In the present paper, we defined and then studied Hardy spaces related to spherical mean operators. We proved Hardy-type inequalities, then we showed refined Sobolev-type inequalities between homogeneous Riesz-type spaces, homogeneous Besov-type spaces, and Lorentz-type spaces. Next, we introduced and studied Hausdorff operators on generalized Hardy spaces. Finally, we investigated maximal Bochner-Riesz operators on generalized Hardy spaces.
Citation: Saifallah Ghobber, Hatem Mejjaoli. Hardy-type spaces and Hardy-type inequalities[J]. AIMS Mathematics, 2025, 10(7): 15264-15293. doi: 10.3934/math.2025684
In the present paper, we defined and then studied Hardy spaces related to spherical mean operators. We proved Hardy-type inequalities, then we showed refined Sobolev-type inequalities between homogeneous Riesz-type spaces, homogeneous Besov-type spaces, and Lorentz-type spaces. Next, we introduced and studied Hausdorff operators on generalized Hardy spaces. Finally, we investigated maximal Bochner-Riesz operators on generalized Hardy spaces.
| [1] | P. Duren, Theory of $H^{ p}$ spaces, New York and London, Academic Press, 1970. |
| [2] | L. Colzani and G. Travaglini, Hardy-Lorentz spaces and expansions in eigenfunctions of the Laplace-Beltrami operator on compact manifolds, Colloq. Math., 58 (1990), 305–316. |
| [3] |
Y. Kanjin, Hardy's inequalities for Hermite and Laguerre expansions, Bull. London Math. Soc., 29 (1997), 331–337. https://doi.org/10.1016/S0196-0644(97)70344-5 doi: 10.1016/S0196-0644(97)70344-5
|
| [4] | R. Radha, Hardy-type inequalities, Taiwanese J. Math., 4 (2000), 447–456. |
| [5] | R. Radha, S. Thangavelu, Hardy's inequalities for Hermite and Laguerre expansions, P. Am. Math. Soc., 13 (2004), 3525–3536. |
| [6] |
M. Satake, Hardy's inequalities for Laguerre expansions, J. Math. Soc. Japan, 52 (2000), 17–24. https://doi.org/10.1007/s002669910010 doi: 10.1007/s002669910010
|
| [7] | R. Balasubramanian, R. Radha, Hardy-type inequalities for Hermite expansions, J. Inequal. Pure Appl. Math., 6 (2005), 1–4. |
| [8] |
Y. Kanjin, Hardy's inequalities for Hermite and Laguerre expansions revisited, J. Math. Soc. Japan, 63 (2011), 753–767. https://doi.org/10.2969/jmsj/06330753 doi: 10.2969/jmsj/06330753
|
| [9] |
P. Plewa, Hardy's inequality for Laguerre expansions of Hermite type, J. Fourier Anal. Appl., 25 (2019), 1855–1873. https://doi.org/10.1007/s00041-018-9642-2 doi: 10.1007/s00041-018-9642-2
|
| [10] | E. M. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser. 43, Princeton Univ. Press, New Jersey, 1993. |
| [11] |
R. R. Coifman, A real variable characterization of $H^{p}$, Studia Math., 51 (1974), 269–274. https://doi.org/10.4064/sm-51-3-269-274 doi: 10.4064/sm-51-3-269-274
|
| [12] |
C. Fefferman, E. M. Stein, $H^{p}$ spaces of several variables, Acta Math., 129 (1972), 137–193. https://doi.org/10.1007/BF02392215 doi: 10.1007/BF02392215
|
| [13] |
E. M. Stein, G. L. Weiss, On the theory of harmonic functions of several variables: Ⅰ. The theory of $H^{p}$ spaces, Acta Math., 103 (1960), 25–62. https://doi.org/10.1007/BF02546524 doi: 10.1007/BF02546524
|
| [14] |
R. R. Coifman, G. L. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569–615. https://doi.org/10.1016/0003-2697(77)90065-3 doi: 10.1016/0003-2697(77)90065-3
|
| [15] |
A. Uchiyama, A maximal function characterization of $H^{p}$ on the space of homogeneous type, Trans. Amer. Math. Soc., 262 (1980), 579–592. https://doi.org/10.1090/S0002-9947-1980-0586737-4 doi: 10.1090/S0002-9947-1980-0586737-4
|
| [16] |
D. Fan, X. Lin, Hausdorff operator on real Hardy spaces, Analysis, 34 (2014), 319–337. https://doi.org/10.1515/anly-2012-1183 doi: 10.1515/anly-2012-1183
|
| [17] |
E. Liflyand, A. Miyachi, Boundedness of the Hausdorff operators in $H^{p}$ spaces $0 < p < 1$, Stud. Math., 194 (2009), 279–292. https://doi.org/10.4064/sm194-3-4 doi: 10.4064/sm194-3-4
|
| [18] |
E. Liflyand, F. Móricz, The Hausdorff operator is bounded on the real Hardy space $H^{1}(\mathbb{R})$, Proc. Am. Math. Soc., 128 (2000), 1391–1396. https://doi.org/10.1090/S0002-9939-99-05159-X doi: 10.1090/S0002-9939-99-05159-X
|
| [19] |
J. Chen, D. Fan, S. Wang, Hausdorff operators on Euclidean spaces, Appl. Math., 28 (2013), 548–564. https://doi.org/10.1007/s11766-013-3228-1 doi: 10.1007/s11766-013-3228-1
|
| [20] | E. Liflyand, Hausdorff operators on Hardy spaces, Eurasian Math. J., 4 (2013), 101–141. |
| [21] |
A. Lerner, E. Liflyand, Multidimensional Hausdorff operators on the real Hardy space, J. Aust. Math. Soc., 83 (2007), 79–86. https://doi.org/10.1136/pgmj.2006.049445 doi: 10.1136/pgmj.2006.049445
|
| [22] |
E. Liflyand, Boundedness of multidimensional Hausdorff operators on $H^{1} (\mathbb{R}^{n})$, Acta Sci. Math., 74 (2008), 845–851. https://doi.org/10.1016/j.carbpol.2008.05.006 doi: 10.1016/j.carbpol.2008.05.006
|
| [23] |
X. Lin, L. Sun, Some estimates on the Hausdorff operator, Acta Sci. Math., 78 (2012), 669–681. https://doi.org/10.1007/BF03651391 doi: 10.1007/BF03651391
|
| [24] | E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1971. |
| [25] |
A. Carbery, The boundedness of the maximal Bochner-Riesz operator on $L^{4}(\mathbb{R}^{2})$, Duke Math. J., 50 (1983), 409–416. https://doi.org/10.1079/BJN19830108 doi: 10.1079/BJN19830108
|
| [26] |
M. Christ, On almost everywhere convergence of Bochner-Riesz means in higher dimensions, Proc. Amer. Math. Soc., 95 (1985), 1–20. https://doi.org/10.1288/00005537-198501000-00001 doi: 10.1288/00005537-198501000-00001
|
| [27] |
S. Lee, Improved bounds for Bochner-Riesz and maximal Bochner-Riesz operator, Duke Math. J., 122 (2004), 205–232. https://doi.org/10.1215/S0012-7094-04-12217-1 doi: 10.1215/S0012-7094-04-12217-1
|
| [28] |
J. A. Fawcett, Inversion of $N$-dimensional spherical means, SIAM. J. Appl. Math., 45 (1983), 336–341. https://doi.org/10.1016/0030-4018(83)90261-4 doi: 10.1016/0030-4018(83)90261-4
|
| [29] |
H. Helesten, L. E. Andersson, An inverse method for the processing of synthetic aperture radar data, Inv. Prob., 3 (1987), 111–124. https://doi.org/10.1088/0266-5611/3/1/013 doi: 10.1088/0266-5611/3/1/013
|
| [30] | F. John, Plane waves and spherical means applied to partial differential equations, New York, Interscience, 1955. |
| [31] |
C. Chettaoui, Y. Othmani, K. Trimèche, An analogue of Cowling-Price's theorem for the generalized Fourier transform associated with the spherical mean opertor, Anal. Appl., 2 (2004), 177–192. https://doi.org/10.1142/S0219530504000370 doi: 10.1142/S0219530504000370
|
| [32] |
H. Mejjaoli, Y. Othmani, Uncertainty principles for the generalized Fourier transform associated with spherical mean operator, Anal. Theor. Appl., 29 (2013), 309–332. https://doi.org/10.4208/ata.2013.v29.n4.1 doi: 10.4208/ata.2013.v29.n4.1
|
| [33] |
S. Omri, Uncertainty principle in terms of entropy for the spherical mean operator, J. Math. Inequal., 5 (2013), 473–490. http://dx.doi.org/10.7153/jmi-05-42 doi: 10.7153/jmi-05-42
|
| [34] |
S. Ghobber, H. Mejjaoli, Generalized Stockwell transforms: Spherical mean operators and applications, Georgian Math. J., 31 (2024), 941–963. https://doi.org/10.1515/gmj-2024-2014 doi: 10.1515/gmj-2024-2014
|
| [35] |
S. Ghobber, H. Mejjaoli, The generalized stockwell transform associated with the spherical mean operator and uncertainty principles, Int. J. Geom. Methods M., 22 (2025). https://doi.org/10.1142/S0219887825500379 doi: 10.1142/S0219887825500379
|
| [36] |
L. T. Rachdi, K. Trimèche, Weyl transforms associated with the spherical mean operator, Anal. Appl., 1 (2003), 141–164. https://doi.org/10.1002/scin.5591640912 doi: 10.1002/scin.5591640912
|
| [37] |
C. Chettaoui, A. Hassini, K. Trimèche, Quantitative uncertainty principles for the Gabor spherical mean transform, Integr. Transf. Spec. F., 35 (2024), 380–402. https://doi.org/10.1080/10652469.2022.2155956 doi: 10.1080/10652469.2022.2155956
|
| [38] |
H. Mejjaoli, N. Ben Hamadi, S. Omri, Localization operators, time frequency concentration and quantitative-type uncertainty for the continuous wavelet transform associated with spherical mean operator, Int. J. Wavelets Multi., 17 (2019), 1950022. https://doi.org/10.1142/S0219749919500229 doi: 10.1142/S0219749919500229
|
| [39] |
C. Baccar, S. Omri, L. T. Rachdi, Fock spaces connected with spherical mean operator and associated operators, Mediterr. J. Math., 6 (2009), 1–25. https://doi.org/10.1007/s00009-009-0164-7 doi: 10.1007/s00009-009-0164-7
|
| [40] |
H. Mejjaoli, Spectral Theorems associated with the spherical mean two-wavelet multipliers, Integr. Transf. Spec. F., 29 (2018), 641–662. https://doi.org/10.1080/10652469.2018.1484456 doi: 10.1080/10652469.2018.1484456
|
| [41] |
K. Hleili, S. Omri, The Littlwood-Paley $g$-function associated with the spherical mean operator, Mediterr. J. Math., 10 (2013), 887–907. https://doi.org/10.1007/s00009-012-0229-x doi: 10.1007/s00009-012-0229-x
|
| [42] |
J. Zhao, L. Peng, Wavelet and Weyl transforms associated with the spherical mean operator, Integr. Equat. Oper. Th., 50 (2004), 279–290. https://doi.org/10.1007/s00020-003-1222-3 doi: 10.1007/s00020-003-1222-3
|
| [43] | K. Trimèche, Generalized wavelets and hypergroups, Gordon and Breach Science Publishers, 1997. |
| [44] |
R. O'Neil, Convolution operators on $L(p, q)$ spaces, Duke Math. J., 30 (1963), 129–142. https://doi.org/10.1215/S0012-7094-63-03015-1 doi: 10.1215/S0012-7094-63-03015-1
|
| [45] |
M. M. Nessibi, L. T. Rachdi, K. Trimèche, Ranges and inversion formulas for spherical mean operator and its dual, J. Math. Anal. App., 196 (1995), 861–884. https://doi.org/10.1006/jmaa.1995.1448 doi: 10.1006/jmaa.1995.1448
|
| [46] |
M. G. Hajibayov, Boundedness of the Dunkl convolution operators, An. Univ. Timi. Ser. Mat.-Inform., 49 (2011), 49–67. https://doi.org/10.15215/aupress/9781897425909.050 doi: 10.15215/aupress/9781897425909.050
|
| [47] | H. Triebel, Interpolation theory, functions spaces differential operators, North-Holand Amesterdam, 1978. |
| [48] | G. N. Watson, A treatise on the theory of Bessel functions, 2 Eds., Cambridge, Cambridge University Press, 1945. |