In this paper, we discussed the asymptotic behavior of the solutions to the beam equation with rotational inertia and structural damping:
$ \varepsilon(t)(1+(-\Delta) ^{\alpha})\partial^{2}_tu+\Delta^2 u+\gamma(-\Delta)^{\theta}\partial_tu+f(u) = g(x), $
where $ \varepsilon(t) $ was a decreasing bounded function. We found a more optimized subcritical exponent $ p^{*} = \frac{N+2\theta}{N-4} $ depending on $ \theta. $ Additionally, we showed that when the growth exponent $ p $ of nonlinear terms $ f(u) $ was within the range $ 1\leqslant p < p^{*}, $ the well-posedness and regularity were established. Finally, within the theory of process on time-dependent spaces, we investigated the existence of the time-dependent attractor by using the contraction function method and more detailed estimates in the time-dependent space $ \mathcal{H}_{t}^{\alpha}. $ The results refined and extended the model and the work in literature [Longtime behavior for an extensible beam equation with rotational inertia and structural nonlinear damping, J. Math. Anal. Appl., 496 (2021), 124785.] from general energy space to time-dependent space in some sense.
Citation: Xuan Wang, Wei Wang. The time-dependent attractor for beam equation with rotational inertia and structural damping[J]. AIMS Mathematics, 2025, 10(7): 15206-15230. doi: 10.3934/math.2025682
In this paper, we discussed the asymptotic behavior of the solutions to the beam equation with rotational inertia and structural damping:
$ \varepsilon(t)(1+(-\Delta) ^{\alpha})\partial^{2}_tu+\Delta^2 u+\gamma(-\Delta)^{\theta}\partial_tu+f(u) = g(x), $
where $ \varepsilon(t) $ was a decreasing bounded function. We found a more optimized subcritical exponent $ p^{*} = \frac{N+2\theta}{N-4} $ depending on $ \theta. $ Additionally, we showed that when the growth exponent $ p $ of nonlinear terms $ f(u) $ was within the range $ 1\leqslant p < p^{*}, $ the well-posedness and regularity were established. Finally, within the theory of process on time-dependent spaces, we investigated the existence of the time-dependent attractor by using the contraction function method and more detailed estimates in the time-dependent space $ \mathcal{H}_{t}^{\alpha}. $ The results refined and extended the model and the work in literature [Longtime behavior for an extensible beam equation with rotational inertia and structural nonlinear damping, J. Math. Anal. Appl., 496 (2021), 124785.] from general energy space to time-dependent space in some sense.
| [1] |
M. A. J. Silva, V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin. Dyn. Syst., 35 (2015), 985–1008. http://dx.doi.org/10.3934/dcds.2015.35.985 doi: 10.3934/dcds.2015.35.985
|
| [2] |
T. F. Ma, V. Narciso, M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations, J. Math. Anal. Appl., 396 (2012), 694–703. http://dx.doi.org/10.1016/j.jmaa.2012.07.004 doi: 10.1016/j.jmaa.2012.07.004
|
| [3] |
I. Chueshov, S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal., 11 (2012), 659–674. http://dx.doi.org/10.3934/cpaa.2012.11.659 doi: 10.3934/cpaa.2012.11.659
|
| [4] |
S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differ. Equ., 135 (1997), 299–314. http://dx.doi.org/10.1006/jdeq.1996.3231 doi: 10.1006/jdeq.1996.3231
|
| [5] |
I. Chueshov, I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Am. Math. Soc., 195 (2008), 912. http://dx.doi.org/10.1090/memo/0912 doi: 10.1090/memo/0912
|
| [6] |
T. Niimura, Attractors and their stability with respect to rotational inertia for nonlinear extensible beam equations, Discrete Contin. Dyn. Syst., 40 (2020), 2561–2591. http://dx.doi.org/10.3934/dcds.2020141 doi: 10.3934/dcds.2020141
|
| [7] |
P. Y. Ding, Z. J. Yang, Longtime behavior for an extensible beam equation with rotational inertia and structural nonlinear damping, J. Math. Anal. Appl., 496 (2021), 124785. http://dx.doi.org/10.1016/j.jmaa.2020.124785 doi: 10.1016/j.jmaa.2020.124785
|
| [8] |
Y. Sun, Z. J. Yang, Attractors and their continuity for an extensible beam equation with rotational inertia and nonlocal energy damping, J. Math. Anal. Appl., 512 (2022), 126148. http://dx.doi.org/10.1016/j.jmaa.2022.126148 doi: 10.1016/j.jmaa.2022.126148
|
| [9] |
F. Di Plinio, G. S. Duane, R. Teman, Time-dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141–167. https://doi.org/10.48550/arXiv.1009.2529 doi: 10.48550/arXiv.1009.2529
|
| [10] |
C. X. Zhao, F. J. Meng, Attractor for the extensible beam equation with nonlocal weak damping on time-dependent space, Acta. Math. Sin. English Ser., 40 (2024), 1115–1126. http://dx.doi.org/10.1007/s10114-023-1295-7 doi: 10.1007/s10114-023-1295-7
|
| [11] |
M. Conti, V. Pata, R. Teman, Attractors for proesses on time-dependent spaces. Applications to wave equations, J. Differ. Equ., 255 (2013), 1254–1277. https://doi.org/10.1016/j.jde.2013.05.013 doi: 10.1016/j.jde.2013.05.013
|
| [12] |
M. Conti, V. Pata, On the time-dependent cattaneo law in space dimension one, Appl. Math. Comput., 259 (2015), 32–44. http://dx.doi.org/10.1016/j.amc.2015.02.039 doi: 10.1016/j.amc.2015.02.039
|
| [13] |
T. Liu, Q. Ma, Time-dependent attractor for plate equations on $\Bbb{R}^n$, J. Math. Anal. Appl., 479 (2019), 315–332. http://dx.doi.org/10.1016/j.jmaa.2019.06.028 doi: 10.1016/j.jmaa.2019.06.028
|
| [14] |
Y. Sun, Z. Yang, Longtime dynamics for a nonlinear viscoelastic equation with time-dependent memory kernel, Nonlinear Anal. Real World Appl., 64 (2022), 10342. http://dx.doi.org/10.1016/j.nonrwa.2021.103432 doi: 10.1016/j.nonrwa.2021.103432
|
| [15] |
F. Meng, C. Liu, Necessary and sufficient conditions for the existence of time-dependent global attractor and application, J. Math. Phys., 58 (2017), 032702. http://dx.doi.org/10.1063/1.4978329 doi: 10.1063/1.4978329
|
| [16] |
C. X. Zhao, C. Y. Zhao, C. K. Zhong, The global attractor for a class of extensible beams with nonlocal weak damping, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 935–955. http://dx.doi.org/10.3934/dcdsb.2019197 doi: 10.3934/dcdsb.2019197
|
| [17] |
Z. J. Yang, P. Y. Ding, L. Li, Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity, J. Math. Anal. Appl., 442 (2016), 485–510. http://dx.doi.org/10.1016/j.jmaa.2016.04.079 doi: 10.1016/j.jmaa.2016.04.079
|
| [18] |
J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65–96. http://dx.doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360
|
| [19] |
F. J. Meng, M. H. Yang, C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 205–225. http://dx.doi.org/10.3934/dcdsb.2016.21.205 doi: 10.3934/dcdsb.2016.21.205
|
| [20] |
M. Conti, V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Anal. Real World Appl., 19 (2014), 1–10. http://dx.doi.org/10.1016/j.nonrwa.2014.02.002 doi: 10.1016/j.nonrwa.2014.02.002
|
| [21] |
T. Ding, Y. F. Liu, Time-dependent global attractor for the nonclassical diffusion equations, Appl. Anal., 94 (2015), 1439–1449. http://dx.doi.org/10.1080/00036811.2014.933475 doi: 10.1080/00036811.2014.933475
|