Let $ \mathfrak {R}_{l} = {\mathbb F}_{q}[u]/ \langle u^{l}-u \rangle $, where $ q = p^m $, $ p $ is a prime, and $ m \in \mathbf{N^+} $, $ (l-1)\mid(p-1) $. First, we study isometry and equivalence between constacyclic codes over $ \mathfrak{R}_{l} $, and we present the equivalence conditions for $ (e_1a_1+e_2a_2+\cdots+e_{l}a_{l}) $-constacyclic code and $ (e_1b_1+e_2b_2+\cdots+e_{l}b_{l}) $-constacyclic code. Further, based on the equivalence conditions, we classify constacyclic codes over $ \mathfrak{R}_{l} $. Finally, based on the equivalence of constacyclic codes over $ \mathfrak{R}_{l} $ and CSS construction, we construct some new quantum codes that are better than the existing codes in some recent references.
Citation: Jie Liu, Xiying Zheng. Equivalence of constacyclic codes over finite non-chain ring and quantum codes[J]. AIMS Mathematics, 2025, 10(7): 15193-15205. doi: 10.3934/math.2025681
Let $ \mathfrak {R}_{l} = {\mathbb F}_{q}[u]/ \langle u^{l}-u \rangle $, where $ q = p^m $, $ p $ is a prime, and $ m \in \mathbf{N^+} $, $ (l-1)\mid(p-1) $. First, we study isometry and equivalence between constacyclic codes over $ \mathfrak{R}_{l} $, and we present the equivalence conditions for $ (e_1a_1+e_2a_2+\cdots+e_{l}a_{l}) $-constacyclic code and $ (e_1b_1+e_2b_2+\cdots+e_{l}b_{l}) $-constacyclic code. Further, based on the equivalence conditions, we classify constacyclic codes over $ \mathfrak{R}_{l} $. Finally, based on the equivalence of constacyclic codes over $ \mathfrak{R}_{l} $ and CSS construction, we construct some new quantum codes that are better than the existing codes in some recent references.
| [1] |
J. Gao, Y. Wang, Self-dual constacyclic codes over finite non-chain rings and their applications, Acta Electron. Sinica, 48 (2020), 296–302. https://doi.org/10.3969/j.issn.0372-2112.2020.02.011 doi: 10.3969/j.issn.0372-2112.2020.02.011
|
| [2] |
Z. Tian, J. Gao, Y. Gao, Hulls of constacyclic codes over finite non-chain rings and their applications in quantum codes construction, Quantum Inf. Process., 23 (2024), 9. https://doi.org/10.1007/s11128-023-04230-8 doi: 10.1007/s11128-023-04230-8
|
| [3] |
C. A. Castillo-Guillén, C. Rentería-Márquez, H. Tapia-Recillas, Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index $3$, Finite Fields Appl., 43 (2017), 1–21. https://doi.org/10.1016/j.ffa.2016.08.004 doi: 10.1016/j.ffa.2016.08.004
|
| [4] |
M. Shi, R. Wu, D. S. Krotov, On $Z_pZ_{p^k}$-additive codes and their duality, IEEE Trans. Inform. Theory, 65 (2019), 3842–3847. https://doi.org/10.1109/TIT.2018.2883759 doi: 10.1109/TIT.2018.2883759
|
| [5] |
M. Shi, Y. Guan, P. Solé, Two new families of two-weight codes, IEEE Trans. Inform. Theory, 63 (2017), 6240–6246. https://doi.org/10.1109/TIT.2017.2742499 doi: 10.1109/TIT.2017.2742499
|
| [6] |
M. Shi, H. Lu, S. Zhou, J. Xu, Y. Zhu, Equivalence and duality of polycyclic codes associated with trinomials over finite fields, Finite Fields Appl., 91 (2023), 102259. https://doi.org/10.1016/j.ffa.2023.102259 doi: 10.1016/j.ffa.2023.102259
|
| [7] |
B. Chen, Y. Fan, L. Lin, H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217–1231. https://doi.org/10.1016/j.ffa.2012.10.001 doi: 10.1016/j.ffa.2012.10.001
|
| [8] |
B. Chen, H. Q. Dinh, H. Liu, Repeated-root constacyclic codes of length $lp^s$ and their duals, Discrete Appl. Math., 177 (2014), 60–70. https://doi.org/10.1016/j.dam.2014.05.046 doi: 10.1016/j.dam.2014.05.046
|
| [9] |
A. Chibloun, H. Ou-azzou, M. Najmeddine, On isometry and equivalence of constacyclic codes over finite chain rings, Cryptogr. Commun., 17 (2025), 239–263. https://doi.org/10.1007/s12095-024-00758-3 doi: 10.1007/s12095-024-00758-3
|
| [10] |
R. Dastbasteh, F. Padashnick, P. M. Crespo, M. Grassl, J. Sharafi, Equivalence of constacyclic codes with shift constants of different orders, Des. Codes Cryptogr., 93 (2025), 79–93. https://doi.org/10.1007/s10623-024-01512-9 doi: 10.1007/s10623-024-01512-9
|
| [11] |
K. Bogart, D. Goldberg, J. Gordon, An elementary proof of the MacWilliams theorem on equivalence of codes, Inf. Control, 37 (1978), 19–22. https://doi.org/10.1016/S0019-9958(78)90389-3 doi: 10.1016/S0019-9958(78)90389-3
|
| [12] |
J. Bierbrauer, The theory of cyclic codes and a generalization to additive codes, Des. Codes Cryptogr., 25 (2002), 189–206. https://doi.org/10.1023/A:1013808515797 doi: 10.1023/A:1013808515797
|
| [13] |
B. Kong, X. Zheng, Non-binary quantum codes from constacyclic codes over ${\mathbb F}_{q}[u_1, u_2, \cdots, u_k]/\langle u^{3}_{i} = u_{i}, u_iu_j = u_ju_i\rangle$, Open Math., 20 (2022), 1013–1020. https://doi.org/10.1515/math-2022-0459 doi: 10.1515/math-2022-0459
|
| [14] |
B. Kong, X. Zheng, Quantum codes from constacyclic codes over $S_{k}$, EPJ Quantum Technol., 10 (2023), 3. https://doi.org/10.1140/epjqt/s40507-023-00160-7 doi: 10.1140/epjqt/s40507-023-00160-7
|
| [15] |
K. Gowdhaman, C. Mohan, D. Chinnapillai, J. Gao, Construction of quantum codes from $a$-constacyclic codes over the ring $\frac{\mathbb {F}_p[u, v]}{\langle v^3-v, u^3-u, uv-vu\rangle }$, J. Appl. Math. Comput., 65 (2021), 611–622. https://doi.org/10.1007/s12190-020-01407-7 doi: 10.1007/s12190-020-01407-7
|
| [16] |
Y. Fu, H. Liu, Galois self-dual extended duadic constacyclic codes, Discrete Math., 346 (2023), 113167. https://doi.org/10.1016/j.disc.2022.113167 doi: 10.1016/j.disc.2022.113167
|
| [17] |
S. Huang, S. Zhu, J. Li, Three classes of optimal Hermitian dual-containing codes and quantum codes, Quantum Inf. Process., 22 (2023), 45. https://doi.org/10.1007/s11128-022-03791-4 doi: 10.1007/s11128-022-03791-4
|
| [18] |
H. Islam, O. Prakash, New quantum codes from constacyclic and additive constacyclic codes, Quantum Inf. Process., 19 (2020), 319. https://doi.org/10.1007/s11128-020-02825-z doi: 10.1007/s11128-020-02825-z
|
| [19] |
M. Ashraf, N. Khan, G. Mohammad, Quantum codes from cyclic codes over the mixed alphabet structure, Quantum Inf. Process., 21 (2022), 180. https://doi.org/10.1007/s11128-022-03491-z doi: 10.1007/s11128-022-03491-z
|