Processing math: 37%
Research article Special Issues

Novel analysis of nonlinear dynamics of a fractional model for tuberculosis disease via the generalized Caputo fractional derivative operator (case study of Nigeria)

  • We propose a new mathematical framework of generalized fractional-order to investigate the tuberculosis model with treatment. Under the generalized Caputo fractional derivative notion, the system comprises a network of five nonlinear differential equations. Besides that, the equilibrium points, stability and basic reproductive number are calculated. The concerned derivative involves a power-law kernel and, very recently, it has been adapted for various applied problems. The existence findings for the fractional-order tuberculosis model are validated using the Banach and Leray-Schauder nonlinear alternative fixed point postulates. For the developed framework, we have generated various forms of Ulam's stability outcomes. To investigate the estimated response and nonlinear behaviour of the system under investigation, the efficient mathematical formulation known as the -Laplace Adomian decomposition technique algorithm was implemented. It is important to mention that, with the exception of numerous contemporary discussions, spatial coherence was considered throughout the fractionalization procedure of the classical model. Simulation and comparison analysis yield more versatile outcomes than the existing techniques.

    Citation: Saima Rashid, Yolanda Guerrero Sánchez, Jagdev Singh, Khadijah M Abualnaja. Novel analysis of nonlinear dynamics of a fractional model for tuberculosis disease via the generalized Caputo fractional derivative operator (case study of Nigeria)[J]. AIMS Mathematics, 2022, 7(6): 10096-10121. doi: 10.3934/math.2022562

    Related Papers:

    [1] Huiyang Xu . Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials. Communications in Analysis and Mechanics, 2023, 15(2): 132-161. doi: 10.3934/cam.2023008
    [2] Tingfu Feng, Yan Dong, Kelei Zhang, Yan Zhu . Global existence and blow-up to coupled fourth-order parabolic systems arising from modeling epitaxial thin film growth. Communications in Analysis and Mechanics, 2025, 17(1): 263-289. doi: 10.3934/cam.2025011
    [3] Yuxuan Chen . Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033
    [4] Yue Pang, Xiaotong Qiu, Runzhang Xu, Yanbing Yang . The Cauchy problem for general nonlinear wave equations with doubly dispersive. Communications in Analysis and Mechanics, 2024, 16(2): 416-430. doi: 10.3934/cam.2024019
    [5] Reinhard Racke . Blow-up for hyperbolized compressible Navier-Stokes equations. Communications in Analysis and Mechanics, 2025, 17(2): 550-581. doi: 10.3934/cam.2025022
    [6] Isaac Neal, Steve Shkoller, Vlad Vicol . A characteristics approach to shock formation in 2D Euler with azimuthal symmetry and entropy. Communications in Analysis and Mechanics, 2025, 17(1): 188-236. doi: 10.3934/cam.2025009
    [7] Mustafa Avci . On an anisotropic p()-Laplace equation with variable singular and sublinear nonlinearities. Communications in Analysis and Mechanics, 2024, 16(3): 554-577. doi: 10.3934/cam.2024026
    [8] Fangyuan Dong . Multiple positive solutions for the logarithmic Schrödinger equation with a Coulomb potential. Communications in Analysis and Mechanics, 2024, 16(3): 487-508. doi: 10.3934/cam.2024023
    [9] Ying Chu, Bo Wen, Libo Cheng . Existence and blow up for viscoelastic hyperbolic equations with variable exponents. Communications in Analysis and Mechanics, 2024, 16(4): 717-737. doi: 10.3934/cam.2024032
    [10] Ho-Sik Lee, Youchan Kim . Boundary Riesz potential estimates for parabolic equations with measurable nonlinearities. Communications in Analysis and Mechanics, 2025, 17(1): 61-99. doi: 10.3934/cam.2025004
  • We propose a new mathematical framework of generalized fractional-order to investigate the tuberculosis model with treatment. Under the generalized Caputo fractional derivative notion, the system comprises a network of five nonlinear differential equations. Besides that, the equilibrium points, stability and basic reproductive number are calculated. The concerned derivative involves a power-law kernel and, very recently, it has been adapted for various applied problems. The existence findings for the fractional-order tuberculosis model are validated using the Banach and Leray-Schauder nonlinear alternative fixed point postulates. For the developed framework, we have generated various forms of Ulam's stability outcomes. To investigate the estimated response and nonlinear behaviour of the system under investigation, the efficient mathematical formulation known as the -Laplace Adomian decomposition technique algorithm was implemented. It is important to mention that, with the exception of numerous contemporary discussions, spatial coherence was considered throughout the fractionalization procedure of the classical model. Simulation and comparison analysis yield more versatile outcomes than the existing techniques.



    Fractional calculus has been concerned with integration and differentiation of fractional (non-integer) order of the function. Riemann and Liouville defined the concept of fractional order intgro-differential equations [1]. Fractional calculus has developed an extensive attraction in current years in applied mathematics such as physics, medical, biology and engineering [2,3,4,5,6,7,8]. Whenever dealing with the fractional integro-differential equation many authors consider the terms Caputo fractional derivative, Riemann-Liouville and Grunwald-Letnikvo [9,10,11,12,13]. The subject fractional calculus has many applications in widespread and diverse field of science and engineering such as fractional dynamics in the trajectory control of redundant manipulators, viscoelasticity, electrochemistry, fluid mechanics, optics and signals processing etc.

    Fractional integro-differential equations having some uncertainties in the form of boundary conditions, initial conditions and so on [14,15,16]. To resolve these type of uncertainties mathematicians introduced some concepts fuzzy set theory is one of them.

    Zadeh introduced the concept of fuzzy set theory [17,18,19,20]. Later on Prade and Dubois [21,22], Nahmias [23], Tanaka and Mizumoto [24]. All of them experienced that the fuzzy number as a location of r-cut 0r1.

    Many authors investigated some numerical techniques related to these problem which include the existence of the solution for discontinuous [25], reproducing kernel algorithm [26], integro-differential under generalized Caputo differentiability [27], A domain decomposition method [28], fractional differential transform method [29], Jacobi polynomial operational matrix [30], global solutions for nonlinear fuzzy equations [31], radioactivity decay model [32], Caputo-Katugampola fractional derivative approach [33], two-dimensional legendre wavelet method [34], fuzzy Laplace transform [35], fuzzy sumudu transform [36]. Further we can see [37,38,39,40]

    Optimal Homotopy Asymptotic Method (OHAM) is one of the powerful techniques introduced by Marinca at al. [41,42,43] for approximate solution of differential equations. OHAM attracted an enormous importance in solving various problems in different field of science. Iqbal et al. applied this technique to Klein-Gordon equations and singular Lane-Emden type equation [44]. Sheikholeslami et al. used the proposed method for investigation of the laminar viscous flow and magneto hydrodynamic flow in a permeable channel [45]. Hashmi et al. obtained the solution of nonlinear Fredholm integral equations using OHAM [46]. Nawaz at al. applied the proposed method for solution of fractional order integro-differential equations [47], fractional order partial differential equations [48] and three-dimensional integral equations [49].

    Aim of our study is to extend OHAM for solution of system of fuzzy Volterra integro differential equation of fractional order of the following form

    Dαxu(x)=h(x)+xak(x,t)u(t)dt,0α1,x[0,1], (1.1)

    with the given initial condition

    uk(0),u0k(x),k=1,2,3,....,η1,η1<α<η,ηN,

    Where Dαx represents the fuzzy fractional derivative in Caputo sense for fractional order of α with respect to x, h:[a,b]RF is fuzzy valued function, k(x,t) is arbitrary kernel u0(x)RF is an unknown solution. RF represent set of all fuzzy valued function on real line.

    The remaining paper is structured as follows: A brief overview on some elementary concept, notations and definitions of fuzzy calculus and fuzzy fractional calculus are discussed in section 2. Analysis of the technique is presented in section 3. Proposed method is applied to solve fuzzy fractional order Volterra integro-differential equations in section 4. Result and discussion of the paper is given in section 5 and section 6 is the conclusion of the paper.

    In literature there exist various definitions of fuzzy calculus and fuzzy fractional calculus [50]. Some elementary concept, notations and definitions of fuzzy calculus and fuzzy fractional calculus related to this study are provided in this section.

    Definition 2.1. The Riemann-Liouville fractional integral operator Iαx of order α is [50]:

    Iαxu(x)={1Γ(α)x0(xt)α1u(t)dt=0,α>0,u(x),α=0. (2.1)

    Definition 2.2. Caputo partial fractional Derivative operator Dαx of order α with respect to x is defined as follow [50]:

    Dαxu(x)={1Γ(ηα)x0(xt)ηα1u(n)(t)dt=0,η1<αη,dηu(x)dxη,α=ηN. (2.2)

    which clearly shows that

    DαxIαxu(x)=u(x) (2.3)

    Definition 2.3. A fuzzy number σ is a mapping σ:R[0,1], satisfy the following property:

    a. σ is normal that is, x0R with u(x0)=1 [51,52].

    b. σ is a convex fuzzy set that is, u(λx+(1λ)y)min{u(x),u(y)} for all x,yR, λ[0,1].

    c. σ is upper semi-continuous in R.

    d. ¯{xR:u(x)>0} is compact.

    Definition 2.4. Parametric form of fuzzy number σ represented by an order pair (σ_,ˉσ) of the function (σ_(r),ˉσ(r)), satisfies the following conditions [52,53]:

    a. σ_(r) is bounded monotonic increasing left continuous r[0,1].

    b. ˉσ(r) is bounded monotonic decreasing left continuous r[0,1].

    c. σ_(r)ˉσ(r)r[0,1].

    Definition 2.5. Addition and scalar multiplication of fuzzy number is given as:

    a. (σ1σ2)=(σ_1(r)+σ_2(r),ˉσ1(r)+ˉσ2(r))

    b. (kσ)={(σ_(r),ˉσ(r)),k0,(σ_(r),ˉσ(r)),k<0.

    Definition 2.6. A fuzzy real valued function σ1,σ2:[a,b]R, then in [54]:

    DU(σ1,σ2)=sup{D(σ1(x),σ2(x))|x[a,b]}.

    Definition 2.7. Assume u:[a,b]RF. For every partition P={σ0,σ1,σ2,σ3,....,σn} and arbitrary i:σi1iσi, 2in consider

    Rp=nΣi=2u(j)(σiσi1). The definite integral of u(x) over [α,β] is

    βαu(x)dx=limRρ,

    which show existence of limit in metric [55].

    Definite integral exist if u(x) is continuous in metric D [51]:

    (βαu(x)dx_)=βαu_(x)dx,(¯βαu(x)dx)=βα¯u(x)dxt.

    By considering definition 2.4. as discussed in section 2, Eq (1.1) becomes:

    {Dαxu(x,r)h(x,r)xak(x,t)u(t,r)dt=0,Dαxˉu(x,r)h(x,r)xak(x,t)ˉu(t,r)dt=0,0α1,0r1,x[0,1], (3.1)

    with the given initial condition

    [uk(0)]r,(u0k(x,r),ˉu0k(x,r)),k=1,2,3,....,η1,η1<α<η,ηN, (3.2)

    The homotopy of OHAM [41,42,43], constructed as follow:

    {(1ρ)(αυ(x,r;ρ)tαh(x,r))=H(ρ)(αυ(x,r;ρ)tαh(x,r)δ(υ,r)),(1ρ)(αˉυ(x,r;ρ)tαˉh(x,r))=H(ρ)(αˉυ(x,r;ρ)tαˉh(x,r)ˉδ(ˉυ,r)). (3.3)

    where ρ[0,1], H(ρ)=m1cmρm for all ρ0 is an auxiliary function, if ρ=0 then H(0)=0 where

    {υ(x,r,0)=u0(x,r)υ(x,r;1)=u(x,r),ˉυ(x,r,0)=ˉu0(x,r)ˉυ(x,r;1)=ˉu(x,r).

    and cm represent auxiliary constants. Using Taylor's series to expand υ(x,r;ρ) about ρ we get

    {υ(x,r;ρ)=u0(x,r)+m1um(x,r)ρm,ˉυ(x,r;ρ)=ˉu0(x,r)+m1ˉum(x,r)ρm. (3.4)

    Inserting Eq (3.4) into Eq (3.3) we get series of the problems by comparing the like power of ρ given as follow:

    ρ0:{u0(x,r)h(x,r)=0,ˉu0(x,r)ˉh(x,r)=0. (3.5)
    ρ1:{u1(x,r)+c1δ(u0)+(1+c1)+u0(x,r)=0,ˉu1(x,r)+c1δ(ˉu0)+(1+c1)+ˉu0(x,r)=0. (3.6)
    ρ2:{u2(x,r)+c1δ(u1)+c2δ(u0)+c2(h(x,r)u0(x,r))(1+c1)u1(x,r)=0,ˉu2(x,r)+c1δ(ˉu1)+c2δ(ˉu0)+c2(ˉh(x,r)ˉu0(x,r))(1+c1)ˉu1(x,r)=0. (3.7)
    ρn:{un(x,r)+c1δ(un)+c2δ(un1)+c3(h+δ(u0))...c2un1(x,r)(1+c1)un(x,r)=0,ˉun(x,r)+c1δ(ˉun)+c2δ(ˉun1)+c3(h+δ(ˉu0))...c2ˉun1(x,r)(1+c1)ˉun(x,r)=0. (3.8)

    For calculating the constants c1,c2,c3..., mth order optimum solution becomes

    {um(x,r,cl)=u0(x,r)+mk=1uk(x,r,cl),l=1,2,3,...m,ˉum(x,r,cl)=ˉu0(x,r)+mk=1ˉuk(x,r,cl),l=1,2,3,...m. (3.9)

    Putting Eq (3.9) into Eq (3.1), we can found our residual given as follow:

    {R(x,r;cl)=um(x,r;cl)h(x,r)δ(u),l=1,2,...ˉR(x,r;cl)=ˉum(x,r;cl)ˉh(x,r)δ(ˉu),l=1,2,... (3.10)

    If R(x,r;cl)=0, then um(x,r;cl)&ˉum(x,r;cl) will be the exact solutions.

    Optimum solution contains some auxiliary constants; the optimal values of these constants are obtained through various techniques. In the present work, we have used the least square method [56,57]. The method of least squares is a powerful technique for obtaining the values of auxiliary constants. By putting the optimal values of these constants in Eq (8), we obtain the OHAM solution.

    Problem 4.1. Consider system of fuzzy fractional order Volterra integro-differential equation as [58]:

    {Dαxu_(x,r)=(r1)+x0u_(t,r)dtDαxˉu(x,r)=(1r)+x0ˉu(t,r)dt,0<α1,x[0,1], (4.1)

    subject to the fuzzy initial condition [u(0)]r=[r1,1r], and for α=1 fuzzy fractional order Volterra integro-differential equations the exact solution is [u(x)]r=[r1,1r]Sinh(x) and 0r1.

    By follow the technique as discussed in section 3, we get series of problems and their solutions as:

    {Dxαu_0(x,r)+(1r)=0,Dxα¯u0(x,r)+(r1)=0. (4.2)
    {Dxαu_1(x,r)1+rc1+rc1+(x0u_0(t,r)dt)c1Dxαu_0(x,r)c1Dxαu_0(x,r)=0,Dxαˉu1(x,r)+1r+c1rc1+(x0ˉu0(t,r)dt)c1Dxαˉu0(x,r)c1Dxαˉu(x,r)=0. (4.3)
    {Dxαu_2(x,r)+(x0u_1(t,r)dt)c1c2+rc2+(x0u_0(t,r)dt)c2c2Dxαu_0(x,r)Dxαu_1(x,r)c1Dxαu_0(x,r)=0,Dxαˉu2(x,r)+(x0ˉu1(t,r)dt)c1+c2rc2+(x0ˉu0(t,r)dt)c2c2Dxαˉu0(x,r)Dxαˉu1(x,r)c1Dxαˉu0(x,r)=0. (4.4)
    {Dxαu_3(x,r)+(x0u_2(t,r)dt)c1+(x0u_1(t,r)dt)c2c3+rc3+(x0u_0(t,r)dt)c3c3Dxαu_0(x,r)c2Dxαu_1(x,r)Dxαu_2(x,r)c1Dxαu_2(x,r)=0,Dxαˉu3(x,r)+(x0ˉu2(t,r)dt)c1+(x0ˉu1(t,r)dt)c2+c3rc3+(x0ˉu0(t,r)dt)c3c3Dxαˉu0(x,r)c2Dxαˉu1(x,r)Dxαˉu2(x,r)c1Dxαˉu2(x,r)=0. (4.5)

    Their solutions are

    {u_0(x,r)=(1+r)xααΓ(α)ˉu0(x,r)=(1+r)xααΓ(α), (4.6)
    {u_1(x,r)=(1+r)x1+2αc1Γ(2+2α),ˉu1(x,r)=(1+r)x1+2αc1Γ(2+2α). (4.7)
    {u_2(x,r)=(1+r)x1+2α(x1+αc21Γ(3+3α)c1+c21+c2Γ(2+2α)),ˉu2(x,r)=(1+r)x1+α(x1+αc21Γ(3+3α)+c1+c21+c2Γ(2+2α)). (4.8)
    {u_3(x,r)=(1+r)x1+2α(x2+2αc31Γ(4+4α)+2x1+αc1(c1+c21+c2)Γ(3+3α)c1+2c21+c31+c2+2c1c2+c3Γ(2+2α)),ˉu3(x,r)=(1+r)x1+2α(x2+2αc31Γ(4+4α)2x1+αc1(c1+c21+c2)Γ(3+3α)+c1+2c21+c31+c2+2c1c2+c3Γ(2+2α)). (4.9)

    Adding (4.6), (4.7), (4.8) and (4.9), one can construct u_(x,r) & ˉu(x,r) :

    {u_(x,r)=(1+r)xα(1Γ(1+α)x3+3αc31Γ(4+4α)+x2+2αc1(c1(3+2c1)+2c2)Γ(3+3α)x1+α(2c2+c1(3+c1(3+c1)+2c2)+c3)Γ(2+2α)),ˉu(x,r)=(1+r)xα(1Γ(1+α)+x3+3αc31Γ(4+4α)x2+2αc1(c1(3+2c1)+2c2)Γ(3+3α)+x1+α(2c2+c1(3+c1(3+c1)+2c2)+c3)Γ(2+2α)). (4.10)

    Values of c1,c2 and c3 contain is in Eq (4.10)

    Substituting the values from Table 1 into Eq (4.10), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of α taking r=0.75 respectively is as follow

    α=0.7
    {u_(x,r)0.2751369x0.70.08602097x2.40.25x2.4(0.00904995+0.0376716x1.7)0.25x2.4(0.0004258590.00198165x1.7+0.0021734872x3.4),¯u(x,r)0.2751369x0.7+0.08602097x2.40.25x2.4(0.009049950.0376716x1.7)0.25x2.4(0.000425859+0.00198165x1.70.0021734872x3.4). (4.11)
    α=0.8
    {u_(x,r)0.2684178x0.80.0685589x2.60.25x2.6(0.005391327+0.023297809x1.8)0.25x2.6(0.0001975130.0009160448x1.8+0.001008410504x3.6),¯u(x,r)0.2684178x0.8+0.0685589x2.60.25x2.6(0.00539130.023297809x1.8)0.25x2.6(0.000197513+0.0009160448x1.80.001008410504x3.6). (4.12)
    α=0.9
    {u_(x,r)0.2599385x0.90.0540269x2.80.25x2.8(0.0031639+0.01418901x1.9)0.25x2.8(0.000089890.0004154745x1.9+0.000458881x3.8),¯u(x,r)0.2599385x0.9+0.0540269x2.80.25x2.8(0.00316390.014189097x1.9)0.25x2.8(0.00008989+0.0004154745x1.90.000458881x3.8). (4.13)
    α=1
    {u_(x,r)0.25x0.042114377x30.25x3(0.001829736+0.0085133796x2)0.25x3(0.00004015350.0001849397x2+0.00020487753x4),¯u(x,r)0.25x+0.042114377x30.25x3(0.0018297360.0085133796x2)0.25x3(0.0000401535+0.0001849397x20.0002048775x4). (4.14)
    Table 1.  at r = 0.75.
    α c_1 & ¯c1 c_2 & ¯c2 c_3 & ¯c3
    0.7 −1.0257850714449026 5.298291106236844×10−4 −3.040859671410477×10−5
    0.8 −1.0193406988378892 3.249294721058776×10−4 −1.5364294422415488×10−5
    0.9 −1.014446487354385 1.9694362983845834×10−4 −7.63055570435551×10−6
    1 −1.0107450504316333 1.1791102776455743×10−4 −3.779171763451589×10−6

     | Show Table
    DownLoad: CSV

    Substituting the values from Table 2 into Eq (4.10), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of α taking r=0.5 respectively is as follow

    α=0.7
    {u_(x,r)0.5502737x0.70.172041940x2.40.5x2.4(0.00904995+0.0376716x1.7)0.5x2.4(0.00042585940.0019816476x1.7+0.0021734872x3.4),ˉu(x,r)0.5502737x0.7+0.172041940x2.40.5x2.4(0.009049950.03767164x1.7)0.5x2.4(0.0004258594+0.0019816476x1.70.0021734872x3.4). (4.15)
    α=0.8
    {u_(x,r)0.53683564x0.80.137117858x2.60.5x2.6(0.00539133+0.02329781x1.8)0.5x2.6(0.000197510.0009160448x1.8+0.0010084105x3.6),¯u(x,r)0.53683564x0.8+0.137117858x2.60.5x2.6(0.005391330.02329781x1.8)0.5x2.6(0.00019751+0.0009160448x1.80.0010084105x3.6). (4.16)
    α=0.9
    {u_(x,r)0.5198771x0.90.10805378x2.80.5x2.8(0.0031640+0.0141891x1.9)0.5x2.8(0.00008989450.0004154745x1.9+0.000458881x3.8),¯u(x,r)0.5198771x0.9+0.10805378x2.80.5x2.8(0.00316400.0141891x1.9)0.5x2.8(0.0000898945+0.0004154745x1.90.000458881x3.8). (4.17)
    α=1
    {u_(x,r)0.5x0.0842288x30.5x3(0.0018298+0.008513x2)0.5x3(0.00004016120.00018494622x2+0.0002048777x4),¯u(x,r)0.5x+0.0842288x30.5x3(0.00182980.008513x2)0.5x3(0.000040162+0.00018494622x20.0002048777x4). (4.18)
    Table 2.  at r = 0.5.
    α c_1 & ¯c1 c_2 & ¯c2 c_3 & ¯c3
    0.7 −1.0257850714449026 5.298291106236844×10−4 −3.040859671410477×10−5
    0.8 −1.0193406988378892 3.249294721058776×10−4 −1.5364294422415488×10−5
    0.9
    1
    −1.014446487354385
    −1.0107453381292266
    1.9694362983845834×10−4
    1.1800167363027721×10−4
    −7.630555570435551×10−6
    −3.726389827252244×10−6

     | Show Table
    DownLoad: CSV

    Problem 4.2. Consider system of fuzzy fractional order Volterra integro-differential equation as [59]:

    Dαxu(x,r)+t0u(t,r)dt=0,0<α1,x[0,1], (4.19)

    subject to the fuzzy initial condition [u(0)]r=[r1,1r], and the exact solution is u_(x,r)=(r1)Eα+1(tα+1),ˉu(x,r)=(1r)Eα+1(tα+1),

    where Eα+1 is a Mittag-Leffler function and 0r1.

    By follow the technique as discussed in section 3, we get series of problems and their solutions as:

    {Dxαu_0(x,r)=0,Dxαˉu0(x,r)=0. (4.20)
    {Dxαu_1(x,r)+(x0u_0(t,r)dt)c1Dxαu_0(x,r)c1Dxαu_0(x,r)=0,Dxαˉu1(x,r)+(x0ˉu0(t,r)dt)c1Dxαˉu0(x,r)c1Dxαˉu(x,r)=0. (4.21)
    {Dxαu_2(x,r)+(x0u_1(t,r)dt)c1(x0u_0(t,r)dt)c2c2Dxαu_0(x,r)Dxαu_1(x,r)c1Dxαu_0(x,r)=0,Dxαˉu2(x,r)+(x0ˉu1(t,r)dt)c1(x0ˉu0(t,r)dt)c2c2Dxαˉu0(x,r)Dxαˉu1(x,r)c1Dxαˉu0(x,r)=0. (4.22)
    {Dxαu_3(x,r)(x0u_2(t,r)dt)c1(x0u_1(t,r)dt)c2(x0u_0(t,r)dt)c3c3Dxαu_0(x,r)c2Dxαu_1(x,r)Dxαu_2(x,r)c1Dxαu_2(x,r)=0,Dxαˉu3(x,r)(x0ˉu2(t,r)dt)c1(x0ˉu1(t,r)dt)c2(x0ˉu0(t,r)dt)c3c3Dxαˉu0(x,r)c2Dxαˉu1(x,r)Dxαˉu2(x,r)c1Dxαˉu2(x,r)=0. (4.23)

    And their solutions are

    {u_0(x,r)=r1,ˉu0(x,r)=1r. (4.24)
    {u_1(x,r_)=(1+r)x1+αc1(α+α2)Γ(α),¯u1(x,¯r)=(1+r)x1+αc1α(1+α)Γ(α), (4.25)
    {u_2(x,r)=(1+r)x1+α(x1+αc21Γ(3+2α)+c1+c21+c2Γ(2+α)),ˉu2(x,r)=(1+r)x1+α(x1+αc21Γ(3+2α)c1+c21+c2Γ(2+α)). (4.26)
    {u_3(x,r)=(1+r)x1+α(c2+c1(1+x2+2αc21Γ(4+2α)+c1(2+c1)+2c2+2x1+α(c1+c21+c2)Γ(3+3α))+c3)Γ(1+α),ˉu3(x,r)=(1+r)x1+α(x2+2αc31Γ(4+3α)2x1+αc1(c1+c21+c2)Γ(3+2α)c2+c1((1+c1)2+2c2)+c3Γ(2+α)), (4.27)

    Adding (4.24), (4.25), (4.26) and (4.27), one can construct u_(x,r) & ˉu(x,r) :

    {u_(x,r)=1+r+(1+r)x1+α(x1+αc21Γ(3+2α)+x2+2αc31Γ(1+α)Γ(4+2α)+2x1+αc1(c1+c21+c2)Γ(1+α)Γ(3+α)+c1(2+c1)+c2Γ(2+α)+c2+c1((1+c1)2+2c2)+c3Γ(1+α)),ˉu(x,r)=1r+(1+r)x1+α(x2+2αc31Γ(4+3α)x1+αc1(c1(3+2c1)+2c2)Γ(3+2α)2c2+c1(3+c1(3+c1)+2c2)+c3Γ(2+α)). (4.28)

    Values of c1,c2 and c3 contain in Eq (4.28)

    Substituting the values from Tables 3 and 4 into Eq (4.28), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of α taking r=0.5 is as follow

    α=0.2
    {u_(x,r)0.50.5x1.2(0.905948+0.325139x1.20.055807x2.4),¯u(x,r)0.50.5x1.2(0.9059480.325139x1.2+0.055807x2.4). (4.29)
    α=0.4
    {u_(x,r)0.50.5x1.4(0.804545+0.210093x1.40.025570x2.8),¯u(x,r)0.50.5x1.4(0.804545450.210093x1.4+0.025570x2.8). (4.30)
    α=0.6
    {u_(x,r)0.50.5x1.6(0.699349+0.128177x1.60.010450x3.2),¯u(x,r)0.50.5x1.6(0.6993490.128177x1.6+0.010450x3.2). (4.31)
    α=0.8
    {u_(x,r)0.50.5x1.8(0.596450+0.074561x1.80.0038863x3.6),¯u(x,r)0.50.5x1.8(0.59645030.074561x1.8+0.0038863x3.6). (4.32)
    α=1
    {u_(x,r)0.50.5x2(0.499992+0.04163089x20.001336253x4),¯u(x,r)0.50.5x2(0.49999140.04163076x2+0.001336247x4). (4.33)
    Table 3.  at r = 0.5.
    α c_1 c_2 c_3
    0.2 −0.8038238618267683 7.6178003377104005×10−3 −1.334733828882206×10−3
    0.4 −0.739676946061329 0.02530379950927192 −3.78307542584476×10−3
    0.6 −0.6725325561865596 0.04771922184372877 −8.140310215705777×10−3
    0.8 −0.6062340661192892 0.06889015391501904 −0.015746150088743013
    1.0 −0.5432795308983783 0.08615024033359142 −0.026582381449582644

     | Show Table
    DownLoad: CSV
    Table 4.  at r = 0.5.
    α ¯c1 ¯c2 ¯c3
    0.2 −0.9072542694138958 3.5727393445527333×10−3 3.637119200533134×10−4
    0.4 −0.9409187563211361 1.9803045412863643×10−3 1.7807647588483674×10−4
    0.6 −0.9636043521097131 9.808463578935658×10−4 7.369503633679291×10−5
    0.8 −0.9781782948007163 4.4492367269725435×10−4 2.6729929232143615×10−5
    1.0 −0.9872029432879605 1.896941835601795×10−4 1.021455544474314×10−5

     | Show Table
    DownLoad: CSV

    Substituting the values from Tables 5 and 6 into Eq (4.28), the approximate solutions for u_(x,r) & ˉu(x,r) at different values of r taking α=0.5 is as follow

    r=0
    {u_(x,r)1x1.5(0.75199032254+0.165168588631x1.50.016559344247x3.),¯u(x,r)1x1.5(0.751990322560.165168588653x1.5+0.016559344262x3.). (4.34)
    r=0.2
    {u_(x,r)0.80.8x1.5(0.751990322550+0.165168588x1.50.01655934425x3.),¯u(x,r)0.80.8x1.5(0.7519903225540.165168588x1.5+0.01655934426x3.). (4.35)
    r=0.4
    {u_(x,r)0.60.6x1.5(0.7519903225+0.1651685886x1.50.016559344250x3.),¯u(x,r)0.60.6x1.5(0.75199032250.1651685886x1.5+0.0165593442496x3.). (4.36)
    r=0.6
    {u_(x,r)0.40.4x1.5(0.751990322550+0.16516858863x1.50.01655934425x3.),¯u(x,r)0.40.4x1.5(0.7519903225540.16516858865x1.5+0.01655934426x3.). (4.37)
    r=0.8
    {u_(x,r)0.19999100.1999910x1.5(0.7519903+0.16516859x1.50.0165593x3.),¯u(x,r)0.199999100.19999910x1.5(0.75199030.16516859x1.5+0.0165593x3.). (4.38)
    Table 5.  at α = 0.5.
    r c_1 c_2 c_3
    0 0.7062087686601037 0.03638991875243272 5.6065011933001474×103
    0.2 0.7062087687083373 0.03638991875755982 5.606501189519195×103
    0.4 0.7062087686911187 0.03638991875566347 5.606501190876118×103
    0.6 0.7062087687083373 0.03638991875755982 5.606501189519195×103
    0.8 0.7062087686312865 0.036389918749298394 5.606501195566148×103

     | Show Table
    DownLoad: CSV
    Table 6.  at α = 0.5.
    r ¯c1 ¯c2 {\overline c _3}
    0 - 0.9534544876637709 1.4110239362094313 \times {10^{ - 3}} 1.1669890178958486 \times {10^{ - 4}}
    0.2 - 0.9534544876175205 1.4110239407705756 \times {10^{ - 3}} 1.1669890245071123 \times {10^{ - 4}}
    0.4 - 0.9534544874104965 1.4110239614371703 \times {10^{ - 3}} 1.1669890547775563 \times {10^{ - 4}}
    0.6 - 0.9534544876175205 1.4110239407705756 \times {10^{ - 3}} 1.1669890245071123 \times {10^{ - 4}}
    0.8 - 0.9534544876289686 1.4110239398903034 \times {10^{ - 3}} 1.1669890235330204 \times {10^{ - 4}}

     | Show Table
    DownLoad: CSV

    Tables 16 show the values of auxiliary constant at different values of r & \alpha for both lower and upper solution of OHAM for the solved problems. Tables 7 and 8 show the comparison of absolute error of 3rd order OHAM with Fractional Residual Power Series (FRPS) Method for 5-approximated solution and k = 5 for both lower and upper solutions of OHAM at different value of \alpha for problem 1. Comparison of absolute error of 3rd orders OHAM for both lower and upper solution of OHAM are shown in Tables 9 and 10. Numerical result show that OHAM provide more accuracy as compared to the other method and as \alpha \to 1 the approximate solution become very close to the exact solution. Graphical representation confirmed the convergence of fractional order solution towards the integer order solution. In Figure 1 graphical representation of OHAM at \alpha = 0.7, \, \, 0.8, \, \, 0.9\, , \, \, 1, \, \, r = 0.75 and \alpha = 0.7, \, \, 0.8, \, \, 0.9\, , \, \, 1, \, \, r = 0.50 are discussed for both \underline u (x, r) & \bar u(x, r) for problem 1. Figures 2 and 3 show the comparison of OHAM with the exact solution at different values of and taking r = 0.75 & r = 0.5 respectively for problem 1. Figure 4 represent the comparison of OHAM at \alpha = 0.2, \, 0.4, \, \, 0.6, \, \, 0.8, \, \, 1, \, \, r = 0.5 and r = 0, \, \, 0.2, \, 0.4, \, \, 0.6, \, \, 0.8, \, \, \alpha \, = 0.5 for both \underline u (x, r) and \bar u(x, r) for problem 2. Figure 5 shows the comparison of OHAM with the exact solution at different values of and r = 0.5 while Figure 6 shows the comparison of OHAM with the exact solution at different values of r and = 0.5 for problem 2.

    Table 7.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for \underline u (x, r) and Fractional Residual Power Series (FRPS) [54] Method for 5-approximated solution and k = 5 for problem 1.
    r x FRPS [58]
    \alpha = 0.7
    OHAM FRPS [58]
    \alpha = 0.8
    OHAM FRPS [58]
    \alpha = 0.9
    OHAM FRPS [58]
    \alpha = 1
    OHAM
    0.75 0.2 0.042797 0.040621 0.025514 0.024764 0.011512 0.011321 6.35273×10−10 2.14676×10−9
    0.4 0.059664 0.051698 0.035840 0.032584 0.016392 0.015405 8.14507×10−8 1.00832×10−8
    0.6 0.075769 0.058997 0.045171 0.037635 0.020545 0.018031 1.39554×10−6 1.11336×10−8
    0.8 0.094364 0.066136 0.055863 0.04232 0.025182 0.020362 1.04955×10−5 6.21567×10−9
    0.50 0.2 0.085595 0.081241 0.051027 0.049528 0.011321 0.022643 1.27055×10−9 4.25946×10−9
    0.4 0.119328 0.103396 0.071680 0.065167 0.015405 0.030811 1.62901×10−7 1.98877×10−8
    0.6 0.151537 0.117994 0.090342 0.075269 0.018031 0.036062 2.79107×10−6 2.12923×10−8
    0.8 0.188728 0.132271 0.111723 0.084640 0.020362 0.040725 2.09911×10−5 1.00120×10−8

     | Show Table
    DownLoad: CSV
    Table 8.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for \bar u(x, r) and Fractional Residual Power Series (FRPS) [58] Method for 5-approximated solution and k = 5 for problem 1.
    r x FRPS [58]
    \alpha = 0.7
    OHAM FRPS [58]
    \alpha = 0.8
    OHAM FRPS [58]
    \alpha = 0.9
    OHAM FRPS [58]
    \alpha = 1
    OHAM
    0.75 0.2 0.085595 0.081242 0.025514 0.024764 0.011512 0.011321 6.35273×10−10 2.14676×10−9
    0.4 0.119328 0.103396 0.035840 0.032584 0.016392 0.015405 8.14507×10−8 1.00832×10−8
    0.6 0.151537 0.117994 0.045171 0.037635 0.020545 0.018031 1.39554×10−6 1.11336×10−8
    0.8 0.188728 0.132271 0.055862 0.04232 0.025182 0.020362 1.04955×10−5 6.21567×10−9
    0.50 0.2 0.042797 0.040621 0.051027 0.049528 0.023025 0.022643 1.27055×10−9 4.25946×10−9
    0.4 0.059664 0.051698 0.071680 0.065167 0.032784 0.030811 1.62901×10−7 1.98877×10−8
    0.6 0.075769 0.058997 0.090342 0.075269 0.041090 0.036062 2.79107×10−6 2.12923×10−8
    0.8 0.094364 0.066136 0.111723 0.084640 0.050364 0.040725 2.09911×10−5 1.0012×10−8

     | Show Table
    DownLoad: CSV
    Table 9.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for \underline u (x, \underline r ) & \bar u(x, r) at different values of \alpha taking r = 0.5 for problem 2.
    x \underline u (x, r)
    \alpha = 0.4
    \bar u(x, r) \underline u (x, r)
    \alpha = 0.6
    \bar u(x, r) \underline u (x, r)
    \alpha = 0.8
    \bar u(x, r) \underline u (x, r)
    \alpha = 1
    \bar u(x, r)
    0.2 1.2736×10−5 1.2736×10−5 3.2527×10−6 3.2527×10−6 6.93075×10−7 6.93076×10−7 1.29476×10−7 1.44585×10−7
    0.4 2.3337×10−6 2.3337×10−6 2.4426×10−6 2.4426×10−6 9.50573×10−7 9.50573×10−7 2.67538×10−7 3.26771×10−7
    0.6 9.9993×10-6 9.9993×10−6 1.8451×10−6 1.8451×10−6 3.8544×10−8 3.85438×10−8 1.10198×10−7 2.39031×10−7
    0.8 4.1251×10−6 4.1251×10−6 1.3416×10−7 1.3416×10−7 6.55017×10−8 6.55017×10−8 9.64628×10−9 2.27883×10−7
    1.0 1.312×10−5 1.312×10−5 1.8373×10−6 1.8373×10−6 5.49341×10−8 5.4934×10−8 7.7356×10−8 3.9735×10−7

     | Show Table
    DownLoad: CSV
    Table 10.  Comparison of Absolute Error (Abs Err.) of 3rd order OHAM for \underline u (x, r) & \bar u(x, r) at different values of r taking \alpha = 0.5 for problem 2.
    x \underline u (x, r)
    r = 0.4
    \bar u(x, r) \underline u (x, r)
    r = 0.6
    \bar u(x, r) \underline u (x, r)
    r = 0.8
    \bar u(x, r) \underline u (x, r)
    r = 1
    \bar u(x, r)
    0. 0. 0. 0. 0. 0. 0. 0. 0.
    0.2 1.0578×10−5 1.0578×10−5 7.9338×10−6 7.9338×10−6 5.28921×10−6 5.28921×10−6 2.64461×10−6 2.64461×10−6
    0.4 4.8940×10−6 4.8940×10−6 3.6705×10−6 3.6705×10−6 2.44698×10−6 2.44698×10−6 1.22349×10−6 1.22349×10−6
    0.6 7.4825×10−6 7.4825×10−6 5.6119×10−6 5.6119×10−6 3.74125×10−6 3.74125×10−6 1.87062×10−6 1.87062×10−6
    1.8 1.8038×10−6 1.8038×10−6 1.35291×10−6 1.35291×10−6 9.01939×10−7 9.01939×10−7 4.5097×10−7 4.5097×10−7

     | Show Table
    DownLoad: CSV
    Figure 1.  Solution plot of OHAM for \underline u (x, r) & \bar u(x, r) at different values of r & \alpha for problem 1.
    Figure 2.  Solution plot of OHAM and Exact for \underline u (x, r) & \bar u(x, r) at different values of \alpha taking r = 0.75 for problem 1.
    Figure 3.  Solution plot of OHAM and Exact for \underline u (x, r) & \bar u(x, r) at different values of \alpha taking r = 0.50 for problem 1.
    Figure 4.  Solution plot of OHAM for \underline u (x, r) & \bar u(x, r) at different values of r & \alpha for problem 2.
    Figure 5.  Solution plot of OHAM and Exact for \underline u (x, r) & \bar u(x, r) at different values of \alpha taking r = 0.5 for problem 2.
    Figure 6.  Solution plot of OHAM and Exact for \underline u (x, r) & \bar u(x, r) at different values of r taking \alpha = 0.5 for problem 2.

    In the research paper, a powerful technique known as Optimal Homotopy Asymptotic Method (OHAM) has been extended to the solution of system of fuzzy integro differential equations of fractional order. The obtained results are quite interesting and are in good agreement with the exact solution. Two numerical equations are taken as test examples which show the behavior and reliability of the proposed method. The extension of OHAM to system of fuzzy integro differential equations of fractional order is more accurate and as a result this technique will more appealing for the researchers for finding out optimum solutions of system of fuzzy integro differential equations of fractional order.

    The authors declare no conflict of interest.



    [1] Tackling the dual burden of TB and diabetes for patients and their families, World Health Organization, 2019. Available from: https://www.who.int/news/item/14-11-2019-dept-newstackling-the-dual-burden-of-tb-and-diabetes-for-patients-and-their-families.
    [2] S. E. Geerlings, A. I. M. Hoepelman, Immune dysfunction in patients with diabetes mellitus (DM), FEMS Immunol. Med. Mic., 26 (1999), 259–265. https://doi.org/10.1111/j.1574-695X.1999.tb01397.x doi: 10.1111/j.1574-695X.1999.tb01397.x
    [3] D. Morse, D. R. Brothwell, P. J. Ucko, Tuberculosis in ancient Egypt, Am. Rev. Respir. Dis., 90 (1964), 524–541.
    [4] J. P. Aparicio, A. F. Capurro, C. Castillo-Chavez, Transmission and dynamics of tuberculosis on generalized households, J. Theor. Biol., 206 (2000), 327–341. https://doi.org/10.1006/jtbi.2000.2129 doi: 10.1006/jtbi.2000.2129
    [5] K. Floyd, P. Glaziou, A. Zumla, M. Raviglione, The global tuberculosis epidemic and progress in care, prevention, and research: An overview in year 3 of the end TB era, Lancet Respir. Med., 6 (2018), 299–314. https://doi.org/10.1016/S2213-2600(18)30057-2 doi: 10.1016/S2213-2600(18)30057-2
    [6] C. Dye, Global epidemiology of tuberculosis, Lancet, 367 (2006), 938–940. https://doi.org/10.1016/S0140-6736(06)68384-0 doi: 10.1016/S0140-6736(06)68384-0
    [7] G. A. Colditz, T. F. Brewer, C. S. Berkey, M. E. Wilson, E. Burdick, H. V. Fineberg, et al., Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature, JAMA, 271 (1994), 698–702. https://doi.org/10.1001/jama.1994.03510330076038 doi: 10.1001/jama.1994.03510330076038
    [8] O. A. Arqub, A. El-Ajou, Solution of the fractional epidemic model by homotopy analysis method, J. King Saud Univ. Sci., 25 (2013), 73–81. https://doi.org/10.1016/j.jksus.2012.01.003 doi: 10.1016/j.jksus.2012.01.003
    [9] M. Rafei, D. D. Ganji, H. Daniali, Solution of the epidemic model by homotopy perturbation method, Appl. Math. Comput., 187 (2007), 1056–1062. https://doi.org/10.1016/j.amc.2006.09.019 doi: 10.1016/j.amc.2006.09.019
    [10] S. Zhao, Z. Xu, Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744–752. https://doi.org/10.1093/ije/29.4.744 doi: 10.1093/ije/29.4.744
    [11] F. Haq, K. Shah, A. Khan, M. Shahzad, G. Rahman, Numerical solution of fractional order epidemic model of a vector born disease by laplace adomian decomposition method, Punjab Univ. J. Math., 49 (2017), 13–22.
    [12] I. Ullah, S. Ahmad, Q. Al-Mdallal, Z. A. Khan, H. Khan, A. Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, Adv. Differ. Equ., 2020 (2020), 499. https://doi.org/10.1186/s13662-020-02950-0 doi: 10.1186/s13662-020-02950-0
    [13] A. I. Enagi, M. O. Ibrahim, N. I. Akinwande, M. Bawa, A. Wachin, A mathematical model of tuberculosis control incorporating vaccination, latency and infectious treatments (case study of Nigeria), Int. J. Math. Comput. Sci., 12 (2017), 97–106.
    [14] F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: Timefractional fishers equations, Fractals, 30 (2022), 22400051.
    [15] S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical h-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110.
    [16] F. Jin, Z. S. Qian, Y. M. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 2022. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
    [17] Z. Y. He, A. Abbes, H. Jahanshahi, N. D. Alotaibi, Y. Wang, Fractionalorder discrete-time SIR epidemic model with vaccination: Chaos and complexity, Mathematics, 10 (2022), 165. https://doi.org/10.3390/math10020165 doi: 10.3390/math10020165
    [18] S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multistep methods for singular fractional q-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [19] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026.
    [20] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
    [21] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on \psi-Hilfer derivative fractional impulsive integro-differential equations, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
    [22] M. A. Iqbal, Y. Wang, M. M. Miah, M. S. Osman, Study on Date-Jimbo-Kashiwara-Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions, Fractal Fract., 6 (2022), 4. https://doi.org/10.3390/fractalfract6010004 doi: 10.3390/fractalfract6010004
    [23] T. H. Zhao, M. I. Khan, Y. M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7310 doi: 10.1002/mma.7310
    [24] Y. M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. I. Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput., 419 (2021), 126883. https://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
    [25] M. Nazeer, F. Hussain, M. I. Khan, A. ur-Rehman, E. R. ElZahar, Y. M. Chu, et al., Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2021), 126868. https://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
    [26] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [27] U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [28] I. Podlubny, Fractional differential equations: Mathematics in science and engineering, Academic Press, New York 1999.
    [29] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland, Amsterdam, 2006.
    [30] F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Res. Nonlinear Anal., 1 (2018), 88–98.
    [31] K. Deimling, Nonlinear functional analysis, New York: Springer-Verlag, 1985.
    [32] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003.
    [33] Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102
    [34] X. Q. Zhao, The theory of basic reproduction ratios, In: Dynamical systems in population biology, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-56433-3_11
    [35] E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems, Phys. Lett. A, 358 (2006), 1–4. https://doi.org/10.1016/j.physleta.2006.04.087 doi: 10.1016/j.physleta.2006.04.087
    [36] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
    [37] S. Rashid, K. T. Kubra, H. Jafari, S. U. Lehre, A semi-analytical approach for fractional order Boussinesq equation in a gradient unconfined aquifers, Math. Meth. Appl. Sci., 45 (2022), 1033–1062. https://doi.org/10.1002/mma.7833 DOI: 10.1002/mma.7833 doi: 10.1002/mma.7833
    [38] S. Ahmad, R. Ullah, D. Baleanu, Mathematical analysis of tuberculosis control model using nonsingular kernel type Caputo derivative, Adv. Diff. Equ., 2021 (2021), 26. https://doi.org/10.1186/s13662-020-03191-x doi: 10.1186/s13662-020-03191-x
  • This article has been cited by:

    1. Tareq Manzoor, S. Iqbal, Mohd Asif Shah, A note on the slip effects of an Oldroyd 6-constant fluid: Optimal homotopy asymptotic method, 2022, 10, 2296-424X, 10.3389/fphy.2022.1003000
    2. Laiq Zada, Rashid Nawaz, Wasim Jamshed, Rabha W. Ibrahim, El Sayed M. Tag El Din, Zehba Raizah, Ayesha Amjad, New optimum solutions of nonlinear fractional acoustic wave equations via optimal homotopy asymptotic method-2 (OHAM-2), 2022, 12, 2045-2322, 10.1038/s41598-022-23644-5
    3. HIMAYAT ULLAH JAN, HAKEEM ULLAH, MEHREEN FIZA, ILYAS KHAN, ABDULLAH MOHAMED, ABD ALLAH A. MOUSA, MODIFICATION OF OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR MULTI-DIMENSIONAL TIME-FRACTIONAL MODEL OF NAVIER–STOKES EQUATION, 2023, 31, 0218-348X, 10.1142/S0218348X23400212
    4. RI ZHANG, NEHAD ALI SHAH, ESSAM R. EL-ZAHAR, ALI AKGÜL, JAE DONG CHUNG, NUMERICAL ANALYSIS OF FRACTIONAL-ORDER EMDEN–FOWLER EQUATIONS USING MODIFIED VARIATIONAL ITERATION METHOD, 2023, 31, 0218-348X, 10.1142/S0218348X23400285
    5. Nagwa Saeed, Deepak Pachpatte, Fuzzy Solutions of Fuzzy Fractional Parabolic Integro Differential Equations, 2025, 8, 2619-9653, 81, 10.32323/ujma.1631793
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2204) PDF downloads(115) Cited by(10)

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog