Research article Special Issues

Hardy-type spaces and Hardy-type inequalities

  • Received: 27 April 2025 Revised: 20 June 2025 Accepted: 27 June 2025 Published: 02 July 2025
  • MSC : 46F12, 42B35

  • In the present paper, we defined and then studied Hardy spaces related to spherical mean operators. We proved Hardy-type inequalities, then we showed refined Sobolev-type inequalities between homogeneous Riesz-type spaces, homogeneous Besov-type spaces, and Lorentz-type spaces. Next, we introduced and studied Hausdorff operators on generalized Hardy spaces. Finally, we investigated maximal Bochner-Riesz operators on generalized Hardy spaces.

    Citation: Saifallah Ghobber, Hatem Mejjaoli. Hardy-type spaces and Hardy-type inequalities[J]. AIMS Mathematics, 2025, 10(7): 15264-15293. doi: 10.3934/math.2025684

    Related Papers:

  • In the present paper, we defined and then studied Hardy spaces related to spherical mean operators. We proved Hardy-type inequalities, then we showed refined Sobolev-type inequalities between homogeneous Riesz-type spaces, homogeneous Besov-type spaces, and Lorentz-type spaces. Next, we introduced and studied Hausdorff operators on generalized Hardy spaces. Finally, we investigated maximal Bochner-Riesz operators on generalized Hardy spaces.



    加载中


    [1] P. Duren, Theory of $H^{ p}$ spaces, New York and London, Academic Press, 1970.
    [2] L. Colzani and G. Travaglini, Hardy-Lorentz spaces and expansions in eigenfunctions of the Laplace-Beltrami operator on compact manifolds, Colloq. Math., 58 (1990), 305–316.
    [3] Y. Kanjin, Hardy's inequalities for Hermite and Laguerre expansions, Bull. London Math. Soc., 29 (1997), 331–337. https://doi.org/10.1016/S0196-0644(97)70344-5 doi: 10.1016/S0196-0644(97)70344-5
    [4] R. Radha, Hardy-type inequalities, Taiwanese J. Math., 4 (2000), 447–456.
    [5] R. Radha, S. Thangavelu, Hardy's inequalities for Hermite and Laguerre expansions, P. Am. Math. Soc., 13 (2004), 3525–3536.
    [6] M. Satake, Hardy's inequalities for Laguerre expansions, J. Math. Soc. Japan, 52 (2000), 17–24. https://doi.org/10.1007/s002669910010 doi: 10.1007/s002669910010
    [7] R. Balasubramanian, R. Radha, Hardy-type inequalities for Hermite expansions, J. Inequal. Pure Appl. Math., 6 (2005), 1–4.
    [8] Y. Kanjin, Hardy's inequalities for Hermite and Laguerre expansions revisited, J. Math. Soc. Japan, 63 (2011), 753–767. https://doi.org/10.2969/jmsj/06330753 doi: 10.2969/jmsj/06330753
    [9] P. Plewa, Hardy's inequality for Laguerre expansions of Hermite type, J. Fourier Anal. Appl., 25 (2019), 1855–1873. https://doi.org/10.1007/s00041-018-9642-2 doi: 10.1007/s00041-018-9642-2
    [10] E. M. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser. 43, Princeton Univ. Press, New Jersey, 1993.
    [11] R. R. Coifman, A real variable characterization of $H^{p}$, Studia Math., 51 (1974), 269–274. https://doi.org/10.4064/sm-51-3-269-274 doi: 10.4064/sm-51-3-269-274
    [12] C. Fefferman, E. M. Stein, $H^{p}$ spaces of several variables, Acta Math., 129 (1972), 137–193. https://doi.org/10.1007/BF02392215 doi: 10.1007/BF02392215
    [13] E. M. Stein, G. L. Weiss, On the theory of harmonic functions of several variables: Ⅰ. The theory of $H^{p}$ spaces, Acta Math., 103 (1960), 25–62. https://doi.org/10.1007/BF02546524 doi: 10.1007/BF02546524
    [14] R. R. Coifman, G. L. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569–615. https://doi.org/10.1016/0003-2697(77)90065-3 doi: 10.1016/0003-2697(77)90065-3
    [15] A. Uchiyama, A maximal function characterization of $H^{p}$ on the space of homogeneous type, Trans. Amer. Math. Soc., 262 (1980), 579–592. https://doi.org/10.1090/S0002-9947-1980-0586737-4 doi: 10.1090/S0002-9947-1980-0586737-4
    [16] D. Fan, X. Lin, Hausdorff operator on real Hardy spaces, Analysis, 34 (2014), 319–337. https://doi.org/10.1515/anly-2012-1183 doi: 10.1515/anly-2012-1183
    [17] E. Liflyand, A. Miyachi, Boundedness of the Hausdorff operators in $H^{p}$ spaces $0 < p < 1$, Stud. Math., 194 (2009), 279–292. https://doi.org/10.4064/sm194-3-4 doi: 10.4064/sm194-3-4
    [18] E. Liflyand, F. Móricz, The Hausdorff operator is bounded on the real Hardy space $H^{1}(\mathbb{R})$, Proc. Am. Math. Soc., 128 (2000), 1391–1396. https://doi.org/10.1090/S0002-9939-99-05159-X doi: 10.1090/S0002-9939-99-05159-X
    [19] J. Chen, D. Fan, S. Wang, Hausdorff operators on Euclidean spaces, Appl. Math., 28 (2013), 548–564. https://doi.org/10.1007/s11766-013-3228-1 doi: 10.1007/s11766-013-3228-1
    [20] E. Liflyand, Hausdorff operators on Hardy spaces, Eurasian Math. J., 4 (2013), 101–141.
    [21] A. Lerner, E. Liflyand, Multidimensional Hausdorff operators on the real Hardy space, J. Aust. Math. Soc., 83 (2007), 79–86. https://doi.org/10.1136/pgmj.2006.049445 doi: 10.1136/pgmj.2006.049445
    [22] E. Liflyand, Boundedness of multidimensional Hausdorff operators on $H^{1} (\mathbb{R}^{n})$, Acta Sci. Math., 74 (2008), 845–851. https://doi.org/10.1016/j.carbpol.2008.05.006 doi: 10.1016/j.carbpol.2008.05.006
    [23] X. Lin, L. Sun, Some estimates on the Hausdorff operator, Acta Sci. Math., 78 (2012), 669–681. https://doi.org/10.1007/BF03651391 doi: 10.1007/BF03651391
    [24] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1971.
    [25] A. Carbery, The boundedness of the maximal Bochner-Riesz operator on $L^{4}(\mathbb{R}^{2})$, Duke Math. J., 50 (1983), 409–416. https://doi.org/10.1079/BJN19830108 doi: 10.1079/BJN19830108
    [26] M. Christ, On almost everywhere convergence of Bochner-Riesz means in higher dimensions, Proc. Amer. Math. Soc., 95 (1985), 1–20. https://doi.org/10.1288/00005537-198501000-00001 doi: 10.1288/00005537-198501000-00001
    [27] S. Lee, Improved bounds for Bochner-Riesz and maximal Bochner-Riesz operator, Duke Math. J., 122 (2004), 205–232. https://doi.org/10.1215/S0012-7094-04-12217-1 doi: 10.1215/S0012-7094-04-12217-1
    [28] J. A. Fawcett, Inversion of $N$-dimensional spherical means, SIAM. J. Appl. Math., 45 (1983), 336–341. https://doi.org/10.1016/0030-4018(83)90261-4 doi: 10.1016/0030-4018(83)90261-4
    [29] H. Helesten, L. E. Andersson, An inverse method for the processing of synthetic aperture radar data, Inv. Prob., 3 (1987), 111–124. https://doi.org/10.1088/0266-5611/3/1/013 doi: 10.1088/0266-5611/3/1/013
    [30] F. John, Plane waves and spherical means applied to partial differential equations, New York, Interscience, 1955.
    [31] C. Chettaoui, Y. Othmani, K. Trimèche, An analogue of Cowling-Price's theorem for the generalized Fourier transform associated with the spherical mean opertor, Anal. Appl., 2 (2004), 177–192. https://doi.org/10.1142/S0219530504000370 doi: 10.1142/S0219530504000370
    [32] H. Mejjaoli, Y. Othmani, Uncertainty principles for the generalized Fourier transform associated with spherical mean operator, Anal. Theor. Appl., 29 (2013), 309–332. https://doi.org/10.4208/ata.2013.v29.n4.1 doi: 10.4208/ata.2013.v29.n4.1
    [33] S. Omri, Uncertainty principle in terms of entropy for the spherical mean operator, J. Math. Inequal., 5 (2013), 473–490. http://dx.doi.org/10.7153/jmi-05-42 doi: 10.7153/jmi-05-42
    [34] S. Ghobber, H. Mejjaoli, Generalized Stockwell transforms: Spherical mean operators and applications, Georgian Math. J., 31 (2024), 941–963. https://doi.org/10.1515/gmj-2024-2014 doi: 10.1515/gmj-2024-2014
    [35] S. Ghobber, H. Mejjaoli, The generalized stockwell transform associated with the spherical mean operator and uncertainty principles, Int. J. Geom. Methods M., 22 (2025). https://doi.org/10.1142/S0219887825500379 doi: 10.1142/S0219887825500379
    [36] L. T. Rachdi, K. Trimèche, Weyl transforms associated with the spherical mean operator, Anal. Appl., 1 (2003), 141–164. https://doi.org/10.1002/scin.5591640912 doi: 10.1002/scin.5591640912
    [37] C. Chettaoui, A. Hassini, K. Trimèche, Quantitative uncertainty principles for the Gabor spherical mean transform, Integr. Transf. Spec. F., 35 (2024), 380–402. https://doi.org/10.1080/10652469.2022.2155956 doi: 10.1080/10652469.2022.2155956
    [38] H. Mejjaoli, N. Ben Hamadi, S. Omri, Localization operators, time frequency concentration and quantitative-type uncertainty for the continuous wavelet transform associated with spherical mean operator, Int. J. Wavelets Multi., 17 (2019), 1950022. https://doi.org/10.1142/S0219749919500229 doi: 10.1142/S0219749919500229
    [39] C. Baccar, S. Omri, L. T. Rachdi, Fock spaces connected with spherical mean operator and associated operators, Mediterr. J. Math., 6 (2009), 1–25. https://doi.org/10.1007/s00009-009-0164-7 doi: 10.1007/s00009-009-0164-7
    [40] H. Mejjaoli, Spectral Theorems associated with the spherical mean two-wavelet multipliers, Integr. Transf. Spec. F., 29 (2018), 641–662. https://doi.org/10.1080/10652469.2018.1484456 doi: 10.1080/10652469.2018.1484456
    [41] K. Hleili, S. Omri, The Littlwood-Paley $g$-function associated with the spherical mean operator, Mediterr. J. Math., 10 (2013), 887–907. https://doi.org/10.1007/s00009-012-0229-x doi: 10.1007/s00009-012-0229-x
    [42] J. Zhao, L. Peng, Wavelet and Weyl transforms associated with the spherical mean operator, Integr. Equat. Oper. Th., 50 (2004), 279–290. https://doi.org/10.1007/s00020-003-1222-3 doi: 10.1007/s00020-003-1222-3
    [43] K. Trimèche, Generalized wavelets and hypergroups, Gordon and Breach Science Publishers, 1997.
    [44] R. O'Neil, Convolution operators on $L(p, q)$ spaces, Duke Math. J., 30 (1963), 129–142. https://doi.org/10.1215/S0012-7094-63-03015-1 doi: 10.1215/S0012-7094-63-03015-1
    [45] M. M. Nessibi, L. T. Rachdi, K. Trimèche, Ranges and inversion formulas for spherical mean operator and its dual, J. Math. Anal. App., 196 (1995), 861–884. https://doi.org/10.1006/jmaa.1995.1448 doi: 10.1006/jmaa.1995.1448
    [46] M. G. Hajibayov, Boundedness of the Dunkl convolution operators, An. Univ. Timi. Ser. Mat.-Inform., 49 (2011), 49–67. https://doi.org/10.15215/aupress/9781897425909.050 doi: 10.15215/aupress/9781897425909.050
    [47] H. Triebel, Interpolation theory, functions spaces differential operators, North-Holand Amesterdam, 1978.
    [48] G. N. Watson, A treatise on the theory of Bessel functions, 2 Eds., Cambridge, Cambridge University Press, 1945.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(921) PDF downloads(66) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog