}^{\top} - (d + \eta - b) {{\bf{v}}} {{\bf{w}}}^{\top} \right]^{-1} {{\bf{w}}} \end{array} \right] \end{equation*} |
for \alpha \neq 0 , which is an eigenvector of {{\bf{H}}}_{n} associated to the eigenvalue \nu_{k} .
The orthogonal block diagonalization presented in Lemma 2 and Miller's formula for the inverse of the sum of nonsingular matrices lead us to an explicit expression for the inverse of {{\bf{H}}}_{n} .
Theorem 4. Let a, b, c, d, \xi, \eta be real numbers, \lambda_{k} , k = 1, \ldots, n be given by (2.3) and {{\bf{H}}}_{n} be the n \times n matrix (1.1). If \lambda_{k} \neq 0 for every k = 1, \ldots, n , {{\bf{H}}}_{n} is nonsingular and:
(a) n is even, then
\begin{equation*} {{\bf{H}}}_{n}^{-1} = {{\bf{S}}}_{n} {{\bf{P}}}_{n} \left[ \begin{array}{cc} {{\bf{Q}}}_{\frac{n}{2}} & {{\bf{O}}} \\ {{\bf{O}}} & {{\bf{R}}}_{\frac{n}{2}} \end{array} \right] {{\bf{P}}}_{n}^{\top} {{\bf{S}}}_{n}, \end{equation*} |
where {{\bf{S}}}_{n} is the n \times n matrix (2.1), {{\bf{P}}}_{n} is the n \times n permutation matrix (2.4c),
\begin{equation} \begin{split} {{\bf{Q}}}_{\frac{n}{2}} & = {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} - \tfrac{(d + \eta - b) + (d + \eta - b)^{2} {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}}}{\rho} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} \left({{\bf{y}}} {{\bf{x}}}^{\top} + {{\bf{x}}} {{\bf{y}}}^{\top} \right) {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} \\ & \quad + \tfrac{(d + \eta - b)^{2}{{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{y}}} - (c + \xi - a)}{\rho} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}} {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} + \tfrac{(d + \eta - b)^{2} {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}}}{\rho} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{y}}} {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1}, \end{split} \end{equation} | (3.13a) |
with {\boldsymbol{\Upsilon}}_{\frac{n}{2}} : = {{\mathrm{diag}}} \left(\lambda_{1}, \lambda_{3}, \ldots, \lambda_{n-1} \right) , {{\bf{x}}}, {{\bf{y}}} given by (2.4a),
\begin{equation} \rho = 1 + (c + \xi - a) {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}} + 2 (d + \eta - b) {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}} + (d + \eta - b)^{2} \left[\big({{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{y}}} \big)^{2} - \big({{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}} \big) \big({{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{y}}} \big) \right] \end{equation} | (3.13b) |
and
\begin{equation} \begin{split} {{\bf{R}}}_{\frac{n}{2}} & = {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} - \tfrac{(d + \eta - b) + (d + \eta - b)^{2} {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}}}{\rho} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} \left({{\bf{w}}} {{\bf{v}}}^{\top} + {{\bf{v}}} {{\bf{w}}}^{\top} \right) {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} \\ & \quad + \tfrac{(d + \eta - b)^{2}{{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{w}}} - (c + \xi - a)}{\rho} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}} {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} + \tfrac{(d + \eta - b)^{2} {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}}}{\rho} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{w}}} {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1}, \end{split} \end{equation} | (3.13c) |
with {\boldsymbol{\Delta}}_{\frac{n}{2}} : = {{\mathrm{diag}}} \left(\lambda_{2}, \lambda_{4}, \ldots, \lambda_{n} \right) , {{\bf{v}}}, {{\bf{w}}} given by (2.5a) and
\begin{equation} \varrho = 1 + (c + \xi - a) {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}} + 2 (d + \eta - b) {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}} + (d + \eta - b)^{2} \left[\big({{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{w}}} \big)^{2} - \big({{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}} \big) \big({{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{w}}} \big) \right]. \end{equation} | (3.13d) |
(b) n is odd, then
\begin{equation*} {{\bf{H}}}_{n}^{-1} = {{\bf{S}}}_{n} {{\bf{P}}}_{n} \left[ \begin{array}{cc} {{\bf{Q}}}_{\frac{n+1}{2}} & {{\bf{O}}} \\ {{\bf{O}}} & {{\bf{R}}}_{\frac{n-1}{2}} \end{array} \right] {{\bf{P}}}_{n}^{\top} {{\bf{S}}}_{n}, \end{equation*} |
where {{\bf{S}}}_{n} is the n \times n matrix (2.1), {{\bf{P}}}_{n} is the n \times n permutation matrix (2.5c),
\begin{equation} \begin{split} {{\bf{Q}}}_{\frac{n+1}{2}} & = {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} - \tfrac{(d + \eta - b) + (d + \eta - b)^{2} {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} {{\bf{x}}}}{\rho} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} \left({{\bf{y}}} {{\bf{x}}}^{\top} + {{\bf{x}}} {{\bf{y}}}^{\top} \right) {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} \\ & \quad + \tfrac{(d + \eta - b)^{2}{{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} {{\bf{y}}} - (c + \xi - a)}{\rho} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} {{\bf{x}}} {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} + \tfrac{(d + \eta - b)^{2} {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} {{\bf{x}}}}{\rho} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} {{\bf{y}}} {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1}, \end{split} \end{equation} | (3.14a) |
with {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}} : = {{\mathrm{diag}}} \left(\lambda_{1}, \lambda_{3}, \ldots, \lambda_{n} \right) , {{\bf{x}}}, {{\bf{y}}} given by (2.5a),
\begin{equation} \begin{split} \rho & = 1 + (c + \xi - a) {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} {{\bf{x}}} + 2 (d + \eta - b) {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} {{\bf{x}}} \\&+ (d + \eta - b)^{2} \left[\big({{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} {{\bf{y}}} \big)^{2} - \big({{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} {{\bf{x}}} \big) \big({{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n+1}{2}}^{-1} {{\bf{y}}} \big) \right] \end{split} \end{equation} | (3.14b) |
and
\begin{equation} \begin{split} {{\bf{R}}}_{\frac{n-1}{2}} & = {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} - \tfrac{(d + \eta - b) + (d + \eta - b)^{2} {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} {{\bf{v}}}}{\rho} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} \left({{\bf{w}}} {{\bf{v}}}^{\top} + {{\bf{v}}} {{\bf{w}}}^{\top} \right) {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} \\ & \quad + \tfrac{(d + \eta - b)^{2}{{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} {{\bf{w}}} - (c + \xi - a)}{\rho} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} {{\bf{v}}} {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} + \tfrac{(d + \eta - b)^{2} {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} {{\bf{v}}}}{\rho} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} {{\bf{w}}} {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1}, \end{split} \end{equation} | (3.14c) |
with {\boldsymbol{\Delta}}_{\frac{n-1}{2}} : = {{\mathrm{diag}}} \left(\lambda_{2}, \lambda_{4}, \ldots, \lambda_{n-1} \right) , {{\bf{v}}}, {{\bf{w}}} in (2.5b),
\begin{equation} \begin{split} \varrho & = 1 + (c + \xi - a) {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} {{\bf{v}}} + 2 (d + \eta - b) {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} {{\bf{v}}} \\ &+ (d + \eta - b)^{2} \left[\big({{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} {{\bf{w}}} \big)^{2} - \big({{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} {{\bf{v}}} \big) \big({{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n-1}{2}}^{-1} {{\bf{w}}} \big) \right] . \end{split} \end{equation} | (3.14d) |
Proof. Consider a, b, c, d, \xi, \eta as real numbers, \lambda_{k} \neq 0 , k = 1, \ldots, n are given by (2.3) and {{\bf{H}}}_{n} in (1.1) is nonsingular. Recall that if {{\bf{H}}}_{n} is nonsingular, then \rho and \varrho in (3.13b) and (3.13d), respectively, are both nonzero. Setting \theta : = c + \xi - a , \vartheta : = d + \eta - b and assuming that conditions (3.1a) and (3.1b) are satisfied (note that (3.1c) corresponds to \rho \neq 0 ), we have from the main result of [29] (see pages 69 and 70),
\begin{equation*} \begin{split} \big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} \big)^{-1} & = {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} - \tfrac{\theta}{1 + \theta {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}}} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}} {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1}, \\ \big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} + \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} \big)^{-1} & = \big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} \big)^{-1} - \tfrac{\vartheta}{1 + \vartheta {{\bf{y}}}^{\top} \big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} \big)^{-1} {{\bf{x}}}} \big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} \big)^{-1} {{\bf{x}}} {{\bf{y}}}^{\top} \big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} \big)^{-1} \\ & = {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} - \tfrac{\theta}{1 + \theta {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}} + \vartheta {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}}} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}} {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} - \tfrac{\vartheta}{1 + \theta {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}} + \vartheta {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}}} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}} {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} \end{split} \end{equation*} |
and
\begin{equation} \begin{split} &\big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} + \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} + \vartheta {{\bf{y}}} {{\bf{x}}}^{\top} \big)^{-1} \\ & \quad = \big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} + \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} \big)^{-1} - \tfrac{\vartheta}{1 + \vartheta {{\bf{x}}}^{\top} \big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} + \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} \big)^{-1} {{\bf{y}}}} \big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} + \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} \big)^{-1} {{\bf{x}}} {{\bf{y}}}^{\top} \big({\boldsymbol{\Upsilon}}_{\frac{n}{2}} + \theta {{\bf{x}}} {{\bf{x}}}^{\top} + \vartheta {{\bf{x}}} {{\bf{y}}}^{\top} \big)^{-1} \\ & \quad = {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} - \tfrac{\vartheta + \vartheta^{2} {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}}}{\rho} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} \left({{\bf{y}}} {{\bf{x}}}^{\top} + {{\bf{x}}} {{\bf{y}}}^{\top} \right) {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} + \tfrac{\vartheta^{2}{{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{y}}} - \theta}{\rho} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}} {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} + \tfrac{\vartheta^{2} {{\bf{x}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{x}}}}{\rho} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1} {{\bf{y}}} {{\bf{y}}}^{\top} {\boldsymbol{\Upsilon}}_{\frac{n}{2}}^{-1}, \end{split} \end{equation} | (3.15) |
with {\boldsymbol{\Upsilon}}_{\frac{n}{2}} : = {{\mathrm{diag}}} \left(\lambda_{1}, \lambda_{3}, \ldots, \lambda_{n-1} \right) , {{\bf{x}}}, {{\bf{y}}} given by (2.4a) and \rho in (3.13b). In the same way, supposing (3.2a) and (3.2b) (observe that (3.2c) is \varrho \neq 0 ), we obtain
\begin{equation*} \begin{split} \big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} \big)^{-1} & = {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} - \tfrac{\theta}{1 + \theta {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}}} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}} {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1}, \\ \big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} + \vartheta {{\bf{v}}} {{\bf{w}}}^{\top} \big)^{-1} & = \big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} \big)^{-1} - \tfrac{\vartheta}{1 + \vartheta {{\bf{w}}}^{\top} \big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} \big)^{-1} {{\bf{v}}}} \big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} \big)^{-1} {{\bf{v}}} {{\bf{w}}}^{\top} \big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} \big)^{-1} \\ & = {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} - \tfrac{\theta}{1 + \theta {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}} + \vartheta {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}}} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}} {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} - \tfrac{\vartheta}{1 + \theta {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}} + \vartheta {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}}} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}} {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} \end{split} \end{equation*} |
and
\begin{equation} \begin{split} &\big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} + \vartheta {{\bf{v}}} {{\bf{w}}}^{\top} + \vartheta {{\bf{w}}} {{\bf{v}}}^{\top} \big)^{-1} \\ &\quad = \big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} + \vartheta {{\bf{v}}} {{\bf{w}}}^{\top} \big)^{-1} - \tfrac{\vartheta}{1 + \vartheta {{\bf{v}}}^{\top} \big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} + \vartheta {{\bf{v}}} {{\bf{w}}}^{\top} \big)^{-1} {{\bf{w}}}} \big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} + \vartheta {{\bf{v}}} {{\bf{w}}}^{\top} \big)^{-1} {{\bf{v}}} {{\bf{w}}}^{\top} \big({\boldsymbol{\Delta}}_{\frac{n}{2}} + \theta {{\bf{v}}} {{\bf{v}}}^{\top} + \vartheta {{\bf{v}}} {{\bf{w}}}^{\top} \big)^{-1} \\ & \quad = {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} - \tfrac{\vartheta + \vartheta^{2} {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}}}{\varrho} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} \left({{\bf{w}}} {{\bf{v}}}^{\top} + {{\bf{v}}} {{\bf{w}}}^{\top} \right) {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} + \tfrac{\vartheta^{2}{{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{w}}} - \theta}{\varrho} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}} {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} + \tfrac{\vartheta^{2} {{\bf{v}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{v}}}}{\varrho} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1} {{\bf{w}}} {{\bf{w}}}^{\top} {\boldsymbol{\Delta}}_{\frac{n}{2}}^{-1}, \end{split} \end{equation} | (3.16) |
where {\boldsymbol{\Delta}}_{\frac{n}{2}} : = {{\mathrm{diag}}} \left(\lambda_{2}, \lambda_{4}, \ldots, \lambda_{n} \right) and {{\bf{v}}}, {{\bf{w}}} are given by (2.5a) and \varrho in (3.13d). Since the nonsingularity of {{\bf{H}}}_{n} and \lambda_{k} \neq 0 , for all k = 1, \ldots, n are sufficient for both sides of (3.15) and (3.16) to be well-defined, conditions (3.1a), (3.1b), (3.2a) and (3.2b) previously assumed can be dropped. Hence, the block diagonalization provided in (a) of Lemma 2 together with 8.5b of [21] (see page 88) establish the thesis in (a). The proof of (b) is analogous, so we will omit the details.
It is well known that the fourth derivative can be computed through the following centered finite-formula
\begin{equation} f^{(4)}(x_{k}) \approx \frac{-f(x_{k-3}) + 12 f(x_{k-2}) - 39 f(x_{k-1}) + 56 f(x_{k}) - 39 f(x_{k+1}) + 12 f(x_{k+2}) - f(x_{k+3})}{6h^{4}} \end{equation} | (4.1) |
(see [9], page 556). Consider an interval [a, b] (a < b) , a mesh of points x_{k} = a + k h , k = 0, 1, \ldots, N where h = (b - a)/N and a function f\colon [a, b] \longrightarrow \mathbb{R} , such that f(a) = 0 = f(b) . By setting
\begin{equation*} \begin{split} f(x_{-2}) : = \alpha f(x_{2}), \\ f(x_{-1}) : = \alpha f(x_{1}), \\ f(x_{N+1}) : = \alpha f(x_{N-1}), \\ f(x_{N+2}) : = \alpha f(x_{N-2}) \end{split} \end{equation*} |
for some \alpha\in \mathbb{R} , the matrix operator corresponding to (4.1) for the fourth derivative is
\begin{equation} \left[ \begin{array}{ccccccccccc} 12 \alpha + 56 & -(\alpha + 39) & 12 & -1 & 0 & \ldots & \ldots & \ldots & \ldots & \ldots & 0 \\ -(\alpha + 39) & 56 & -39 & 12 & -1 & \ddots & & & & & \vdots \\ 12 & -39 & 56 & -39 & 12 & \ddots & \ddots & & & & \vdots \\ -1 & 12 & -39 & 56 & -39 & \ddots & \ddots & \ddots & & & \vdots \\ 0 & -1 & 12 & -39 & 56 & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & 56 & -39 & 12 & -1 & 0 \\ \vdots & & & \ddots & \ddots & \ddots & -39 & 56 & -39 & 12 & -1 \\ \vdots & & & & \ddots & \ddots & 12 & -39 & 56 & -39 & 12 \\ \vdots & & & & & \ddots & -1 & 12 & -39 & 56 & -(\alpha + 39) \\ 0 & \ldots & \ldots & \ldots & \ldots & \ldots & 0 & -1 & 12 & -(\alpha + 39) & 12 \alpha + 56 \end{array} \right]. \end{equation} | (4.2) |
A remarkable example that involves the fourth derivative is the ordinary differential equation that governs the deflection of a laterally loaded symmetrical beam of length L ,
\begin{equation} {{\mathrm{E}}} \, {{\mathrm{I}}}(x) y^{(4)}(x) = q(x), \quad x \in ]0,L[, \end{equation} | (4.3) |
where {{\mathrm{E}}} is the modulus of elasticity of the beam material, {{\mathrm{I}}}(x) is the moment of inertia of the beam cross section and q(x) is the distributed load. The ordinary differential equation (4.3) can be equipped with the boundary conditions y(0) = 0 = y(L) (see, for instance, [22]).
The eigenvalues of derivative matrices are very useful. In fact, they can be compared with those of the exact (continuous) derivative operator to gauge the accuracy of the finite difference approximation. On the other hand, in the context of partial differential equations, the eigenvalues of the spatial operator is considered along with the stability diagram of the time-integration scheme to evaluate the stability of the numerical solution for the partial differential equation [3]. The statements of subsection 3.2 can be employed to locate (bound) the eigenvalues of (4.2).
Another example of a derivative matrix is
\begin{equation} \left[ \begin{array}{ccccccc} -\frac{2}{3} & \frac{2}{3} & 0 & \ldots & \ldots & \ldots & 0 \\ 1 & -2 & 1 & \ddots & & & \vdots \\ 0 & 1 & -2 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots &\ddots & \vdots \\ \vdots & & \ddots & \ddots & -2 & 1 & 0 \\ \vdots & & & \ddots & 1 & -2 & 1 \\ 0 & \ldots & \ldots & \ldots & 0 & \frac{2}{3} & - \frac{2}{3} \end{array} \right], \end{equation} | (4.4) |
which appears in the discretization of the second-derivative operator via three-point centered finite-difference formula with Neumann boundary conditions f'(x_{0}) = a and f'(x_{N}) = b (see [3], pages 133 and 134). Our results can also be used to locate (bound) its eigenvalues by noticing that the eigenvalues of (4.4) and
\begin{align*} &{{\mathrm{diag}}}\left(1,\frac{\sqrt{6}}{3},\ldots,\frac{\sqrt{6}}{3},1 \right) \left[ \begin{array}{ccccccc} -\frac{2}{3} & \frac{2}{3} & 0 & \ldots & \ldots & \ldots & 0 \\ 1 & -2 & 1 & \ddots & & & \vdots \\ 0 & 1 & -2 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots &\ddots & \vdots \\ \vdots & & \ddots & \ddots & -2 & 1 & 0 \\ \vdots & & & \ddots & 1 & -2 & 1 \\ 0 & \ldots & \ldots & \ldots & 0 & \frac{2}{3} & - \frac{2}{3} \end{array} \right] {{\mathrm{diag}}}\left(1,\frac{\sqrt{6}}{2},\ldots,\frac{\sqrt{6}}{2},1 \right) \\ &\quad = \left[ \begin{array}{ccccccc} -\frac{2}{3} & \frac{\sqrt{6}}{3} & 0 & \ldots & \ldots & \ldots & 0 \\ \frac{\sqrt{6}}{3} & -2 & 1 & \ddots & & & \vdots \\ 0 & 1 & -2 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots &\ddots & \vdots \\ \vdots & & \ddots & \ddots & -2 & 1 & 0 \\ \vdots & & & \ddots & 1 & -2 & \frac{\sqrt{6}}{3} \\ 0 & \ldots & \ldots & \ldots & 0 & \frac{\sqrt{6}}{3} & -\frac{2}{3} \end{array} \right] \end{align*} |
are exactly the same.
Consider n pairs of observations (x_{1}, y_{1}), (x_{2}, y_{2}), \ldots, (x_{n}, y_{n}) such that
\begin{equation*} y_{k} = r(x_{k}) + \varepsilon_{k} \quad {\text{and}} \quad \mathbb{E}(\varepsilon_{k}) = 0 \qquad (k = 1,2,\ldots,n), \end{equation*} |
where r is the regression function to be estimated. The estimator of r(x) is usually denoted by \widehat{r}(x) and called smoother. An estimator \widehat{r} of r is a linear smoother if, for each x , there exists a vector {\boldsymbol{\varsigma}}(x) = (\varsigma_{1}(x), \ldots, \varsigma_{n}(x))^{\top} such that
\begin{equation*} \widehat{r}(x) = \sum\limits_{k = 1}^{n} \varsigma_{k}(x) y_{k}. \end{equation*} |
Defining the vector of fitted values {{\bf{\widehat{y}}}} = (\widehat{r}_{n}(x_{1}), \ldots, \widehat{r}_{n}(x_{n}))^{\top} , it follows
\begin{equation*} {{\bf{\widehat{y}}}} = {\boldsymbol{\Sigma}} \, {{\bf{y}}}, \end{equation*} |
where {\boldsymbol{\Sigma}} is an n \times n matrix whose k^{{{\mathrm{th}}}} row is {\boldsymbol{\varsigma}}(x_{k})^{\top} , called the smoothing matrix and {{\bf{y}}} = (y_{1}, \ldots, y_{n})^{\top} (see [34], page 66).
The eigendecomposition of the smoothing matrix {\boldsymbol{\Sigma}} provides a useful characterization of the properties of a smoother. In fact, if {\boldsymbol{\Sigma}} = \sum_{k = 1}^{n} \lambda_{k} {\boldsymbol{\sigma}}_{k} {\boldsymbol{\sigma}}_{k}^{\top} is the spectral decomposition of the smoothing matrix, where \lambda_{k} are the ordered eigenvalues and {\boldsymbol{\sigma}}_{k} the corresponding eigenvectors, we can meaningfully decompose the fit as {{\bf{\widehat{y}}}} = \sum_{k = 1}^{n} \alpha_{k} \lambda_{k} {\boldsymbol{\sigma}}_{k} , where the eigenvectors {\boldsymbol{\sigma}}_{k} illustrate what sequences are preserved or compressed via a scalar multiplication and \alpha_{k} are the specific coefficients of the projection of {{\bf{y}}} onto the space spanned by the eigenvectors {\boldsymbol{\sigma}}_{k} , {{\bf{y}}} = \sum_{k = 1}^{n} \alpha_{k} {\boldsymbol{\sigma}}_{k} . Moreover, {{\mathrm{tr}}}({\boldsymbol{\Sigma}}) = \sum_{k = 1}^{n} \lambda_{k} provides the number of degrees of freedom of a smoother, which is a measure of the equivalent number of parameters used to obtain the fit {{\bf{\widehat{y}}}} that allows us to compare alternative filters according to their degree of smoothing (see [28] and the references therein).
The smoothing matrix associated to the Beveridge-Nelson smoother (see [31] for details) when the observed series is generated by an {{\mathrm{ARIMA}}}(1, 1, 0) model with -1 < \phi < 0 and (half) bandwidth filter m = 1 is the following tridiagonal matrix:
\begin{equation*} {\boldsymbol{\Sigma}} = \left[ \begin{array}{ccccccc} \frac{1}{1 - \phi} & -\frac{\phi}{1 - \phi} & 0 & \ldots & \ldots & \ldots & 0 \\ -\frac{\phi}{(1 - \phi)^{2}} & \frac{1 + \phi^{2}}{(1 - \phi)^{2}} & -\frac{\phi}{(1 - \phi)^{2}} & \ddots & & & \vdots \\ 0 & -\frac{\phi}{(1 - \phi)^{2}} & \frac{1 + \phi^{2}}{(1 - \phi)^{2}} & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots &\ddots & \vdots \\ \vdots & & \ddots & \ddots & \frac{1 + \phi^{2}}{(1 - \phi)^{2}} & -\frac{\phi}{(1 - \phi)^{2}} & 0 \\ \vdots & & & \ddots & -\frac{\phi}{(1 - \phi)^{2}} & \frac{1 + \phi^{2}}{(1 - \phi)^{2}} & -\frac{\phi}{(1 - \phi)^{2}} \\ 0 & \ldots & \ldots & \ldots & 0 & -\frac{\phi}{1 - \phi} & \frac{1}{1 - \phi} \end{array} \right] \end{equation*} |
(see [28]). Since the matrices {\boldsymbol{\Sigma}} and
\begin{align*} &{{\mathrm{diag}}}\left(1,\sqrt{1 - \phi},\ldots,\sqrt{1 - \phi},1 \right) \, {\boldsymbol{\Sigma}} \, {{\mathrm{diag}}}\left(1,\frac{1}{\sqrt{1 - \phi}},\ldots,\frac{1}{\sqrt{1 - \phi}},1 \right) \\ &\quad = \left[ \begin{array}{ccccccc} \frac{1}{1 - \phi} & -\frac{\phi}{\sqrt{(1 - \phi)^{3}}} & 0 & \ldots & \ldots & \ldots & 0 \\ -\frac{\phi}{\sqrt{(1 - \phi)^{3}}} & \frac{1 + \phi^{2}}{(1 - \phi)^{2}} & -\frac{\phi}{(1 - \phi)^{2}} & \ddots & & & \vdots \\ 0 & -\frac{\phi}{(1 - \phi)^{2}} & \frac{1 + \phi^{2}}{(1 - \phi)^{2}} & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots &\ddots & \vdots \\ \vdots & & \ddots & \ddots & \frac{1 + \phi^{2}}{(1 - \phi)^{2}} & -\frac{\phi}{(1 - \phi)^{2}} & 0 \\ \vdots & & & \ddots & -\frac{\phi}{(1 - \phi)^{2}} & \frac{1 + \phi^{2}}{(1 - \phi)^{2}} & -\frac{\phi}{\sqrt{(1 - \phi)^{3}}} \\ 0 & \ldots & \ldots & \ldots & 0 & -\frac{\phi}{\sqrt{(1 - \phi)^{3}}} & \frac{1}{1 - \phi} \end{array} \right] \end{align*} |
share the same eigenvalues, we are able to locate (bound) the eigenvalues of {\boldsymbol{\Sigma}} by using results of subsection 3.2. Moreover, at the expense of the prescribed eigenvalues, an eigendecomposition for {\boldsymbol{\Sigma}} can also be obtained at the expense of statements in subsection 3.3.
In this paper, a procedure to express the eigenvalues and associated eigenvectors of a symmetric heptadiagonal quasi-Toeplitz matrix was presented, as well as an explicit formula for its inverse. The proposed method allowed us to get rational functions to locate the eigenvalues and closed-form formulas to the corresponding eigenvectors for the class of matrices under analysis, which cannot be considered in recent works on this subject, but most of all leave an open door for additional statements on symmetric quasi-Toeplitz matrices in general. The numerical example provided to highlight the differences between the quasi-Toeplitz and Toeplitz cases also raised some open questions. Indeed, despite Geršgorin theorem leading us to an interval containing all eigenvalues of generic quasi-Toeplitz matrices, it would be interesting to have a more precise tool, as in the "pure" Toeplitz case. A method that could predict the number of outliers and its asymptotic behavior when n tends to infinity would be also very welcome. Of course, another open problem closely related to the content of this paper would be the obtention of a block diagonalization for nonsymmetric quasi-Toeplitz matrices in the same spirit of Lemma 2.
The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.
The author would like to thank Professor Yongjian Hu for the invitation to submit the manuscript, and also to anonymous referees for the careful reading of it as well as their very constructive comments, which greatly improved the final version of the paper.
This work is funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of project UIDB/04035/2020 (GeoBioTec).
The author declares there is no conflict of interest.
[1] |
B. J. Gireesha, K. J. Gowtham, Efficient hypergeometric wavelet approach for solving lane-emden equations, J. Comput. Sci., 82 (2024), 1–11. http://dx.doi.org/10.1016/j.jocs.2024.102392 doi: 10.1016/j.jocs.2024.102392
![]() |
[2] |
G. K. Ramesh, B. J. Gireesha, Non-linear radiative flow of nanofluid past a moving/stationary Riga plate, Front. Heat Mass Tran., 9 (2017), 1–7. http://dx.doi.org/10.5098/hmt.9.3 doi: 10.5098/hmt.9.3
![]() |
[3] | W. Layton, Introduction to the numerical analysis of incompressible viscous flows, SIAM, 2008. |
[4] |
Q. Du, X. Tian, Mathematics of smoothed particle hydrodynamics: A study via nonlocal Stokes equations, Found. Comput. Math., 20 (2020), 801–826. http://dx.doi.org/10.1007/s10208-019-09432-0 doi: 10.1007/s10208-019-09432-0
![]() |
[5] |
T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow, Int. J. Numer. Meth. Fl., 41 (2003), 77–107. http://dx.doi.org/10.1002/fld.426 doi: 10.1002/fld.426
![]() |
[6] |
L. E. Payne, W. H. Pell, The Stokes flow problem for a class of axially symmetric bodies, J. Fluid Mech., 7 (1960), 529–549. http://dx.doi.org/10.1017/s002211206000027x doi: 10.1017/s002211206000027x
![]() |
[7] |
B. Andrea, D. Alan, L. Martin, A divergence-conforming finite element method for the surface Stokes equation, SIAM J. Numer. Anal., 58 (2020), 2764–2798. http://dx.doi.org/10.1137/19M1284592 doi: 10.1137/19M1284592
![]() |
[8] |
P. B. Bochev, M. D. Gunzburger, Analysis of least squares finite element methods for the Stokes equations, Math. Comput., 63 (1994), 479–506. http://dx.doi.org/10.1090/s0025-5718-1994-1257573-4 doi: 10.1090/s0025-5718-1994-1257573-4
![]() |
[9] |
J. Wang, X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155–174. http://dx.doi.org/10.1007/s10444-015-9415-2 doi: 10.1007/s10444-015-9415-2
![]() |
[10] |
M. Shao, L. Song, P. Li, A generalized finite difference method for solving Stokes interface problems, Eng. Anal. Bound. Elem., 132 (2021), 50–64. http://dx.doi.org/10.1016/j.enganabound.2021.07.002 doi: 10.1016/j.enganabound.2021.07.002
![]() |
[11] |
R. Stenberg, M. Suri, Mixed finite element methods for problems in elasticity and Stokes flow, Numer. Math., 72 (1996), 367–389. http://dx.doi.org/10.1007/s002110050174 doi: 10.1007/s002110050174
![]() |
[12] |
A. Zeb, L. Elliott, D. B. Ingham, D. Lesnic, The boundary element method for the solution of Stokes equations in two-dimensional domains, Eng. Anal. Bound. Elem., 22 (1998), 317–326. http://dx.doi.org/10.1016/s0955-7997(98)00072-1 doi: 10.1016/s0955-7997(98)00072-1
![]() |
[13] |
B. Reidinger, O. Steinbach, A symmetric boundary element method for the Stokes problem in multiple connected domains, Math. Method. Appl. Sci., 26 (2003), 77–93. http://dx.doi.org/10.1002/mma.347 doi: 10.1002/mma.347
![]() |
[14] |
J. Walter, A. V. Salsac, D. B. Biesel, P. L. Tallec, Coupling of finite element and boundary integral methods for a capsule in a Stokes flow, Int. J. Numer. Meth. Eng., 83 (2010), 829–850. http://dx.doi.org/10.1002/nme.2859 doi: 10.1002/nme.2859
![]() |
[15] |
P. Su, J. Chen, R. Yang, J. Xiang, A new isogeometric finite element method for analyzing structures, CMES-Comp. Model. Eng., 141 (2024), 1883–1905. http://dx.doi.org/10.32604/CMES.2024.055942 doi: 10.32604/CMES.2024.055942
![]() |
[16] |
A. Radu, C. Stan, D. Bejan, Finite element 3D model of a double quantum ring: Effects of electric and laser fields on the interband transition, New J. Phys., 25 (2023), 1–20. http://dx.doi.org/10.1088/1367-2630/AD0B5F doi: 10.1088/1367-2630/AD0B5F
![]() |
[17] |
G. Wei, P. Lardeur, F. Druesne, Free vibration analysis of thin to thick straight or curved beams by a solid-3D beam finite element method, Thin Wall. Struct., 191 (2023), 1–16. http://dx.doi.org/10.1016/J.TWS.2023.111028 doi: 10.1016/J.TWS.2023.111028
![]() |
[18] |
R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, B. Am. Math. Soc., 49 (1943), 1–23. https://doi.org/10.1090/S0002-9904-1943-07818-4 doi: 10.1090/S0002-9904-1943-07818-4
![]() |
[19] | [] K. Feng, Difference schemes based on variational principle, J. Appl. Comput. Math., 2 (1965), 238–262. |
[20] | [] H. Huang, J. Wang, J. Cui, Difference scheme based on displacement solution on the plane elasticity, J. Appl. Comput. Math., 3 (1966), 54–60. |
[21] |
C. Guichard, E. H. Quenjel, Weighted positive nonlinear finite volume method for dominated anisotropic diffusive equations, Adv. Comput. Math., 48 (2022), 1–27. http://dx.doi.org/10.1007/s10444-022-09995-7 doi: 10.1007/s10444-022-09995-7
![]() |
[22] |
L. Zhang, S. Wang, G. Niu, Upwind finite element method for solving radiative heat transfer in graded index media, Adv. Mater. Res., 1601 (2012), 1655–1658. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.1655 doi: 10.4028/www.scientific.net/amr.430-432.1655
![]() |
[23] |
M. Puthukkudi, C. G. Raja, Mollification of fourier spectral methods with polynomial kernels, Math. Method. Appl. Sci., 47 (2024), 4911–4931. http://dx.doi.org/10.1002/MMA.9845 doi: 10.1002/MMA.9845
![]() |
[24] |
Z. Csati, N. Moës, T. J. Massart, A stable extended/generalized finite element method with Lagrange multipliers and explicit damage update for distributed cracking in cohesive materials, Comput. Methods Appl. M., 369 (2020), 1–50. http://dx.doi.org/10.1016/j.cma.2020.113173 doi: 10.1016/j.cma.2020.113173
![]() |
[25] |
Y. Tang, Z. Yin, Hermite finite element method for a class of viscoelastic beam vibration problem, Engineering, 13 (2021), 463–471. https://doi.org/10.4236/eng.2021.138033 doi: 10.4236/eng.2021.138033
![]() |
[26] |
C. Carstensen, J. Hu, Hierarchical Argyris finite element method for adaptive and multigrid algorithms, Comput. Method. Appl. Math., 21 (2021), 529–556. http://dx.doi.org/10.1515/CMAM-2021-0083 doi: 10.1515/CMAM-2021-0083
![]() |
[27] |
M. I. Bhatti, P. Bracken, Solutions of differential equations in a Bernstein polynomial basis, J. Comput. Appl. Math., 205 (2007), 272–280. http://dx.doi.org/10.1016/j.cam.2006.05.002 doi: 10.1016/j.cam.2006.05.002
![]() |
[28] | [] Z. Shi, On spline finite element method, Math. Numer. Sinica, 1 (1979), 50–72. |
[29] | [] R. Qin, Simple formula for calculating stress intensity factor of fracture toughness samples, Mech. Eng., 1 (1979), 52–53. |
[30] |
T. J. R. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Method. Appl. M., 194 (2005), 4135–4195. http://dx.doi.org/10.1016/j.cma.2004.10.008 doi: 10.1016/j.cma.2004.10.008
![]() |
[31] |
C. Zhu, W. Kang, Numerical solution of Burgers-Fisher equation by cubic B-spline quasi-interpolation, Appl. Math. Comput., 216 (2010), 2679–2686. http://dx.doi.org/10.1016/j.amc.2010.03.113 doi: 10.1016/j.amc.2010.03.113
![]() |
[32] |
D. Dutykh, E. Pelinovsky, Numerical simulation of a solitonic gas in KdV and KdV-BBM equations, Phys. Lett. A, 378 (2014), 3102–3110. http://dx.doi.org/10.1016/j.physleta.2014.09.008 doi: 10.1016/j.physleta.2014.09.008
![]() |
[33] |
S. S. D. Pranta, H. Ali, M. S. Islam, On the numerical treatment of 2D nonlinear parabolic PDEs by the Galerkin method with bivariate Bernstein polynomial bases, J. Appl. Math. Comput., 6 (2022), 410–422. http://dx.doi.org/10.26855/JAMC.2022.12.003 doi: 10.26855/JAMC.2022.12.003
![]() |
[34] |
A. A. Rodríguez, L. B. Bruno, F. Rapetti, Whitney edge elements and the Runge phenomenon, J. Comput. Appl. Math., 427 (2023), 1–9. http://dx.doi.org/10.1016/j.cam.2023.115117 doi: 10.1016/j.cam.2023.115117
![]() |
[35] |
S. Sindhu, B. J. Gireesha, Entropy generation analysis of hybrid nanofluid in a microchannel with slip flow, convective boundary and nonlinear heat flux, Int. J. Numer. Meth. Fl., 31 (2021), 53–74. http://dx.doi.org/10.1108/hff-02-2020-0096 doi: 10.1108/hff-02-2020-0096
![]() |
[36] |
A. Felicita, B. J. Gireesha, B. Nagaraja, P. Venkatesh, M. R. Krishnamurthy, Mixed convective flow of Casson nanofluid in the microchannel with the effect of couple stresses: Irreversibility analysis, Int. J. Model. Simul., 44 (2024), 91–105. http://dx.doi.org/10.1080/02286203.2022.2156974 doi: 10.1080/02286203.2022.2156974
![]() |
[37] |
A. Rathi, D. K. Sahoo, B. V. R. Kumar, Variational multiscale stabilized finite element analysis of transient MHD Stokes equations with application to multiply driven cavity flow, Appl. Numer. Math., 198 (2024), 43–74. http://dx.doi.org/10.1016/j.apnum.2023.12.007 doi: 10.1016/j.apnum.2023.12.007
![]() |
[38] |
X. Li, T. Xie, Q. Wang, Z. Zhang, C. Hou, W. Guo, et al., Numerical study of the wave dissipation performance of two plate-type open breakwaters based on the Navier-Stokes equations, J. Braz. Soc. Mech. Sci., 43 (2021), 1–18. http://dx.doi.org/10.1007/s40430-021-02889-7 doi: 10.1007/s40430-021-02889-7
![]() |
[39] |
X. Zhou, Z. Meng, X. Fan, Z. Luo, Analysis of two low-order equal-order finite element pairs for Stokes equations over quadrilaterals, J. Comput. Appl. Math., 364 (2020), 1–12. http://dx.doi.org/10.1016/j.cam.2019.06.039 doi: 10.1016/j.cam.2019.06.039
![]() |
[40] |
S. K. Das, Extension of the boundary integral method for different boundary conditions in steady-state Stokes flows, Int. J. Numer. Meth. Fl., 33 (2023), 1–13. http://dx.doi.org/10.1108/hff-02-2022-0088 doi: 10.1108/hff-02-2022-0088
![]() |
[41] |
D. K. Jules, G. Hagos, K. Jonas, S. Toni, Discontinuous Galerkin methods for Stokes equations under power law slip boundary condition: A priori analysis, Calcolo, 61 (2024), 13. http://dx.doi.org/10.1007/s10092-023-00563-z doi: 10.1007/s10092-023-00563-z
![]() |
[42] |
G. R. Barrenechea, M. Bosy, V. Dolean, F. Nataf, P. H. Tournier, Hybrid discontinuous Galerkin discretisation and domain decomposition preconditioners for the Stokes problem, Comput. Method. Appl. Math., 19 (2019), 703–722. http://dx.doi.org/10.1515/cmam-2018-0005 doi: 10.1515/cmam-2018-0005
![]() |
[43] |
V. Ervin, M. Kubacki, W. Layton, M. Moraiti, Z. Si, C. Trenchea, Partitioned penalty methods for the transport equation in the evolutionary Stokes-Darcy-transport problem, Numer. Meth. Part. D. E., 35 (2019), 349–374. http://dx.doi.org/10.1002/num.22303 doi: 10.1002/num.22303
![]() |
[44] | O. A. Ladyzhenskaya, R. A. Silverman, J. T. Schwartz, J. E. Romain, The mathematical theory of viscous incompressible flow, AIP, 1964. https://doi.org/10.2307/3613759 |
[45] | C. Susanne, L. Brenner, L. R. Scott, The mathematical theory of finite element methods, Springer, 2008. https://doi.org/10.1016/s0898-1221 |
[46] | P. Moczo, J. Kristek, M. Gális, The finite-difference modelling of earthquake motions: Waves and ruptures, Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781139236911 |
[47] | H. Igel, Computational seismology: A practical introduction, Oxford University Press, 2017. https://doi.org/10.1007/s10950-017-9662-4 |
[48] | F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, 1991. http://dx.doi.org/10.1007/978-1-4612-3172-1 |