Research article

A dual delays epidemic model for TB with adaptive mobility behavior

  • Received: 11 April 2025 Revised: 13 June 2025 Accepted: 24 June 2025 Published: 02 July 2025
  • MSC : 34C23, 93A30

  • Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis, primarily transmitted through the air. It has a long incubation period and complex infection dynamics, with its transmission characteristics significantly influenced by population mobility and infection risk-responsive behavior. According to reports from the World Health Organization (WHO), tuberculosis remains a severe global public health issue, particularly in developing countries, where its high transmission rate and mortality pose substantial challenges to socioeconomic development and healthcare resources. Therefore, investigating the key factors driving tuberculosis transmission is of great significance for global public health management. This paper investigates a dual delays SEIRm epidemic model for tuberculosis that incorporates mobility-adaptive behavior and a nonlinear transmission rate. The stability of these equilibria and the existence of Hopf bifurcations are analyzed. Finally, numerical simulations are performed to examine the impact of population mobility and time-delay factors on disease transmission. The simulation results indicate that properly controlled population movement can significantly reduce the spread of the epidemic. Although mobility responsiveness does not affect the basic number of reproductions, it can mitigate the peak of infections, thereby protecting a larger proportion of the susceptible population.

    Citation: Qun Dai, Longkun Zhang. A dual delays epidemic model for TB with adaptive mobility behavior[J]. AIMS Mathematics, 2025, 10(7): 15231-15263. doi: 10.3934/math.2025683

    Related Papers:

  • Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis, primarily transmitted through the air. It has a long incubation period and complex infection dynamics, with its transmission characteristics significantly influenced by population mobility and infection risk-responsive behavior. According to reports from the World Health Organization (WHO), tuberculosis remains a severe global public health issue, particularly in developing countries, where its high transmission rate and mortality pose substantial challenges to socioeconomic development and healthcare resources. Therefore, investigating the key factors driving tuberculosis transmission is of great significance for global public health management. This paper investigates a dual delays SEIRm epidemic model for tuberculosis that incorporates mobility-adaptive behavior and a nonlinear transmission rate. The stability of these equilibria and the existence of Hopf bifurcations are analyzed. Finally, numerical simulations are performed to examine the impact of population mobility and time-delay factors on disease transmission. The simulation results indicate that properly controlled population movement can significantly reduce the spread of the epidemic. Although mobility responsiveness does not affect the basic number of reproductions, it can mitigate the peak of infections, thereby protecting a larger proportion of the susceptible population.



    加载中


    [1] A. E. Kovach, Rubin's pathology, clinicopathologic foundations of medicine, Am. J. Surg. Pathol., 32 (2008), 1427. https://doi.org/10.1097/PAS.0B013E31816D7194 doi: 10.1097/PAS.0B013E31816D7194
    [2] Tuberculosis, Wikipedia, 2025. Available from: https://en.wikipedia.org/wiki/Tuberculosis.
    [3] Z. Zhang, W. Zhang, K. S. Nisar, N. Gul, A. Zeb, V. Vijayakumar, Dynamical aspects of a tuberculosis transmission model incorporating vaccination and time delay, Alex. Eng. J., 66 (2023), 287–300. https://doi.org/10.1016/J.AEJ.2022.11.010 doi: 10.1016/J.AEJ.2022.11.010
    [4] M. M. Ojo, O. J. Peter, E. F. D. Goufo, H. S. Panigoro, F. A. Oguntolu, Mathematical model for control of tuberculosis epidemiology, J. Appl. Math. Comput., 69 (2022), 69–87. https://doi.org/10.1007/S12190-022-01734-X doi: 10.1007/S12190-022-01734-X
    [5] S. Georgiev, Mathematical identification analysis of a fractional-order delayed model for tuberculosis, Fractal Fract., 7 (2023), 538. https://doi.org/10.3390/FRACTALFRACT7070538 doi: 10.3390/FRACTALFRACT7070538
    [6] S. Kundu, S. Kouachi, S. Kumar, N. Kumari, Pattern formation and stability analysis in a delayed epidemic model with two aware classes, Eur. Phys. J. Plus, 139 (2024), 1079. https://doi.org/10.1140/EPJP/S13360-024-05840-6 doi: 10.1140/EPJP/S13360-024-05840-6
    [7] A. E. Gemeda, L. L. Obsu, E. D. Gurmu, S. T. Degefa, Mathematical modeling of tuberculosis transmission dynamics with vaccination and two lines of treatments: a caputo fractional approach, J. Appl. Math. Comput., 71 (2024), 2017–2049. https://doi.org/10.1007/S12190-024-02308-9 doi: 10.1007/S12190-024-02308-9
    [8] R. Chinnathambi, F. A. Rihan, H. J. Alsakaji, A fractional-order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections, Math. Methods Appl. Sci., 44 (2021), 8011–8025. https://doi.org/10.1002/mma.5676 doi: 10.1002/mma.5676
    [9] M. Saade, S. Ghosh, M. Banerjee, V. Volpert, Delay epidemic models determined by latency, infection, and immunity duration, Math. Biosci., 370 (2024), 109155. https://doi.org/10.1016/j.mbs.2024.109155 doi: 10.1016/j.mbs.2024.109155
    [10] D. Kalyan, B. S. N. Murthy, S. A. Samad, M. H. A. Biswas, Mathematical transmission analysis of SEIR tuberculosis disease model, Sens. Int., 2 (2021), 100120. https://doi.org/10.1016/j.sintl.2021.100120 doi: 10.1016/j.sintl.2021.100120
    [11] T. S. Brown, D. A. Robinson, C. O. Buckee, B. Mathema, Connecting the dots: understanding how human mobility shapes TB epidemics, Trends Microbiol., 30 (2022), 1036–1044. https://doi.org/10.1016/j.tim.2022.04.005 doi: 10.1016/j.tim.2022.04.005
    [12] A. Jabbari, M. Lotfi, H. Kheiri, S. Khajanchi, Mathematical analysis of the dynamics of a fractional-order tuberculosis epidemic in a patchy environment under the influence of re-infection, Math. Meth. Appl. Sci., 46 (2023), 17798–17817. https://doi.org/10.1002/mma.9532 doi: 10.1002/mma.9532
    [13] W. Wang, Modeling adaptive behavior in influenza transmission, Math. Model. Nat. Phenom., 7 (2012), 253–262. https://doi.org/10.1051/mmnp/20127315 doi: 10.1051/mmnp/20127315
    [14] Y. Cai, W. Wang, Global stability for an influenza transmission model incorporating human mobility behavior, Int. J. Biomath., 10 (2017), 1750100. https://doi.org/10.1142/S1793524517501005 doi: 10.1142/S1793524517501005
    [15] Y. Cai, J. Li, Y. Kang, K. Wang, W. Wang, The fluctuation impact of human mobility on the influenza transmission, J. Franklin Inst., 357 (2020), 8899–8924. https://doi.org/10.1016/j.jfranklin.2020.07.002 doi: 10.1016/j.jfranklin.2020.07.002
    [16] S. Hazarie, D. Soriano-Paños, A. Arenas, J. Gómez-Gardeñes, G. Ghoshal, Interplay between population density and mobility in determining the spread of epidemics in cities, Commun. Phys., 4 (2021), 191. https://doi.org/10.1038/s42005-021-00679-0 doi: 10.1038/s42005-021-00679-0
    [17] D. Gao, L. Cao, Vector-borne disease models with Lagrangian approach, J. Math. Biol., 88 (2024), 22. https://doi.org/10.1007/s00285-023-02044-x doi: 10.1007/s00285-023-02044-x
    [18] K. Castellano, R. B. Salako, On the effect of lowering population's movement to control the spread of an infectious disease, J. Differ. Equations, 316 (2022), 1–27. https://doi.org/10.1016/j.jde.2022.01.031 doi: 10.1016/j.jde.2022.01.031
    [19] Y. Qin, L. Yang, Z. Gu, Dynamics behavior of a novel infectious disease model considering population mobility on complex network, Int. J. Dynam. Control, 12 (2024), 2295–2309. https://doi.org/10.1007/s40435-023-01371-7 doi: 10.1007/s40435-023-01371-7
    [20] Y. Liu, X. Wang, C. Song, J. Chen, H. Shu, M. Wu, et al., Quantifying human mobility resilience to the COVID-19 pandemic: a case study of Beijing, China, Sustain. Cities Soc., 89 (2023), 104314. https://doi.org/10.1016/j.scs.2022.104314 doi: 10.1016/j.scs.2022.104314
    [21] W. Zhang, R. Xie, X. Dong, J. Li, P. Peng, E. D. R. S. Gonzalez, SEIR-FMi: a coronavirus disease epidemiological model based on intra-city movement, inter-city movement and medical resource investment, Comput. Biol. Med., 149 (2022), 106046. https://doi.org/10.1016/j.compbiomed.2022.106046 doi: 10.1016/j.compbiomed.2022.106046
    [22] M. Grave, A. Viguerie, G. F. Barros, A. Reali, R. F. S. Andrade, A. L. G. A. Coutinho, Modeling nonlocal behavior in epidemics via a reaction-diffusion system incorporating population movement along a network, Comput. Meth. Appl. Mech. Eng., 401 (2022), 115541–115541. https://doi.org/10.1016/j.cma.2022.115541 doi: 10.1016/j.cma.2022.115541
    [23] Y. Zhang, X. Zheng, M. Helbich, N. Chen, Z. Chen, City2vec: urban knowledge discovery based on population mobile network, Sustain. Cities Soc., 85 (2022), 104000. https://doi.org/10.1016/j.scs.2022.104000 doi: 10.1016/j.scs.2022.104000
    [24] Q. Wang, H. Wu, There exists the "smartest" movement rate to control the epidemic rather than "city lockdown", Appl. Math. Model., 106 (2022), 696–714. https://doi.org/10.1016/j.apm.2022.02.018 doi: 10.1016/j.apm.2022.02.018
    [25] X. Kang, Y. Hu, Z. Liu, S. Sarwar, Forecast and evaluation of asymptomatic COVID-19 patients spreading in China, Results Phys., 34 (2022), 105195. https://doi.org/10.1016/j.rinp.2022.105195 doi: 10.1016/j.rinp.2022.105195
    [26] C. Liu, J. Gao, J. Kanesan, Dynamics analysis and optimal control of delayed SEIR model in COVID-19 epidemic, J. Inequalities Appl., 31 (2024), 66. https://doi.org/10.1186/s13660-024-03140-2 doi: 10.1186/s13660-024-03140-2
    [27] J. Deng, H. Xiang, How do time delays influence dynamics and controls of a generalized SEAIR model? Commun. Nonlinear Sci. Numer. Simul., 137 (2024), 108156. https://doi.org/10.1016/j.cnsns.2024.108156 doi: 10.1016/j.cnsns.2024.108156
    [28] Z. Zhang, S. Kundu, J. P. Tripathi, S. Bugalia, Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays, Chaos Soliton. Fract., 131 (2020), 109483. https://doi.org/10.1016/j.chaos.2019.109483 doi: 10.1016/j.chaos.2019.109483
    [29] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(744) PDF downloads(69) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog