Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Solving the incomplete data problem in Greco-Latin square experimental design by exact-scheme analysis of variance without data imputation

  • Received: 06 August 2024 Revised: 21 October 2024 Accepted: 25 October 2024 Published: 26 November 2024
  • MSC : 15A06, 15A09, 62J10, 62K05, 62K10

  • This study introduced a novel exact-scheme analysis of variance to tackle the challenge of incomplete data within the Greco-Latin square experimental design (GLSED), specifically for scenarios with a single missing observation across any treatment and block level, thus eliminating the need for conventional data imputation methods. This approach innovatively addresses and mitigates the bias in the treatment sum of squares, a significant drawback of traditional missing plot techniques, by providing a precise, exact-scheme-based formula for calculating the treatment sum of squares in fixed-effect GLSED contexts with unrecorded values. Moreover, it offers a method for correcting biased treatment sum of squares values, presenting an adjustment mechanism for instances where the least squares method was previously employed to estimate missing values. This comprehensive strategy not only enhances the methodological accuracy and integrity of GLSED studies but also contributes significantly to the field by offering a solution to navigate the complexities of incomplete datasets without resorting to data imputation, thus improving the rigor and validity of experimental designs in the face of missing data challenges.

    Citation: Kittiwat Sirikasemsuk, Sirilak Wongsriya, Kanogkan Leerojanaprapa. Solving the incomplete data problem in Greco-Latin square experimental design by exact-scheme analysis of variance without data imputation[J]. AIMS Mathematics, 2024, 9(12): 33551-33571. doi: 10.3934/math.20241601

    Related Papers:

    [1] Jing Li, Linlin Dai, Kamran, Waqas Nazeer . Numerical solution of multi-term time fractional wave diffusion equation using transform based local meshless method and quadrature. AIMS Mathematics, 2020, 5(6): 5813-5838. doi: 10.3934/math.2020373
    [2] Farman Ali Shah, Kamran, Zareen A Khan, Fatima Azmi, Nabil Mlaiki . A hybrid collocation method for the approximation of 2D time fractional diffusion-wave equation. AIMS Mathematics, 2024, 9(10): 27122-27149. doi: 10.3934/math.20241319
    [3] Fouad Mohammad Salama, Nur Nadiah Abd Hamid, Norhashidah Hj. Mohd Ali, Umair Ali . An efficient modified hybrid explicit group iterative method for the time-fractional diffusion equation in two space dimensions. AIMS Mathematics, 2022, 7(2): 2370-2392. doi: 10.3934/math.2022134
    [4] Emad Salah, Ahmad Qazza, Rania Saadeh, Ahmad El-Ajou . A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system. AIMS Mathematics, 2023, 8(1): 1713-1736. doi: 10.3934/math.2023088
    [5] Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen . New solutions of time-space fractional coupled Schrödinger systems. AIMS Mathematics, 2023, 8(11): 27033-27051. doi: 10.3934/math.20231383
    [6] Amjad Ali, Iyad Suwan, Thabet Abdeljawad, Abdullah . Numerical simulation of time partial fractional diffusion model by Laplace transform. AIMS Mathematics, 2022, 7(2): 2878-2890. doi: 10.3934/math.2022159
    [7] Xiangmei Li, Kamran, Absar Ul Haq, Xiujun Zhang . Numerical solution of the linear time fractional Klein-Gordon equation using transform based localized RBF method and quadrature. AIMS Mathematics, 2020, 5(5): 5287-5308. doi: 10.3934/math.2020339
    [8] Yudhveer Singh, Devendra Kumar, Kanak Modi, Vinod Gill . A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 2020, 5(2): 843-855. doi: 10.3934/math.2020057
    [9] Tareq Eriqat, Rania Saadeh, Ahmad El-Ajou, Ahmad Qazza, Moa'ath N. Oqielat, Ahmad Ghazal . A new analytical algorithm for uncertain fractional differential equations in the fuzzy conformable sense. AIMS Mathematics, 2024, 9(4): 9641-9681. doi: 10.3934/math.2024472
    [10] Lynda Taleb, Rabah Gherdaoui . Approximation by the heat kernel of the solution to the transport-diffusion equation with the time-dependent diffusion coefficient. AIMS Mathematics, 2025, 10(2): 2392-2412. doi: 10.3934/math.2025111
  • This study introduced a novel exact-scheme analysis of variance to tackle the challenge of incomplete data within the Greco-Latin square experimental design (GLSED), specifically for scenarios with a single missing observation across any treatment and block level, thus eliminating the need for conventional data imputation methods. This approach innovatively addresses and mitigates the bias in the treatment sum of squares, a significant drawback of traditional missing plot techniques, by providing a precise, exact-scheme-based formula for calculating the treatment sum of squares in fixed-effect GLSED contexts with unrecorded values. Moreover, it offers a method for correcting biased treatment sum of squares values, presenting an adjustment mechanism for instances where the least squares method was previously employed to estimate missing values. This comprehensive strategy not only enhances the methodological accuracy and integrity of GLSED studies but also contributes significantly to the field by offering a solution to navigate the complexities of incomplete datasets without resorting to data imputation, thus improving the rigor and validity of experimental designs in the face of missing data challenges.



    Many natural phenomena can be modeled mathematically to obtain approximate models[1]. Compared to the classical diffusion equation, the fractional diffusion equation may be more suitable for modelling anomalously slow transport processes with memory and inheritance. In recent years, fractional calculus has found widespread applications in many fields including turbulence, wave propagation, signal processing, porous media, and anomalous diffusion[2,3,4].

    Considering that the single-term time fractional derivative cannot adequately describe many complex physical or biological processes, recently, a multi-term time and time distributed order fractional equations have been developed. The time distribution order equation is also a generalisation of the multi-term time equation. Therefore, the study of multi-term time fractional differential equations becomes very important and useful in various applications[5,6]. For example, multi-term fractional diffusion equation has simplified the modelling of phenomena such as diffusion processes, viscoelastic damping materials, oxygen delivery through capillaries and anomalous relaxation of magnetic resonance imaging signal magnitude[7,8,9]. Because the numerical solution is the most important in practice, a great deal of research has been done in the study of numerical solutions of multi-term fractional diffusion equations[10,11,12]. Qiu has analyzed numerical solutions for the Volterra integrodifferential equations with tempered multi-term kernels[13]. Hu et al. have formulated a backward Euler difference scheme for the integro-differential equations with the multi-term kernels[14]. Guo et al. have proposed the alternating direction implicit numerical approaches for computing the solution of multi-dimensional distributed order fractional integrodifferential problems[15]. {Guo et al. have developed an efficient finite difference/generalized Hermite spectral method for the distributed-order time-fractional reaction-diffusion equation on one-, two-, and three-dimensional unbounded domains[16].

    In general, exact solutions of the fractional diffusion equation are rarely obtained in practical applications. Therefore, it is necessary to develop some effective numerical methods to solve the multi-term time-space fractional equations. A large number of numerical methods have been developed for two-dimensional time-space fractional order diffusion equations with a single time fractional order derivative as a special case of multi-term time-space fractional equations. Abd-Elhameed et al. have introduced a new set of orthogonal polynomials to effectively obtain numerical solutions of the nonlinear time-fractional generalized Kawahara equation by using the collocation algorithm[17]. Moustafa et al. have created Chebyshev polynomials for the time fractional fourth-order Euler-Bernoulli pinned-pinned beam based on the Petrov-Galerkin[18]. Peng et al. have developed a novel fourth-order compact difference scheme for the mixed-type time-fractional Burgers equation, using the L1 discretization formula and a nonlinear compact difference operator[19]. Marasi and Derakhshan have proposed a hybrid numerical method based on the weighted finite difference and the quintic Hermite collocation methods for the for solving the variable-order time fractional mobile-immobile advection-dispersion model[20].

    It is well known that meshless methods are a type of point set based numerical method that considers a set of scattered and uniform data points. Due to this property, the meshless method can be applied to high-dimensional models with irregular and complex domains[21,22,23]. However, due to the singularity of the spatial fractional operators, we only deal with problems on convex domains. A meshless method with Hermite splines of order five is used to discretize the Riesz fractional operator in the spatial direction, which gives higher accuracy with fewer points.

    From the last few decades, there are many methods to solve the single time fractional diffusion equations, for instance the finite difference method, interpolation, implicit stepping methods, etc. The Laplace transform is one of the powerful tools for solving differential equations in engineering and other scientific disciplines. However, solving differential equations with the Laplace transform sometimes results in solutions in the Laplace domain that are not easily invertible to the real domain by analytical methods. Therefore, we use numerical inversion methods to transform the obtained solutions from the Laplace domain to the real domain[24,25]. The Laplace transform overcomes the memory effect arising from the convolution integral expressions of the time fractional derivative term, and better results can be obtained in the case of more general smoothness.

    The remaining sections of our paper are organised as follows. Some important preliminary, definitions and lemmas are given in Section 2. The introduction of the model and the time discretization based on the Laplace transform are given in Section 3. The simplification and approximation theory of the equation is given in Section 4. The basis construction, the meshless method for solving the simplified space fractional equation and convergence analysis of the quintic Hermite spline are presented in Section 5. Meanwhile, numerical examples are given in Section 6. Section 7 explains the analysis and the results of the research. Finally, a brief conclusion is given in Section 8.

    In this section we will introduce some concepts and properties. Let Ω satisfy segment conditions of the form [26], let Υ be a rectangular domain containing Ω, let the symbol |Ω stand for restriction to Ω, and let Υ=[a,b]×[c,d]Ω.

    Definition 2.1. The left and right Caputo fractional derivational of order α on [a,b] is defined by

    CxDαLf(x)=1Γ(nα)xa(xη)nα1nf(η)ηndη,CxDαRf(x)=1Γ(nα)bx(tη)nα1nf(η)ηndη,

    where n1<αn, and n=α.

    Definition 2.2. The left and right Riemann-Liouvile fractional derivatives operator with respect to order α on [a,b] is defined by

    RLxDαLf(x)=1Γ(nα)nxnxa(xη)nα1f(η)dη,RLxDαRf(x)=(1)nΓ(nα)nxnbx(ηx)nα1f(η)dη,

    where n1<αn, and n=α.

    Definition 2.3. Let α>0,m=α, the connection between Riemann-Liouville derivatives and Caputo derivatives is

    CxDαLf(t)=RLxDαLf(t)m1k=0f(k)(a)Γ(kα+1)(ta)kα,CxDαRf(t)=RLxDαRf(t)m1k=0f(k)(b)Γ(kα+1)(bt)kα.

    Definition 2.4. The Riesz fractional derivative with order α>0 on a finite interval [a,b] is defined by

    α|x|αf(x)=cα(RLxDαLf(x)+RLxDαRf(x)),

    where

    cα=12cos(απ/2),

    α2k+1,k=0,1,, and for n1αn,nN.

    Definition 2.5. For given v: [0,]R, the definition of Laplace transform is

    L{v(t)}=V(s)=0estv(t)dt.

    Lemma 2.1. ([27,Lemma 1.2.]) Suppose that v(t)Cp[0,), the Laplace transform of Caputo fractional derivative about v(t) is

    L{αtv(t)}=sαV(s)p1i=0sαi1v(i)(0),p1<α<pZ+.

    We introduce some definitions of spaces. Let Ω be a domain in Rn,

    C[a,b]={u(x)|u(x)is a continuous function on[a,b]},Cm[a,b]={u(x)|u(m)(x)is a continuous function on[a,b]},uC2(Ω)=max{u(k,l)C(Ω),k,lN,k+l2},S5,2(π)={ϕC2[a,b]:ϕ|kjP5,j=1,2,3,,n},

    where P5 is the set of polynomial functions with order not greater than 5 over kj.

    Definition 2.6. For any nonnegative integer m let Cm(Ω) denote the vector space consisting of all functions f which, together with all their partial derivatives Dαf of orders αm, are continuous on Ω. We abbreviate C0(Ω)Ω. Let

    C=m=0(Ω).

    The subspaces C0(Ω) and C0(Ω) consist of all those functions in C(Ω) and C(Ω), respectively, that have compact support in Ω.

    Definition 2.7. Give a positive integer τ and a real number r(1r<). The Sobolev space Wτ,r is defined by

    Wτ,r(Ω)={uLr(Ω),

    the weak derivative DθuLr(Ω) for 0|θ|τ}, with norm

    uWτ,r=(0|θ|τDθurLr(Ω))1r,

    where θ=(θ1,θ2), |θ|=θ1+θ2 and θ1, θ2 are non-negative integers.

    Definition 2.8. ([26]) For yΩ, there exists a nonzero vector oy and a neighborhood Uy such that if zˉΩUy, then z+toyΩ for 0<t<1, and call that Ω satisfies the segment condition.

    Lemma 2.2. ([26]) If Ω satisfies the condition of Definition 2.8, then the set of restrictions to Ω of functions in C0(R2) is dense in Wτ,r(Ω).

    We consider the multi-term time-space fractional diffusion equations of the following form

    rq=0aq(C0Dαqt)u(x,y,t)=Δβ,γu(x,y,t)+f(x,y,t),(x,y)Ω,0<tT, (3.1)

    subject to

    u(x,y,0)=ϕ(x,y),(x,y)Ω,u(x,y,t)|Ω=0,t(0,T], (3.2)

    where 0<αq<<α1<α0<1 is the time fractional order, C0Dαqt is the Caputo fractional derivative with αq order given by Definition 2.1,

    rq=0aq=1,q=0,1,,r

    are the coefficients, and ΩR2 is bounded convex domain.

    The spatial operator Δβ,γ, 1<β,γ<2 is a Riesz fractional order operator given by Definition 2.4,

    Δβ,γu(x,y,t):=Kxβu(x,y,t)|x|β+Kyγu(x,y,t)|y|γ =Kxcβ(RLxDβLu(x,y,t)+RLxDβRu(x,y,t))+Kycγ(RLyDγLu(x,y,t)+RLyDγRu(x,y,t)),

    where the constants Kx>0,Ky>0 are diffusion coefficients. And the left side and right side Riemann-Liouville derivatives on x,y direction, respectively, are defined by Definition 2.2,

    RLxDβLu(x,y,t)=1Γ(2β)2x2xa(xv)1βu(v,y,t)dv,RLxDβRu(x,y,t)=1Γ(2β)2x2bx(vx)1βu(v,y,t)dv,RLyDγLu(x,y,t)=1Γ(2γ)2y2yc(yv)1γu(x,v,t)dv,RLyDγRu(x,y,t)=1Γ(2γ)2y2dy(vy)1γu(x,v,t)dv.

    Suppose that u(x,y,t)C1(Ω), using the Laplace transform on Eq (3.1) and owing to the property of Lemma 2.1, we have

    Lu(x,y,t)=U(x,y,s),Lf(x,y,t)=F(x,y,s),LC0Dαqtu(x,y,t)=sαqU(x,y,s)sαq1u(x,y,0)=sαqU(x,y,s)sαq1ϕ(x,y).

    So this equation could be

    rq=0aq(sαqU(x,y,s)sαq1ϕ(x,y))=Δβ,γU(x,y,s)+F(x,y,s),(x,y)Ω. (3.3)

    Equation (3.2) becomes with the boundary conditions

    U(x,y,s)|Ω=0,sC. (3.4)

    Then the methods for the inverse Laplace transform methods are based on numerical integration of the Bromwich complex contour integral. From [27,29], using the strategy of Talbot, the Bromwich line can be transformed into a contour that starts and ends in the left half plane,

    u(x,y,t)=L1U(x,y,s)=12πiσ+iσiestU(x,y,s)ds,σ>σ0,

    where σ0 is the convergence abscissa. Two simpler types of contours have mainly been proposed mainly:

    ● Parabolic path: s=μ(1+iz)2, z=γ+ic, where c>0,<γ<, then,

    s(γ)=μ((1c)2γ2)+2iμγ(1c).

    ● Hyperbolic path:

    s(γ)=ω+λ(1sin(δiγ))

    for <γ<.

    On either of the above contours, the Bromwich integral becomes

    u(x,y,t)=12πies(z)tU(x,y,s(z))s(z)dsι2πiLl=LezltU(x,y,s(zl))s(zl),zl=lι. (3.5)

    Let operator Δβ,γu(x,y,t) on Υ=[a,b]×[c,d], using the Laplace transform, it becomes as follows:

    Δβ,γU(x,y,s)=Kxcβ{CxDβLU(x,y,s)+U(a,y,s)Γ(2β)(xa)1β+CxDβRU(x,y,s)+U(b,y,s)Γ(2β)(bx)1β}+Kycγ{CyDγLU(x,y,s)+U(x,c,s)Γ(2γ)(yc)1γ+CyDγRU(x,y,s)+U(x,d,s)Γ(2γ)(dy)1γ}.

    To avoid the singularity of the operator Δβ,γ, let

    A(x,y)=(xa)β1(bx)β1(yc)γ1(dy)γ1,

    for sαqlC, the Eq (3.3) becomes

    A(x,y)(rq=0aqsαqlU(x,y,sl)Δβ,γU(x,y,sl))=A(x,y)(rq=0aq(sαq1lϕ(x,y))+F(x,y,sl)),

    then expand the sl and denote

    G=(G1,G2)T,W=(W1,W2)T,
    {G1U(x,y,sl)

    where {\rm Re}\left(\mathcal{U}(x, y, s_l)\right) stands the real part of \mathcal{U} , {\rm Im}\left(\mathcal{U}(x, y, s_l)\right) stands the imaginary part of \mathcal{U} . Then the Eq (3.3) becomes

    \begin{equation} \mathbb{G}\mathcal{U}(x, y, s_l) = \mathbb{W}(x, y, s_l). \end{equation} (4.1)

    Meanwhile, the Eq (3.4) becomes

    \begin{align} \begin{cases} {\rm Re}\left(\mathcal{U}(x, y, s_l)\right)|_{\partial \Omega} = 0, \\ {\rm Im}\left(\mathcal{U}(x, y, s_l)\right)|_{\partial \Omega} = 0. \end{cases} \end{align} (4.2)

    Let \Omega_r be rectangular domains containing \Omega . Denote by \mathcal{S} the set of 2-dimension polynomial functions.

    Lemma 4.1. ([28,Theorem 2.2]) C^{\infty}_{0}(\mathbb{R}^2)|_{\Omega} is dense in C^2(\Omega) .

    Lemma 4.2. ([6,Lemma 2.1]) \mathcal{S} is dense in C^{\infty}(\Omega_r) with the norm \|\cdot\|_{C^2(\Omega_r)} .

    If \Omega is bounded and closed, then \Omega contains the segment condition, so according the Lemmas 2.2, 4.1 and 4.2, we can obtain the theorem.

    Lemma 4.3. Assume that the closed domain \Omega is bounded, then \mathcal{S} is dense in C^2(\Omega) .

    According to Lemma 4.3, we can obtain the polynomial dense theory.

    Remark 4.1. Let \Omega\subset\Upsilon be an arbitrary domain. Then the set of restrictions to \Omega of functions in S_{5, 2}(\Pi_1)\times S_{5, 2}(\Pi_2) is dense in C^2(\Omega) , which leads to the set of restrictions to \Omega of functions in \left(S_{5, 2}(\Pi_1)\times S_{5, 2}(\Pi_2) \right)^2 is dense in \left(C^2(\Omega)\right)^2 .

    Let \Pi_1 = [a, b] , then the division is

    \Pi_1:a = x_0 \le x_1\le \dots \le x_N = b,

    h is the max length of the division. S_i(x), V_i(x) and W_i(x) denote the Hermite splines of

    \begin{equation*} \begin{split} \quad S_i(x) = \begin{cases} [\frac{x_{i+1}-x}{x_{i+1}-x_i}]^3(6(\frac{x_{i+1}-x}{x_{i+1}-x_i})^2-15(\frac{x_{i+1}-x}{x_{i+1}-x_i})^5+10 ), &\; x \in [x_i, x_{i+1}], \\ [\frac{x-x_{i-1}}{x_i-x_{i-1}}]^3(6(\frac{x-x_{i-1}}{x_i-x_{i-1}})^2-15(\frac{x-x_{i-1}}{x_i-x_{i-1}})^5+10 ), &\; x \in [x_{i-1}, x_{i}], \\ 0, &\; else\; where, \end{cases} \end{split} \end{equation*}
    \begin{equation*} \begin{split} V_i(x) = \begin{cases} \frac{3(x_{i+1}-x)^5}{(x_{i+1}-x_i)^4}-\frac{7(x_{i+1}-x)^4}{(x_{i+1}-x_i)^4}+\frac{4(x_{i+1}-x)^3}{(x_{i+1}-x_i)^2}, &\; x \in [x_i, x_{i+1}], \\ \frac{-3(x-x_{i-1})^5}{(x_i-x_{i-1})^4}+\frac{7(x-x_{i-1})^4}{(x_i-x_{i-1})^3}-\frac{4(x-x_{i-1})^3}{(x_i-x_{i-1})^2}, &\; x \in [x_{i-1}, x_{i}], \\ 0, &\; else\; where, \end{cases} \end{split} \end{equation*}
    \begin{equation*} \begin{split} \quad W_i(x) = \begin{cases} \frac{0.5(x_{i+1}-x)^5}{(x_{i+1}-x_i)^3}-\frac{(x_{i+1}-x)^4}{(x_{i+1}-x_i)^2}+\frac{0.5(x_{i+1}-x)^3}{(x_{i+1}-x_i)}, &\; x \in [x_i, x_{i+1}], \\ \frac{0.5(x-x_{i-1})^5}{(x_i-x_{i-1})^3}-\frac{(x-x_{i-1})^4}{(x_i-x_{i-1})^2}+\frac{0.5(x-x_{i-1})^3}{(x_i-x_{i-1})}, &\; x \in [x_{i-1}, x_{i}], \\ 0, &\; else\; where. \end{cases} \end{split} \end{equation*}

    For S_i(x), V_i(x) and W_i(x) from above, we have the following properties:

    \begin{align*} \label{eq4.2} S_i(x_k)& = \delta_{ik}, \quad S'_i(x_k) = 0, \quad \quad S''_i(x_k) = 0, \\ V_i(x_k)& = 0, \quad \quad V'_i(x_k) = \delta_{ik}, \quad V''_i(x_k) = 0, \\ W_i(x_k)& = 0, \quad \quad W'_i(x_k) = 0, \quad \quad W''_i(x_i) = \delta_{ik}. \end{align*}

    Remark 5.1. Hermite bases are derived from segmented Hermite interpolating basis functions by the division \Pi_1 . On the kth divisions [x_{k}, x_{k+1}], \; k = 0, \cdots, N-1 , it satisfies

    P^{(i)}(x_k) = f^{(i)}(x_k), \quad i = 0, 1, 2;k = 0, \cdots, N,

    where P(x) is the interpolation polynomial and f(x) is the interpolated function, then the number of interpolating basis functions 6 is obtained. Thus, the total number of basis functions 6N on \Pi_1 is obtained. The number of Hermite spline functions 3(N+1) is obtained from the definition of S_i(x), V_i(x), W_i(x) above, and at the interior points S_i(x), V_i(x) and W_i(x) is a function with two segments and at the endpoints is only a function with one segment. The following theorem will prove that S_i(x), V_i(x) and W_i(x) are the bases.

    Theorem 5.1.

    \{\mathbb{H}_i(x)\}_{i = 0}^{3N+2} = \{S_i(x)\}_{i = 0}^{N}\cup\{V_i(x)\}_{i = 0}^{N}\cup\{W_i(x) \}_{i = 0}^{N}

    is linearly independent and is the base of S_{5, 2}(\Pi_1) .

    Proof. First, we will show that S_i(x), V_i(x) and W_i(x) is linearly independent. Assume that,

    \begin{align*} \sum\limits_{i = 0}^{N} c_i S_i(x)+\sum\limits_{i = 0}^{N} d_i V_i(x)+\sum\limits_{i = 0}^{N} e_i W_i(x) = 0. \end{align*}

    Due to the properties of the Hermite splines, when x = x_k , c_k = 0, \ k = 0, 1, \cdots, N , then take the derivative of the above

    \begin{align*} \sum\limits_{i = 0}^{N} d_i V_i'(x)+\sum\limits_{i = 0}^{N} e_i W_i'(x) = 0, \end{align*}

    when x = x_k , d_k = 0, \ k = 0, 1, \cdots, N , then take the derivative of the above

    \begin{align*} \sum\limits_{i = 0}^{N} e_i W_i''(x) = 0, \end{align*}

    when x = x_k , e_k = 0, \ k = 0, 1, \cdots, N , so S_k(x_i), V_k(x_i) and W_k(x_i) are linearly independent.

    Next, we will verify that it is a base of S_{5, 2}(\Pi_1) . Due to the definition of the S_{5, 2}(\Pi_1) , so S_i(x) , V_i(x) , W_i(x) \in C^2 [a, b] . On the other hand, S_i(x) , V_i(x) and W_i(x) are a piecewise quintic polynomial. Thus, S_i(x) , V_i(x) , W_i(x) \in S_{5, 2}(\Pi_1) .

    Since

    \dim S_{5, 2}(\Pi_1) = 6N-3(N-1) = 3N+3

    and

    \dim \{S_i(x), V_i(x), W_i(x)\} = 3(N+1),

    so, \{S_i(x), V_i(x), W_i(x)\} is a base of S_{5, 2}(\Pi_1) .

    Then according to Theorem 5.1 and Remark 4.1, it yields a new base

    \mathcal{S}_{xy} \triangleq \mathbb{H}(x) \times \mathbb{H}(y)

    on \Upsilon is dense on \Omega . So,

    \begin{equation} \mathcal{U}(x, y, s_l)\approx\sum\limits_{i = 0}^{3N+2}\sum\limits_{j = 0}^{3N+2}d_{ijl}\mathbb{H}_{i}(x)\times \mathbb{H}_{j}(y)\triangleq \mathcal{U}_{N}(x, y, s_l), \; \; \; \; (x, y)\in \Omega, \end{equation} (5.1)

    then, using the inverse Laplace transform based the Talbots strategy from Eq (3.5), we could obtain the numerical solution u_N(x, y, t) .

    Definition 5.1. For any \varepsilon > 0, if

    \|\mathbb{G} \mathcal{U}(x, y, s_l)-\mathbb{W}(x, y, s_l)\|_{(C(\Omega))^2} = \max\limits_{(x, y)\in \Omega}|\mathbb{G} \mathcal{U}(x, y, s_l)-\mathbb{W}(x, y, s_l)| < \varepsilon,

    then, \mathcal{U}(x, y, s_l) is an \varepsilon -approximate solution for Eq (4.1).

    We will provide the method of obtaining the \varepsilon -approximate solution. First, the minimum bounding rectangle

    \Upsilon = [a, b]\times[c, d]

    containing \Omega is given. Subsequently, we will calculate residuals of two parts:

    (1) The residual inside \Omega is defined as

    \begin{align*} \mathbb{L}_1\mathcal{U}(x, y, s_l)&\triangleq \| \mathbb{G}\mathcal{U}(x, y, s_l)-\mathbb{W}(x, y, s_l) \|_{(C(\Omega))^2}\\& = \sum\limits_{j = 1}^{2}\| \mathbb{G}_j\mathcal{U}(x, y, s_l)-\mathbb{W}_j(x, y, s_l) \|_{C(\Omega)}. \end{align*}

    (2) The residual on the boundary \partial \Omega is defined as

    \begin{align*} \mathbb{L}_2\mathcal{U}(x, y, s_l)\triangleq \left( \| {\rm Re}\mathcal{U}(x, y, s_l)\|_{C(\Upsilon\cap \partial \Omega )}+ \| {\rm Im} \mathcal{U}(x, y, s_l) \|_{C(\Upsilon\cap \partial \Omega )} \right). \end{align*}

    For any \varepsilon > 0 , if there exists \mathcal{U}_{N}(x, y, s_l) such that

    \mathbb{L}\mathcal{U}_{N}(x, y, s_l) = (\mathbb{L}_1+\mathbb{L}_2)(\mathcal{U}_{N}(x, y, s_l))\le \varepsilon,

    so, \mathcal{U}_{N}(x, y, s_l) is residual approximate solution of Eq (4.1) on \Omega . If

    \begin{align} \mathbb{L}(\mathcal{U}^*_{N}(x, y, s_l) ) = \min\limits_{\mathcal{U}_{N}(x, y, s_l)}(\mathbb{L}_1+\mathbb{L}_2)(\mathcal{U}_{N}(x, y, s_l))\le \varepsilon, \end{align} (5.2)

    then \mathcal{U}^*_{N}(x, y, s_l) is called the best \varepsilon -approximate solution.

    Lemma 5.1. \mathbb{G} : (C_{2}(\Upsilon))^2\to (C(\Upsilon))^2 is a bounded operator.

    Proof. For s_l = (\kappa_l+i\omega_l) , and denoted that \mathcal{U}(x, y, s_l)\triangleq\mathcal{U}_l(x, y) ,

    \begin{equation*} \begin{split} \left \|{^{C}_x\!D^{\beta}_{L}}\mathcal{U}(x, y, s_l)\right\|_{(C)^2} & = \left\| \frac{1}{\Gamma(2-\beta)}\int_{a}^{x}(x-v)^{1-\beta}\frac{\partial^2\mathcal{U}(v, y, s_l)}{\partial x^2} {\rm d} v \right\|_{(C )^2} \\ &\le \frac{1}{\Gamma(2-\beta)} \left\| \int_{a}^{x}(x-v)^{1-\beta}\left\| \mathcal{U}_l\right\|_{(C_2)^2}{\rm d}v \right\|_{(C)^2} \le \theta_1 \left\| \mathcal{U}_l\right\|_{(C_2)^2}, \end{split} \end{equation*}

    where \theta_1 is constants, and it could be similarly obtained that

    \left\|{^{C}_x\!D^{\beta}_{R}}\mathcal{U}(x, y, s_l) \right\|_{(C)^2} \le \theta_2 \left\| \mathcal{U}_l\right\|_{(C_2)^2},
    \left\|{^{C}_y\!D^{\gamma}_{L}}\mathcal{U}(x, y, s_l)\right\|_{(C)^2} \le \theta_3 \left\| \mathcal{U}_l\right\|_{(C_2)^2}

    and

    \left\|{^{C}_y\!D^{\gamma}_{R}}\mathcal{U}(x, y, s_l)\right\|_{(C)^2} \le \theta_4\left\| \mathcal{U}_l\right\|_{(C_2)^2}.
    \begin{aligned} \begin{split} A(x, y)\Delta^{\beta, \gamma}\mathcal{U}_l(x, y) = &K_xc_{\beta}\left\{A(x, y)\left({^{C}_x\!D^{\beta}_{L}}\mathcal{U}_l(x, y)+{^{C}_x\!D^{\beta}_{R}}\mathcal{U}_l(x, y)\right)+\frac{\mathcal{U}'_l(a, y)}{\Gamma(2-\beta)}(b-x)^{\beta-1} (y-c)^{\gamma-1} (d-y)^{\gamma-1}\right.\\ &\left.+\frac{\mathcal{U}'_l(b, y)}{\Gamma(2-\beta)}(x-a)^{\beta-1} (y-c)^{\gamma-1} (d-y)^{\gamma-1} \right\}+K_yc_{\gamma}\left\{ \frac{\mathcal{U}'_l(x, c)}{\Gamma(2-\gamma)}(x-a)^{\beta-1}(b-x)^{\beta-1} (d-y)^{\gamma-1} \right.\\ &\left.+\frac{\mathcal{U}'_l(x, d)}{\Gamma(2-\gamma)}(x-a)^{\beta-1}(b-x)^{\beta-1} (y-c)^{\gamma-1}+A(x, y)\left({^{C}_y\!D^{\gamma}_{L}}\mathcal{U}_l(x, y)+{^{C}_y\!D^{\gamma}_{R}}\mathcal{U}_l(x, y)\right) \right\}. \end{split}\end{aligned}

    Since A(x, y) , (x-a)^{\beta-1}, (b-x)^{\beta-1}, (y-c)^{\gamma-1}, (d-y)^{\gamma-1} is continuous, it has

    \begin{aligned} &\left\|A(x, y)\Delta ^{\beta, \gamma}\mathcal{U}(x, y, s_l)\right\|_{(C)^2}\le K_xc_{\beta} \left\|\frac{\mathcal{U}'(a, y, s_l)}{\Gamma(2-\beta)}(b-x)^{\beta-1} (y-c)^{\gamma-1} (d-y)^{\gamma-1} \right.\\ &\left.+A(x, y)^{C}_xD^{\beta}_{L}\mathcal{U}(x, y, s_l) \right\| _{(C)^2}+K_xc_{\beta} \left\| A(x, y)^{C}_xD^{\beta}_{R}\mathcal{U}(x, y, s_l)+\frac{\mathcal{U}'(b, y, s_l)}{\Gamma(2-\beta)}(x-a)^{\beta-1} (y-c)^{\gamma-1} (d-y)^{\gamma-1} \right\|_{(C)^2}\\ &+K_yc_{\gamma}\left\| A(x, y) ^{C}_yD^{\gamma}_{L}\mathcal{U}(x, y, s_l)+\frac{\mathcal{U}'(x, c, s_l)}{\Gamma(2-\gamma)}(x-a)^{\beta-1}(b-x)^{\beta-1} (d-y)^{\gamma-1}\right\|_{(C)^2}\\ &+K_yc_{\gamma}\left\| A(x, y)^{C}_yD^{\gamma}_{R}\mathcal{U}(x, y, s_l)+\frac{\mathcal{U}'(x, d, s_l)}{\Gamma(2-\gamma)}(x-a)^{\beta-1}(b-x)^{\beta-1} (y-c)^{\gamma-1} \right\|_{(C)^2}\\ &\le \theta_5 \| \mathcal{U}_l\|_{(C_2)^2}, \end{aligned}
    \begin{align*} &\left\| {\rm Re}(s_l^{\alpha_q} \mathcal{U}(x, y, s_l))\right\|_{C} \le \|{\rm Re}(s_l^{\alpha_q})\|_C\|{\rm Re}(\mathcal{U}(x, y, s_l) )\|_C\le \theta_6 \| \mathcal{U}_l\|_{C_2}, \\ &\left\|{\rm Im}(s_l^{\alpha_q} \mathcal{U}(x, y, s_l))\right\|_{C} \le \theta_7 \| \mathcal{U}_l\|_{C_2} \end{align*}

    and

    \sum\limits_{q = 0}^{r} a_{q} = 1,
    \left\| \mathbb{G}_1\mathcal{U}_l(x, y)\right\|_{C} \le \| A(x, y)\|_{C}\sum\limits_{q = 0}^{r} a_{q} \left( \theta_6 \| \mathcal{U}_l\|_{C_2}+\theta_7 \right)+\theta_8 \|{\rm Re} \mathcal{U}_l\|_{C_2} \le \theta_9 \| \mathcal{U}_l\|_{C_2(\Upsilon )},

    similarly,

    \| \mathbb{G}_2\mathcal{U}_l(x, y)\|_{C} \le \theta_{10} \| \mathcal{U}_l\|_{C_2},

    hence,

    \|\mathbb{G}\mathcal{U}(x, y, s_l)\|_{(C)^2}\le \theta \| \mathcal{U}_l\|_{(C_2)^2} ,

    so \mathbb{G} is bounded.

    Theorem 5.2. Let \mathcal{U}(x, y, s_l) be the exact solution of Eq (4.1) on \Omega , \mathcal{U}^*_{N}(x, y, s_l) be the \varepsilon -approximate solution. For every \varepsilon > 0 , there exists N_1 , when N\ge N_1 , coefficients d^*_{ijl} of \mathcal{U}^*_{N_1}(x, y, s_l) from Eq (5.1) satisfy Eq (5.2).

    Proof. \mathcal{U}(x, y, s_l) could be approximated by \mathcal{U}^*_{N_1}(x, y, s_l) on \Upsilon\cap\Omega . For each fixed \varepsilon > 0 , there exists N_1 such that the residual \mathbb{L}(\mathcal{U}^*_{N_1}(x, y, s_l)) satisfies Eq (5.2).

    Let \mathcal{U}_{N_1}(x, y, s_l) be residual approximate solutions, taking min \{ \frac{\varepsilon}{4 { \| \mathbb{G} \| } }, \frac{\varepsilon}{4} \} , in which \|G\| is defined by

    \| \mathbb{G}\| = \sup \{ \| \mathbb{G}u \|:u\in (C_2)^2, \|u\|_{(C_2)^2}\le1 \},

    there exists N_1 such that the following two parts hold. Inside \Omega , we suppose that

    \begin{align*} \| \mathcal{U}_{N_1}(x, y, s_l)-\mathcal{U}(x, y, s_l) \|_{C^2(\Omega)} \le \frac{\varepsilon}{4 { \| \mathbb{G} \| } }, \end{align*}

    when (x, y) \in \Omega ,

    \begin{align*} \mathbb{L}_1\mathcal{U}_{N_1}(x, y, s_l)& = \sum\limits_{j = 1}^{2}\| \mathbb{G}_j ( \mathcal{U}_{N_1}(x, y, s_l)-\mathcal{U}(x, y, s_l) ) \|_{C(\Omega)}\\ &\le \sum\limits_{j = 1}^{2} \| \mathbb{G}_j\| \| \mathcal{U}_{N_1}(x, y, s_l)-\mathcal{U}(x, y, s_l) \|_{C_2(\Omega)} \\&\le \frac{\varepsilon}{2}. \end{align*}

    On the \partial \Omega , from the boundary condition \mathcal{U}(x, y, s_l) = 0 , we suppose that

    \begin{align*} \| \mathcal{U}_{N_1}(x, y, s_l)-\mathcal{U}(x, y, s_l)\|_{C(\Upsilon\cap\partial \Omega)} &\le \| \mathcal{U}_{N_1}(x, y, s_l)-\mathcal{U}(x, y, s_l)\|_{C_2(\Upsilon\cap\partial \Omega)} \\&\le \frac{\varepsilon}{4}, \end{align*}

    hence, when (x, y) on the \partial \Omega ,

    \begin{align*} \mathbb{L}_2\mathcal{U}_{N_1}(x, y, s_l)& = (\|{\rm Re}( \mathcal{U}_{N_1}(x, y, s_l)-\mathcal{U}(x, y, s_l) )\|_{C(\Upsilon\cap\partial \Omega)}+\|{\rm Im}( \mathcal{U}_{N_1}(x, y, s_l)-\mathcal{U}(x, y, s_l) )\|_{C(\Upsilon\cap\partial \Omega)} )\\&\le \frac{\varepsilon}{2}. \end{align*}

    so,

    \mathbb{L}\mathcal{U}_{N_1}(x, y, s_l) = (\mathbb{L}_1+\mathbb{L}_2 )\mathcal{U}_{N_1} (x, y, s_l)\le \varepsilon

    and

    \mathbb{L}\mathcal{U}^*_{N_1}(x, y, s_l) = \min\limits_{\mathcal{U}_{N_1}(x, y, s_l)}\mathbb{L}(\mathcal{U}_{N_1}(x, y, s_l))\le \varepsilon,

    so the theorem holds.

    Theorem 5.3. If Eq (4.1) is well-posed, then \mathcal{U}^*_{N_1}(x, y, s_l) obtained from Theorem 5.2 is the approximate solution of Eq (4.1) on \Omega .

    Proof. Since \mathcal{U}^*_{N_1}(x, y, s_l) is the \varepsilon -approximate solution, for every \varepsilon > 0 , it yields,

    \begin{align*} \| \mathcal{U}^*_{N_1}(x, y, s_l)-\mathcal{U}(x, y, s_l) \|_{(C(\Omega))^2}&\le \|\mathbb{G}^{-1} \|_{C(\Omega)} \| \mathbb{G}\mathcal{U}^*_{N_1}(x, y, s_l)-\mathbb{G}\mathcal{U}(x, y, s_l) \|_{(C(\Omega))^2}\\ &\le \|\mathbb{G}^{-1} \|_{C(\Omega)} \| \mathbb{G}\mathcal{U}^*_{N_1}(x, y, s_l)-\mathbb{W}(x, y, s_l) \|_{(C(\Omega))^2}\\ &\le \|\mathbb{G}^{-1} \|_{C(\Omega)} \varepsilon, \end{align*}

    where \mathbb{G} is bounded. It implies that \mathcal{U}^*_{N_1}(x, y, s_l) is the approximate solution of Eq (4.1) on \Omega .

    Let S_{5, 2}(\Pi_1) and S_{5, 2}(\Pi_2) be two quintic spline space with partition

    \Pi_1: a = x_0 < x_1 < \cdots < x_n = b,
    \Pi_2: c = y_0 < y_1 < \cdots < y_m = d

    and

    \Pi_1\times\Pi_2 = [a, b]\times[c, d].

    The quintic spline bases have the following properties.

    Theorem 5.4. Let u(x)\in C^m[a, b] , 1\le m \le 5 , then there exists z(x) \in S_{5, 2}(\Pi_1) , such that

    \begin{align*} \left\|\left(z(x)-u(x) \right)^{(k)}\right\|_{C[a, b]}\le K\left\|u\right\|_{C^m[a, b]}h^{m+1-k}, \; \; \; k = 0, 1, 2, \end{align*}

    which h is the partition of the spline space, and K is the constant.

    Proof. The division of [a, b] is

    :a = x_0 < x_1 < \cdots < x_j < x_{j+1} < \cdots < x_N = b,

    h is the max length of the division, and set subinterval

    \pi_j = [x_j, x_{j+1}], \; \; \; j = 0, 1, \cdots, N-1.

    l_{jk}(x), \; \bar{l}_{jk}(x), \; \bar{\bar{l}}_{jk}(x) be Hermite interpolation polynomials, j = 0, 1, \cdots, N, k = 0, 1, and satisfy

    \sum\limits_{k = 0}^{1}l_{jk}(x) = 1, \quad l_{jk}(x_i) = \delta_{ik}, \quad l'_{jk}(x_i) = 0, \quad l''_j(x_i) = 0, \quad \bar{l}_{jk}(x_i) = 0,
    \bar{l}'_{jk}(x_i) = \delta_{ik}, \quad\bar{l}''_{jk}(x_i) = 0, \quad \bar{\bar{l}}_{jk}(x_i) = 0, \quad \bar{\bar{l}}'_{jk}(x_i) = 0, \quad \bar{\bar{l}}''_{jk}(x_i) = \delta_{ik}.

    First, on [x_j, x_{j+1}] , we prove

    \sum\limits_{k = 0}^{1}l_{jk}(x)(x_{jk}-x)^p+\sum\limits_{k = 0}^{1}\bar{l}_{jk}(x)p(x_{jk}-x)^{p-1}+\sum\limits_{k = 0}^{1}\bar{\bar{l}}_{jk}(x)p(p-1)(x_{jk}-x)^{p-2} = 0 ,

    1\le p \le d\le 5 , x_{j0} = x_j, x_{j1} = x_{j+1} , when p = 1 , it has

    \sum\limits_{k = 0}^{1}\bar{\bar{l}}_{jk}(x)p(p-1)(x_{jk}-x)^{p-2} = 0.

    Consider that, u(y) = (y-x)^p , it could be interpolated as follows:

    \begin{align*} (y-x)^p = \sum\limits_{k = 0}^{1} l_{jk}(y)(x_{jk}-x)^p+\sum\limits_{k = 0}^{1} \bar{l}_{jk}(y)p(x_{jk}-x)^{p-1}+\sum\limits_{k = 0}^{1} \bar{\bar{l}}_{jk}(y)p(p-1)(x_{jk}-x)^{p-2}. \end{align*}

    Setting y = x , we obtain that

    \sum\limits_{k = 0}^{1} l_{jk}(x)(x_{jk}-x)^p+\sum\limits_{k = 0}^{1} \bar{l}_{jk}(x)p(x_{jk}-x)^{p-1}+\sum\limits_{k = 0}^{1} \bar{\bar{l}}_{jk}(x)p(p-1)(x_{jk}-x)^{p-2} = 0.

    Next, due to property of the Hermite interpolation polynomial,

    \sum\limits_{k = 0}^{1}\| \bar{l}_{jk}(x)\|_{C(\pi_j)} = \sum\limits_{k = 0}^{1}\| \bar{l}_{jk}(x)-\bar{l}_{jk}(x_i)\|_{C(\pi_j)} = \sum\limits_{k = 0}^{1}\| \bar{l}'_{jk}(\xi)(x_i-x)\|_{C(\pi_j)}\le K_0 h .

    Similarly,

    \begin{align*} \sum\limits_{k = 0}^{1}\| \bar{\bar{l}}_{jk}(x)\|_{C(\pi_j)}& = \sum\limits_{k = 0}^{1}\| \bar{\bar{l}}_{jk}(x)-0-0\|_{C(\pi_j)}\\& = \sum\limits_{k = 0}^{1}\|\bar{\bar{l}}_{jk}(x)-\bar{\bar{l}}_{jk}(x_i)-\bar{\bar{l}}'_{jk}(x_i)(x-x_i)\|_{C(\pi_j)}\\&\le \sum\limits_{k = 0}^{1}\|\frac{1}{2}\bar{\bar{l}}''_{jk}(\xi)(x-x_i)^2 \|_{C(\pi_j)}\\& \le K_1 h^2. \end{align*}

    For any u\in C^m[a, b] , there has z(x)\in S_{5, 2}(\pi) , suppose that

    z(x_j) = u(x_j), \quad z'(x_j) = u'(x_j), \quad z''(x_j) = u''(x_j),

    so,

    \begin{aligned} &\|z(x)-u(x)\|_{C[a, b]} = \sum\limits_{j = 0}^{N-1}\left\|\sum\limits_{k = 0}^{1} l_{jk}(x)u(x_{jk})+\sum\limits_{k = 0}^{1} \bar{l}_{jk}(x)u'(x_{jk})+\sum\limits_{k = 0}^{1} \bar{\bar{l}}_{jk}(x)u''(x_{jk}) \right.\\ &\left.-\left(\sum\limits_{p = 0}^{m}\frac{1}{p!}\frac{\partial^p u(x)}{\partial x^p}\left(\sum\limits_{k = 0}^{1}l_{jk}(x)(x_{jk}-x)^p+ \sum _{k = 0}^{1}\bar{l}_{jk}(x)p(x_{jk}-x)^{p-1}+ \sum _{k = 0}^{1}\bar{\bar{l}}_{jk}(x)p(p-1)(x_{jk}-x)^{p-2}\right ) \right ) \right\|_{C(\pi_j)} \\ & \le \sum\limits_{j = 0}^{N-1}\sum\limits_{k = 0}^{1} \left\|l_{jk}(x)\right\|_{C(\pi_j)}\left\| u(x_{jk})- \sum\limits_{p = 0}^{m}\frac{1}{p!}\frac{\partial^p u(x)}{\partial x^p}(x_{jk}-x)^p \right\|_{C(\pi_j)}\\ &+\sum\limits_{k = 0}^{1} \left\|\bar{l}_{jk}(x)\right\|_{C(\pi_j)}\left\| u'(x_{jk})- \sum\limits_{p = 0}^{m}\frac{1}{(p-1)!}\frac{\partial^p u(x)}{\partial x^p}(x_{jk}-x)^{p-1} \right\|_{C(\pi_j)}\\ &+\sum\limits_{k = 0}^{1} \|\bar{\bar{l}}_{jk}(x)\|_{C(\pi_j)}\left\| u''(x_{jk})- \sum\limits_{p = 0}^{m}\frac{1}{(p-2)!}\frac{\partial^p u(x)}{\partial x^p}(x_{jk}-x)^{p-2} \right\|_{C(\pi_j)}\\ & \le \sum\limits_{k = 0}^{1} \left\|l_{jk}(x)\right\|_{C(\pi_j)} \frac{1}{(m+1)!}\left\|\frac{\partial^{m+1} u(x)}{\partial x^{m+1} }(x_{jk}-x)^{m+1}\right\|_{C(\pi_j)} \\ &+\sum\limits_{k = 0}^{1} \left\|\bar{l}_{jk}(x)\right\|_{C(\pi_j)} \frac{1}{m!}\left\|\frac{\partial^{m+1} u(x)}{\partial x^{m+1}}(x_{jk}-x)^{m}\right\|_{C(\pi_j)} + \frac{\sum\limits_{k = 0}^{1} \left\|\bar{\bar{l}}_{jk}(x)\right\|_{C(\pi_j)}}{(m-1)!}\left\|\frac{\partial^{m+1} u(x)}{\partial x^{m+1}}(x_{jk}-x)^{m-1}\right\|_{C(\pi_j)} \\ &\le \frac{M_{1}}{(m+1)!}\left\|u^{(m+1)} \right\|_{C[a, b]}h^{m+1}+\frac{M_{2}}{(m)!}\left\|u^{(m+1)} \right\|_{C[a, b]}h^{m+1}+\frac{M_{3}}{(m-1)!}\left\|u^{(m+1)} \right\|_{C[a, b]}h^{m+1}\\ &\le K_2 \left\|u^{(m+1)}\right\|_{C[a, b]}h^{m+1}.\end{aligned}

    Then, on \pi_j set

    z^{(i)}(x_{jk}) = u^{(i)}(x_{jk}), \quad k = 0, 1;\ i = 0, 1, 2,

    let

    w(x) = u(x)-z(x),

    so

    w(x_{jk}) = 0, \; \; \; k = 0, 1;\quad w'(x_{jk}) = w''(x_{jk}) = 0, \; \; \; k = 0, 1,

    then let

    g(x) = w'(x),

    so

    \exists \xi \in [x_j, x_{j+1}],

    such that g(\xi) = 0 , and

    g(x_{jk}) = g'(x_{jk}) = 0, \; \; \; k = 0, 1.

    Due to z'(x)\in P_4 , so z'(x) is the polynomial interpolation of u'(x) at the point (\xi, u'(\xi)), (x_{jk}, u'(x_{jk})), (x_{jk}, u''(x_{jk})), k = 0, 1 , so

    \begin{align*} \left\| z'(x)-u'(x) \right\|_{C[a, b]} \le \sum\limits_{j = 0}^{N-1}\left\| z'(x)-u'(x) \right\|_{C(\pi_j)} \le K_3 h^{m} \left\|u^{(m+1)}\right \|_{C[a, b]}. \end{align*}

    Then, let

    h(x) = w''(x),

    so

    h(x_{jk}) = 0, \; \; \; k = 0, 1;

    \exists \eta_1 \in (x_{j}, \xi), \eta_2 \in (\xi, x_{j+1}) , such that

    h(\eta_1) = g'(\eta_1) = 0, \quad h(\eta_2) = g'(\eta_2) = 0,

    due to z''\in P_3, so z''(x) is the cubic polynomial interpolation of z''(x) , so

    \begin{align*} \left\| z''(x)-u''(x)\right\|_{C[a, b]} \le \sum\limits_{j = 0}^{N-1}\left\| z''(x)-u''(x)\right\|_{C(\pi_j)} \le K_4 h^{m-1}\left\|u^{(m+1)}\right\|_{C[a, b]}. \end{align*}

    Finally,

    \left\|D^{(k)}(z(x)-u(x))\right\|_{C[a, b]}\le K\left\|u^{(m+1)}\right\|_{C[a, b]}h^{m+1-k}, \; \; \; \; k = 0, 1, 2.

    According to [30], the following lemma is given.

    Lemma 5.2. Let u(x, y)\in C^m(\Omega) , 2\le m \le 6 , then there exists

    z(x, y) \in S_{5, 2}(\Pi_1)\times S_{5, 2}(\Pi_2) ,

    such that

    \begin{align*} \|(z-u)^{(k, l)}(x, y)\|_{C(\Omega)}\le \lambda \|u^{(m+1, m+1)}\|_{C^m(\Omega)}h^{m-(k+l)}, \; \; \; \; k, l = 0, 1, 2, \end{align*}

    which h is the partition of the space, and \lambda is the constant.

    According to Theorem 5.4 and Lemma 5.2, we can infer that:

    Remark 5.2. Let u(x, y)\in C^4(\Omega) , then there exists

    z(x, y) \in S_{5, 2}(\Pi_1)\times S_{5, 2}(\Pi_2) ,

    such that

    \begin{align*} \|z(x, y)-u(x, y)\|_{C^2(\Omega)}\le \lambda\|u\|_{C^4(\Omega)}h^{2}, \end{align*}

    which h is the partition of the space, and \lambda is the constant.

    Theorem 5.5. The numerical solution \tilde{\mathcal{U}}_{N}(x, y, s_l) obtained from the proposed meshless method converges to the exact solution \mathcal{U}(x, y, s_l) .

    Proof. Owing to Theorem 5.1, \mathbb{H}_i(x) is the base of S_{5, 2}(\pi) , so numerical solution \mathcal{U}_{N, l}(x, y) obtained from Eq (5.1) belongs to S_{5, 2}(\pi) \times S_{5, 2}(\pi) . From the Remark 5.2 and Theorem 5.3, we have

    \begin{align*} \| \mathbb{G}\tilde{\mathcal{U}}_N(x, y, s_l)-\mathbb{W}(x, y, s_l) \|_{(C)^2} \le \lambda_1 \| \mathcal{U}_{l} \|_{C_2}h^2, \quad \| \tilde{\mathcal{U}}_N(x, y, s_l) \|_{(C(\partial \Omega))^2} \le \lambda_2 \| \mathcal{U}_{l} \|_{C_2}h^2. \end{align*}

    Assume that

    \mathbb{G}\tilde{\mathcal{U}}_N(x, y, s_l) = \mathbb{W}^*(x, y, s_l), \quad \tilde{\mathcal{U}}_N(x, y, s_l)|_{\partial \Omega} = w^*(x, y, s_l),

    so

    \| \mathbb{W}^*(x, y, s_l)-\mathbb{W}(x, y, s_l) \|_{(C)^2} \le \lambda_1 \| \mathcal{U}_{l} \|_{C_2}h^2, \quad \| w^*(x, y, s_l)\|_{(C(\partial \Omega))^2} \le \lambda_2 \| \mathcal{U}_{l} \|_{C_2}h^2.

    Then \exists N , such that

    \begin{equation*} \begin{split} &\|\tilde{\mathcal{U}}_N(x, y, s_l)-\mathcal{U}(x, y, s_l)\|_{C_2}\le \lambda_3 \| \mathcal{U}_{l} \|_{C_2}h^2, \end{split} \end{equation*}

    where \lambda_1, \lambda_2, \lambda_3 are constants.

    In this section we give two examples to demonstrate the effectiveness of our theoretical analysis. The examples will discuss a single time fractional term and a multiple time fractional term on different domains, respectively. Calculate the

    L_{\infty}(t) = \max\limits_{N}\left|u(x, y, t)-u_N(x, y, t) \right|

    and

    E(t) = \left\|u(x, y, t)-u_N(x, y, t) \right\|_{L_2} = \left(\int_{\Omega}\left(u(x, y, t)-u_N(x, y, t)\right)^2 {\rm d}\Omega\right)^{1/2},

    where u(x, y, t) is the exact solution, u_N(x, y, t) is the approximate solution by our method. If t = 1, L_{\infty} = L_{\infty}(1) . Meanwhile, let the L = 10 of Bromwich be integrated by the inverse Laplace transform. The node

    n\triangleq N+1

    from Eq (5.1).

    Example 6.1. Consider the single term form Eq (3.1), where r = 1, K_x = K_y = 1 ,

    \begin{eqnarray*} {^C_0\!D}^{\alpha}_t u (x, y, t) = \frac{\partial^{\beta}u(x, y, t)}{\partial |x|^{\beta}}+\frac{\partial^{\gamma}u(x, y, t)}{\partial |y|^{\gamma}}+f(x, y, t), \; \; \; \; (x, y)\in\Omega, \; 0 < t\le 1, \end{eqnarray*}

    with

    u(x, y, t)|_{\partial \Omega} = 0, \; u(x, y, 0) = 0.

    Let \alpha = 2/3 , \beta = 3/2 , \gamma = 5/4 . L_{\infty} of Example 6.1 on rectangular domain and circular domain are shown in Table 1.

    Table 1.  L_{\infty} on difference domains for Example 6.1.
    Node n L_{\infty} in (1) of Example 6.1 L_{\infty} in (2) of Example 6.1
    2\times2 3.95185\times10^{-9} 1.54171\times10^{-8}
    3\times3 3.95185\times10^{-9} 1.56203\times10^{-8}
    4\times4 3.95184\times10^{-9} 1.58076\times10^{-8}

     | Show Table
    DownLoad: CSV

    It can be concluded that our method is valid in a verifiable way and that it gives better results in the general case of smoother time solutions.

    (1) When (x, y) on rectangular domains, \Omega = [0, 1]\times [0, 1], the true solution is

    u(x, y, t) = x^2(1-x)^2y^2(1-y)^2t^{\frac{4}{5}}.

    The error figure is shown in the Figure 1a at n = 3\times 3 . And the error L_{\infty} are shown in Table 1.

    Figure 1.  Error for Example 6.1, when \alpha = 2/3 , \beta = 3/2 , \gamma = 5/4 , t = 1 .

    (2) When (x, y) on circular domains \Omega ,

    \Omega = \{(x, y)|(x, y)\in (x-1/2)^2+(y-1/2)^2\le 1/4 \},

    the true solution is

    u(x, y, t) = (x-1/2)^2(y-1/2)^2t^{\frac{4}{5}}.

    The figure of error u(x, y, t)-u_N(x, y, t) when t = 1 at n = 3\times 3 is shown in the Figure 1b. And the error L_{\infty} are shown in Table 1.

    With the above two numerical examples we find that our method gets high accuracy on different regions, showing that our method can handle arbitrary convex regions. Our error convergence is second-order, and since the solution of u with respect to the space is x^2(1-x)^2y^2(1-y)^2 or (x-1/2)^2(y-1/2)^2 , we have fewer points to get a high accuracy error, which is in accordance with the theory. At the same time, the solution of u with respect to the time is t^{\frac{4}{5}} , Laplace transform can be used to deal with lower order smooth solutions.

    Example 6.2. [31] Consider the multi-term from Eq (3.1), {where r = 4, K_x = K_y = 1

    \begin{eqnarray*} \sum\limits_{q = 0}^{4}a_q \left({^C_0\!D}^{\alpha_q}_t \right)u (x, y, t) = \frac{\partial^{\beta}u(x, y, t)}{\partial |x|^{\beta}}+\frac{\partial^{\gamma}u(x, y, t)}{\partial |y|^{\gamma}}+f(x, y, t), \; \; \; \; (x, y)\in \Omega, \; 0 < t\le 1, \end{eqnarray*}

    with

    u(x, y, t)|_{\partial \Omega} = 0, \; u(x, y, 0) = 0,
    \begin{align*} &f(x, y, t) = \sum\limits_{i = 0}^{4}a_i t^{\frac{\alpha_0+1}{2}-\alpha_i}E_{1, \frac{\alpha_0+1}{2}-\alpha_i+1}(t)x^2(1-x)^2y^2(1-y)^2\\ &+\frac{t^{\frac{\alpha_0+1}{2}} E_{1, \frac{\alpha_0+1}{2}+1}(t)y^2(1-y)^2 }{\cos(\beta \pi/2)}\left\{ 2\frac{x^{2-\beta}+(1-x)^{2-\beta}}{\Gamma(3-\beta)} - 12 \frac{x^{3-\beta}+(1-x)^{3-\beta}}{\Gamma(4-\beta)} +24 \frac{x^{4-\beta}+(1-x)^{4-\beta}}{\Gamma(5-\beta)} \right\}\\ &+\frac{t^{\frac{\alpha_0+1}{2}} E_{1, \frac{\alpha_0+1}{2}+1}(t)x^2(1-x)^2 }{\cos(\gamma \pi/2)}\left\{ 2\frac{y^{2-\gamma}+(1-y)^{2-\gamma}}{\Gamma(3-\gamma)} -12\frac{y^{3-\gamma}+(1-y)^{3-\gamma}}{\Gamma(4-\gamma)} +24 \frac{y^{42-\gamma}+(1-y)^{4-\gamma}}{\Gamma(5-\gamma)} \right\} \end{align*}

    where

    E_{a, b}(t): = \sum\limits_{i = 0}^{\infty}\frac{t^i}{\Gamma(ai+b)}.

    Then the exact solution is

    u(x, y, t) = t^{\frac{\alpha_0+1}{2}}E_{1, \frac{\alpha_0+1}{2}+1}(t)x ^2(1-x)^2y^2(1-y)^2.

    (1) When (x, y) on rectangular domains,

    \Omega = [0, 1]\times [0, 1].

    When

    {\bf \alpha} = (0.05, 0.08, 0.1, 0.15, 0.2), \; \; \; {\bf a} = (3/10, 1/10, 3/20, 1/5, 1/4), \; \; \; \beta = 1.6, \gamma = 1.6.

    We calculate the error E(T) and compare it with [31] in Table 2 at T = 1 .

    Table 2.  Error E(T) when T = 1 for (1) of Example 6.2.
    Mesh length h [31] Node n E(T)
    1/8 1.3862\times10^{-4} 2\times2 1.44824\times10^{-6}
    1/16 3.1353\times10^{-5} 3\times3 1.44824\times10^{-6}
    1/24 1.3203\times10^{-5} 4\times4 1.44824\times10^{-6}

     | Show Table
    DownLoad: CSV

    (2) When (x, y) on circular domains, the

    \Omega = \{(x, y)|(x-1/2)^2+(y-1/2)^2\le 1/4\}.

    When

    {\bf \alpha} = (0.35, 0.45, 0.6, 0.7, 0.8), \; \; \; {\bf a} = (3/10, 1/5, 4/30, 1/6, 1/5),

    where \beta = 1.02 , \gamma = 1.02.

    The numerical solution and the absolute errors when t = 1 at n = 3\times 3 are shown in Figure 2.

    Figure 2.  Numerical solution(left) and absolute errors(right), when t = 1 , n = 3 .

    We calculated the L_2 error E(T) on the rectangular domain and compared it with [31]. It can be seen that we obtain higher accuracy with fewer points, which proves the high efficiency of our method. We also carry out experiments with different parameters \alpha, {\bf a} and \beta, \gamma on the circular domain and calculate the absolute errors at the n = 3 .

    From Figure 2, it can be seen that our method also achieves high error accuracy, indicating the applicability of our method. The high error accuracies obtained by our method in different regions and also with different parameters show the stability and efficiency of our method. Because of the high smoothness of u with respect to x, y , we get high error accuracy with fewer points, which is consistent with our theoretical analysis.

    In this paper, we proposed a meshless method of solving the minimum residual approximate solution for Eq (3.1). Different from previous methods, we use the Laplace transform method to deal with the multi-term time fractional operator, we transform the time into complex frequency domain by Laplace transform, Eq (3.1) is transformed into complex equation Eq (3.3). Then, on the spatial direction, we proposed a quintic Hermite meshless method to deal with space fractional operators on arbitrary convex region based on the theory of polynomial functions dense theorem. The approximate accuracies become higher by increasing number of Quintic Hermite spline functions. The minimum residual approximate solution of Eq (4.1) is obtained by Theorems 5.3 under the condition of well-posed equations. Meanwhile, using Theorem 5.4 and Lemma 5.2, it infers Remark 5.2, which is the convergence of the biquintic spline function. Then by using Remark 5.2 and Theorem 5.3, we can obtain Theorem 5.5 to show the convergence of the method in the spatial direction. We use numerical inversion methods to transform the obtained the minimum residual approximate solution from the Laplace domain to the real domain by using the strategy of Talbot through parabolic path.

    In Numerical examples, we fix the L = 10 in Eq (3.5) by parabolic path to get the numerical solution. First, we handle the single term time-space fractional diffusion equations, we can deduce that the method can deal with time fractions that are not sufficiently smooth, and we can get higher precision with fewer nodes in arbitrary convex region from Table 1 and Figure 1. This also proves that Laplace transform is effective for dealing with insufficiently smooth time-fractional operators. Then, we solve the multi-term time-space fractional diffusion equations with 4 terms. These results are compared with [31], and it is found that our method achieves better accuracy with fewer points. At the same time, we found that the accuracy of the single term is better than that of the multi-term. In addition, the accuracy is higher on rectangular areas than on circular areas. These experimental results are consistent with theoretical expectations and demonstrate the effectiveness and efficiency of our method.

    In this paper, the use of the extension theorem allows the meshless method to be applied to arbitrary convex regions in two dimensions, and the use of the Laplace transform allows to deal with multi-term low-order time solutions. In the future, through the study of spatial Riesz operators, we will investigate meshless methods for solving equations in arbitrary regions of higher dimensions. In addition, this method can also be used to study equations of time-distributed order.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank the referees for their helpful comments and suggestions, which lead to a much improved version of this paper.

    The authors declare that they have no conflicts of interest.



    [1] D. C. Montgomery, Design and analysis of experiments, 10th Eds., John Wiley & Sons, 2019.
    [2] R. E. Kirk, Experimental design: Procedures for the behavioral sciences, 4th Eds., SAGE Publications Inc., 2013. https://doi.org/10.4135/9781483384733
    [3] R. A. Johnson, G. K. Bhattacharyya, Statistics: Principles and methods, 7th Eds., New Jersey: John Wiley & Sons, 2014.
    [4] G. Canavos, J. Koutrouvelis, Introduction to the design & analysis of experiments, 1st Ed., Pearson, 2008.
    [5] N. Diawara, A. Demuren, E. Gyuricsko, Impairment of continuous insulin delivery therapy and analysis from graeco-latin square design model, J. Biosci. Med., 4 (2016), 40–51. https://doi.org/10.4236/jbm.2016.48006 doi: 10.4236/jbm.2016.48006
    [6] M. R. Mahamud, D. J. Gomes, Enzymatic saccharification of sugar cane bagasse by the crude enzyme from indigenous fungi, J. Sci. Res., 4 (2012), 227. https://doi.org/10.3329/jsr.v4i1.7745 doi: 10.3329/jsr.v4i1.7745
    [7] A. G. Woodside, W. G. Pearce, Testing market segment acceptance of new designs of industrial services, J. Prod. Innovat. Manag., 6 (1989), 185–201. https://doi.org/10.1111/1540-5885.630185 doi: 10.1111/1540-5885.630185
    [8] J. A. Tovar-Aguilar, P. F. Monaghan, C. A. Bryant, A. Esposito, M. Wade, O. Ruíz-Barzola, et al., Improving eye safety in citrus harvest crews through the acceptance of personal protective equipment, community-based participatory research, social marketing, and community health workers, J. Agromedicine, 19 (2014), 107–116. https://doi.org/10.1080/1059924x.2014.884397 doi: 10.1080/1059924x.2014.884397
    [9] R. Mead, S. G. Gilmour, A. Mead, Statistical principles for the design of experiments: Applications to real experiments, Cambridge University Press, 2012. https://doi.org/10.1017/CBO9781139020879
    [10] W. J. Youden, Use of incomplete block replications in estimating tobacco-mosaic virus, Contrib. Boyce Thomps., 9 (1937), 41–48.
    [11] F. Yates, Incomplete randomized blocks, Ann. Eugen., 7 (1936), 121–140. https://doi.org/10.1111/j.1469-1809.1936.tb02134.x doi: 10.1111/j.1469-1809.1936.tb02134.x
    [12] M. Ai, K. Li, S. Liu, D. K. J. Lin, Balanced incomplete Latin square designs, J. Statist. Plann. Inference, 143 (2013), 1575–1582. https://doi.org/10.1016/j.jspi.2013.05.001 doi: 10.1016/j.jspi.2013.05.001
    [13] R. L. Anderson, Missing-plot techniques, Biometrics Bull., 2 (1946), 41–47. https://doi.org/10.2307/3001999 doi: 10.2307/3001999
    [14] R. Rangaswamy, A textbook of agricultural statistics, 2nd Eds., New Age International, 2010.
    [15] K. Sirikasemsuk, A review on incomplete Latin square design of any order, AIP Conf. Proc., 1775 (2016), 030022. https://doi.org/10.1063/1.4965142 doi: 10.1063/1.4965142
    [16] R. J. A. Little, D. B. Rubin, Statistical analysis with missing data, 3rd Eds., John Wiley & Sons, 2019.
    [17] F. E. Allan, J. Wishart, A method of estimating the yield of a missing plot in field experimental work, J. Agri. Sci., 20 (1930), 399–406. https://doi.org/10.1017/S0021859600006912 doi: 10.1017/S0021859600006912
    [18] F. Yates, The analysis of replicated experiments when the field results are incomplete, Emprie J. Exp. Agri., 1 (1933), 129–142.
    [19] J. A. Kupolusi, O. O. Ojo, One missing observation in graeco Latin square design: An approximate analysis of variance, Amer. Based Res. J., 10 (2021), 1–8.
    [20] E. A. Cornish, The estimation of missing values in incomplete randomized block experiments, Ann. Eugen., 10 (1940), 112–118. https://doi.org/10.1111/j.1469-1809.1940.tb02240.x doi: 10.1111/j.1469-1809.1940.tb02240.x
    [21] H. R. Baird, C. Y. Kramer, Analysis of variance of a balanced incomplete block design with missing observations, J. Roy. Statist. Soc. Ser. C, 9 (1960), 189–198. https://doi.org/10.2307/2985719 doi: 10.2307/2985719
    [22] M. S. Bartlett, Some examples of statistical methods of research in agriculture and applied biology, J. R. Stat. Soc., 4 (1937), 137–183. https://doi.org/10.2307/2983644 doi: 10.2307/2983644
    [23] I. Coons, The analysis of covariance as a missing plot technique, Biometrics, 13 (1957), 387–405. https://doi.org/10.2307/2527922 doi: 10.2307/2527922
    [24] W. G. Cochran, Analysis of covariance: Its nature and uses, Biometrics, 13 (1957), 261–281. https://doi.org/10.2307/2527916 doi: 10.2307/2527916
    [25] G. N. Wilkinson, Estimation of missing values for the analysis of incomplete data, Biometrics, 14 (1958), 257–286. https://doi.org/10.2307/2527789 doi: 10.2307/2527789
    [26] C. E. Ogbonnaya, E. C. Uzochukwu, Estimation of missing data in analysis of covariance: A least-squares approach, Commun. Stat. Theory Methods, 45 (2016), 1902–1909. https://doi.org/10.1080/03610926.2013.868000 doi: 10.1080/03610926.2013.868000
    [27] M. H. Kutner, C. J. Nachtsheim, J. Neter, W. Li, Applied linear statistical models, 5th Eds., New York: McGraw-Hill Irwin, 2005.
    [28] G. P. Quinn, M. J. Keough, Experimental design and data analysis for biologists, 1st Ed., Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511806384
    [29] K. Sirikasemsuk, K. Leerojanaprapa, S. Sirikasemsuk, Regression sum of squares of randomized complete block design with one unrecorded observation, AIP Conf. Proc., 2016 (2018), 020136. https://doi.org/10.1063/1.5055538 doi: 10.1063/1.5055538
    [30] K. Sirikasemsuk, K. Leerojanaprapa, Analysis of two-missing-observation 4×4 Latin squares using the exact approach, In: Recent advances in information and communication technology 2017, Cham: Springer, 566 (2018), 69–81. https://doi.org/10.1007/978-3-319-60663-7_7
    [31] K. Sirikasemsuk, One missing value problem in Latin square design of any order: Regression sum of squares, In: 2016 Joint 8th international conference on soft computing and intelligent systems (SCIS) and 17th international symposium on advanced intelligent systems (ISIS), Japan: IEEE, 2016,142–147. https://doi.org/10.1109/SCIS-ISIS.2016.0041
    [32] K. Sirikasemsuk, K. Leerojanaprapa, One missing value problem in Latin square design of any order: Exact analysis of variance, Cogent Eng., 4 (2017), 1411222. https://doi.org/10.1080/23311916.2017.1411222 doi: 10.1080/23311916.2017.1411222
    [33] J. Subramani, Non-iterative least squares estimation of missing values in graeco-Latin square designs, Biometrical J., 33 (1991), 763–769. https://doi.org/10.1002/bimj.4710330619 doi: 10.1002/bimj.4710330619
    [34] D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, 1984.
    [35] R. Ott, M. Longnecker, An introduction to statistical methods and data analysis, 7th Eds., Cengage Learning, 2021.
    [36] A. AlAita, M. Aslam, K. Al Sultan, M. Saleem, Analysis of graeco-latin square designs in the presence of uncertain data, J. Big Data, 11 (2024), 109. https://doi.org/10.1186/s40537-024-00970-1 doi: 10.1186/s40537-024-00970-1
    [37] K. Hinkelmann, O. Kempthorne, Design and analysis of experiments: Introduction to experimental design, John Wiley & Sons, 2007.
    [38] R. J. Freund, W. J. Wilson, D. L. Mohr, Statistical methods, student solutions manual (e-only), Academic Press, 2010. Available from: http://www.sars-expertcom.gov.hk/english/reports/reports.html
  • This article has been cited by:

    1. Zehui Ma, Rahmatjan Imin, A High‐Precision Meshless Method for Time‐Fractional Mixed Diffusion and Wave Equations, 2025, 126, 0029-5981, 10.1002/nme.70020
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(886) PDF downloads(71) Cited by(0)

Figures and Tables

Figures(6)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog