In this article, we consider the Cauchy problem for the following time-space fractional pseudo-parabolic equations
{C0Dαt(I−mΔ)u+(−Δ)β2u=|u|p−1u,x∈RN,t>0,u(0,x)=u0(x),x∈RN,
where 0<α<1, 0<β<2, p>1, m>0, u0∈Lq(RN). An estimating Lp−Lq for solution operator of time-space fractional pseudo-parabolic equations is obtained. The critical exponents of this problem are determined when u0∈Lq(RN). Moreover, we also obtain global existence of the mild solution when u0∈Lp(RN)∩Lq(RN) small enough.
Citation: Yaning Li, Yuting Yang. Blow-up and global existence of solutions for time-space fractional pseudo-parabolic equation[J]. AIMS Mathematics, 2023, 8(8): 17827-17859. doi: 10.3934/math.2023909
[1] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089 |
[2] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[3] | Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman . Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Mathematics, 2022, 7(8): 15659-15679. doi: 10.3934/math.2022857 |
[4] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[5] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241 |
[6] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
[7] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[8] | Fangfang Shi, Guoju Ye, Dafang Zhao, Wei Liu . Some integral inequalities for coordinated log-h-convex interval-valued functions. AIMS Mathematics, 2022, 7(1): 156-170. doi: 10.3934/math.2022009 |
[9] | Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and δ1-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327 |
[10] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860 |
In this article, we consider the Cauchy problem for the following time-space fractional pseudo-parabolic equations
{C0Dαt(I−mΔ)u+(−Δ)β2u=|u|p−1u,x∈RN,t>0,u(0,x)=u0(x),x∈RN,
where 0<α<1, 0<β<2, p>1, m>0, u0∈Lq(RN). An estimating Lp−Lq for solution operator of time-space fractional pseudo-parabolic equations is obtained. The critical exponents of this problem are determined when u0∈Lq(RN). Moreover, we also obtain global existence of the mild solution when u0∈Lp(RN)∩Lq(RN) small enough.
Integral inequality is well recognized to be important in both pure and practical mathematics; for examples, see [1,2,3,4,5,6,7,8,9,10]. The behavior of inequalities makes it clear that mathematical approaches are useless in the absence of inequalities. For this reason, exact inequalities are now required in order to demonstrate the validity and uniqueness of the mathematical procedures. Convexity also plays a big part in the subject of inequalities, owing to the behavior of its definition.
Let K be a convex set. Then, a real valued function G:K→R is named as convex on K if the inequality
G(sx+(1−s)y)≤sG(x)+(1−s)G(y) | (1) |
holds for all x,y∈K,s∈[0,1]. If G is concave, then −G is convex. Over the years, convex sets and convex functions have been modified to a remarkable variety of convexities, such as harmonic convexity [11], quasi convexity [12], Schur convexity [13,14], strong convexity [15,16], p-convexity [17], generalized convexity [18] and so on. For more information, see [19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34] and the references therein.
The Jensen inequality [35,36] is one of these inequalities for convex functions, and it can be stated as follows.
Let wj∈[0,1], aj∈[a,b], (j=1,2,3,…κ,κ≥2) and G be a convex function. Then,
G(∑κj=1wjxj)≤(∑κj=1wjG(xj)), | (2) |
with ∑κj=1wj=1. If G is concave, then inequality (2) is reversed.
Research on the idea of convexity with integral problems is fascinating. As a result, several writers have proved numerous equalities or inequalities as applications of convex functions. Among the notable outcomes are the Gagliardo-Nirenberg inequality [37], the Hardy inequality [38], the Ostrowski inequality [39], the Olsen inequality [40] and the Hermite-Hadamard inequality (HH-inequality, in short) [41]. The HH-inequality is an interesting outcome in convex analysis which is formulated for convex function G:K→R+ on an interval K=[a,b] by
G(a+b2)≤1b−a∫baG(x)dx≤G(a)+G(b)2, | (3) |
for all a,b∈K. If G is concave, then inequality (3) is reversed.
Fejér created the Hermite-Hadamard-Fejér inequality (𝐻𝐻-Fejér inequality), which is the most significant weighted extension of the 𝐻𝐻-inequality, in [42].
Let G:[a,b]→R+ be a convex function on a convex set K and a,b ∈K with a≤b. Then,
G(a+b2)≤1∫baΩ(x)dx∫baG(x)Ω(x)dx≤G(a)+G(b)2∫baΩ(x))dx. | (4) |
If Ω(x)=1, then we obtain (3) from (4). With the assistance of inequality (4), many inequalities can be obtained through special symmetric function Ω(x) for convex functions.
Meanwhile, to increase the accuracy of measurement findings and to carry out error analysis automatically, interval analysis has been proposed and researched by Moore [43], Kulish and Miranker [44], and they have substituted interval operations with real operations. In this field, an interval of real numbers is used to represent an uncertain variable. Following their research, numerous authors concentrated on the literature and employed this idea in various contexts. An h-convex interval-valued function (h-convex 𝘐𝘝𝘍) was first proposed in 2018 by Zhao et al. [45], who demonstrated that convex 𝘐𝘝𝘍 is a specific example of the 𝐻𝐻-inequality.
Let G:[a,b]⊂R→KC+ be a convex 𝘐𝘝𝘍 given by G(x)=[G∗(x),G∗(x)] for all x∈[a,b], where G∗(x) is a convex function, and G∗(x) is a concave function. If G is Riemann integrable, then
G(a+b2)⊇1b−a(IR)∫baG(x)dx⊇G(a)+G(b)2. | (5) |
We refer readers to [46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63] and the references therein for more examination of the literature on the uses and characteristics of generalized convex functions and 𝐻𝐻-integral inequalities.
Operation research, computer science, management sciences, artificial intelligence, control engineering and decision sciences are just a few of the applied sciences and pure mathematics problems that are studied in [64], where a large amount of research on fuzzy sets and systems has been devoted to the development of various fields. Similar to this, the concepts of convexity and non-convexity are crucial in optimization in the fuzzy domain because they allow us to distinguish the optimality condition of convexity and produce fuzzy variational inequalities. As a result, the theories of variational inequality and fuzzy complementary problems have powerful mechanisms of mathematical problems and a cordial relationship. This field is fascinating and has produced many writers. Additionally, the concepts of convex fuzzy mapping and finding its optimality condition with the aid of fuzzy variational inequality were studied by Nanda and Kar [65] and Chang [66]. Fuzzy convexity's generalization and extension are crucial to its application in a variety of contexts. Let's remark that preinvex fuzzy mapping is one of the most often discussed kinds of nonconvex fuzzy mapping. This concept was first proposed by Noor [67], who also demonstrated some findings that show how fuzzy variational-like inequality distinguishes the fuzzy optimality condition of differentiable fuzzy preinvex mappings. For a more in-depth review of the literature on the uses and characterization of generalized convex fuzzy mappings and variational-like inequalities, see [68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85] and the references therein.
Fuzzy-interval-valued functions are the fuzzy mappings. There are certain integrals that deal with 𝘍𝘐𝘝𝘍s and have 𝘍𝘐𝘝𝘍s as their integrands. For instance, Oseuna-Gomez et al. [86] and Costa et al. [87] created the Kulisch-Miranker order relation to establish Jensen's integral inequality for 𝘍𝘐𝘝𝘍s. Costa and Floures provided Minkowski and Beckenbach's inequalities, where the integrands are 𝘍𝘐𝘝𝘍s, using the same methodology. Because Costa et al. [88] established a relationship between the components of fuzzy-interval space and interval space and introduced a level-wise fuzzy order relation on fuzzy-interval space through the Kulisch-Miranker order relation defined on interval space, these authors were particularly inspired by their work. By creating a fuzzy-interval integral inequality for extended convex 𝘍𝘐𝘝𝘍, where the integrands are (p,J)-convex 𝘍𝘐𝘝𝘍, we generalize the integral inequalities (2)–(4). For more information related to fuzzy sets, fuzzy functions and inequalities, see [89,90,91,92,93,94,95,96,97,98,99,100,101] and the references therein.
The structure of this study is as follows: Preliminary ideas and findings in interval space, the space of fuzzy intervals and convex analysis are presented in Section 2. Additionally, the brand-new idea of (p,J)-convex 𝘍𝘐𝘝𝘍s is also presented. For (p,J)-convex 𝘍𝘐𝘝𝘍s, Section 3 derives discrete Jensen and Schur type inequalities. Using fuzzy Riemann integrals, Section 4 derives fuzzy-interval 𝐻𝐻-inequalities for (p,J)-convex 𝘍𝘐𝘝𝘍s. To support our findings, some compelling instances are also provided. Section 5 gives conclusions and future plans.
In this section, we first provide a few definitions, rough notations and findings that will be beneficial for future research. Then, we give new (p,J)-convex 𝘍𝘐𝘝𝘍s definitions and properties.
Let KC be the space of all closed and bounded intervals of R and o∈KC be defined by
o=[o∗,o∗]={x∈R|o∗≤x≤o∗},(o∗,o∗∈R). |
If o∗=o∗, then o is named as degenerate. In this article, all intervals will be non-degenerate intervals. If o∗≥0, then [o∗,o∗] is named as a positive interval. The set of all positive intervals is denoted by K+C and defined as K+C={[o∗,o∗]:[o∗,o∗]∈RIando∗≥0}.
Let ρ∈R and ρo be defined by
ρ.o={[ρo∗,ρo∗] if ρ≥0,[ρo∗,ρo∗] if ρ<0. |
Then, the Minkowski difference q−o, addition o+q and o×q for o,q∈KC are defined by
[q∗,q∗]−[o∗,o∗]=[q∗−o∗,q∗−o∗], |
[q∗,q∗]+[o∗,o∗]=[q∗+o∗,q∗+o∗], |
and [q∗,q∗]×[o∗,o∗]=[min{q∗o∗,q∗o∗,q∗o∗,q∗o∗},max{q∗o∗,q∗o∗,q∗o∗,q∗o∗}]. The inclusion "⊆" means that q⊆o If and only if, [q∗,q∗]⊆[o∗,o∗], if and only if o∗≤q∗, q∗≤o∗.
Remark 2.1. [44] The relation "≤I" is defined on KC by
[q∗,q∗]≤I[o∗,o∗] if and only if q∗≤o∗,q∗≤o∗, |
for all [q∗,q∗],[o∗,o∗]∈KC, and it is an order relation. For given [q∗,q∗],[o∗,o∗]∈KC, we say that [q∗,q∗]≤I[o∗,o∗] if and only if q∗≤o∗,q∗≤o∗ or q∗≤o∗,q∗<o∗.
For [q∗,q∗],[o∗,o∗]∈RI, the Hausdorff-Pompeiu distance between intervals [q∗,q∗] and [o∗,o∗] is defined by
d([q∗,q∗],[o∗,o∗])=max{[q∗,q∗],[o∗,o∗]}. |
It is a familiar fact that (RI,d) is a complete metric space.
The concept of a Riemann integral for 𝘐𝘝𝘍 first introduced by Moore [43] is defined as follows:
Theorem 2.2. [43] If G:[a,b]⊂R→RI is an 𝘐𝘝𝘍 such that G(x)=[G∗(x),G∗(x)], then G is Riemann integrable over [a,b] if and only if G∗(x) and G∗(x) both are Riemann integrable over [a,b] such that
(IR)∫baG(x)dx=[(R)∫baG∗(x)dx,(R)∫baG∗(x)dx]. |
The collections of all Riemann integrable real valued functions and Riemann integrable 𝘐𝘝𝘍s are denoted by R[a,b] and IR[a,b], respectively.
Let R be the set of real numbers. A fuzzy subset set A of R is distinguished by a function g:R→[0,1] called the membership function. In this study, this depiction is approved. Moreover, the collection of all fuzzy subsets of R is denoted by F(R).
A real fuzzy-interval g is a fuzzy set in R with the following properties:
(1) g is normal, i.e., there exists x∈R such that g(x)=1.
(2) g is upper semi continuous, i.e., for given x∈R, and for every x∈R there exist ϵ>0 there exist δ>0 such that g(x)−g(y)<ϵ for all y∈R with |x−y|<δ.
(3) g is fuzzy convex, i.e., g((1−s)x+sy)≥min(g(x),g(y)), ∀ x,y∈R and s∈[0,1].
(4) g is compactly supported, i.e., cl{x∈R|g(x)>0} is compact.
The collection of all real fuzzy-intervals is denoted by FC(R).
Since FC(R) denotes the set of all real fuzzy-intervals and let g∈FC(R) be real fuzzy-interval, if and only if, 𝒿-levels [g]𝒿 is a nonempty compact convex set of R. This is represented by
[g]𝒿={x∈R|g(x)≥𝒿}, |
and from these definitions, we have
[g]𝒿=[g∗(𝒿),g∗(𝒿)], |
where
g∗(𝒿)=inf{x∈R|g(x)≥𝒿},g∗(𝒿)=sup{x∈R|g(x)≥𝒿}. |
Proposition 2.3. [88] Let g,d∈FC(R). Then, relation "≼" given on FC(R) by
g≼d if and only if [g]𝒿≤I[d]𝒿 for all 𝒿∈[0,1] |
is a partial order relation.
We now discuss some properties of real fuzzy-intervals under addition, scalar multiplication, multiplication and division. If g,d∈FC(R) and ρ∈R, then arithmetic operations are defined by
[g˜+d]𝒿=[g]𝒿+[d]𝒿, | (6) |
[g˜×d]𝒿=[g]𝒿×[d]𝒿, | (7) |
[ρ.g]𝒿=ρ.[g]𝒿. | (8) |
Remark 2.4. Obviously, FC(R) is closed under addition and nonnegative scalar multiplication, and the above defined properties on FC(R) are equivalent to those derived from the usual extension principle. Furthermore, for each scalar number ρ∈R,
[ρ˜+g]𝒿=ρ+[g]𝒿. | (9) |
Theorem 2.5. [71,74] The space FC(R) dealing with a supremum metric, i.e., for ψ,d∈FC(R)
O(ψ,d)=sup0≤𝒿≤1H([g]𝒿,[d]𝒿), | (10) |
is a complete metric space, where H denotes the well-known Hausdorff metric on the space of intervals.
Definition 2.6. [88] A mapping G:K⊂R→FC(R) is named as 𝘍𝘐𝘝𝘍. For each 𝒿∈[0,1], whose 𝒿-levels define the family of 𝘐𝘝𝘍s G𝒿:K⊂R→KC are given by G𝒿(x)=[G∗(x,𝒿),G∗(x,𝒿)] for all x∈K. Here, for each 𝒿∈[0,1], the end point real functions G∗(x,𝒿),G∗(x,𝒿):K→R are called lower and upper functions of G.
Remark 2.7. Let G:K⊂R→FC(R) be a 𝘍𝘐𝘝𝘍. Then, G(x) is named as continuous at x∈K if for each 𝒿∈[0,1], both end point functions G∗(x,𝒿) and G∗(x,𝒿) are continuous at x∈K.
From the above literature review, the following results can be concluded (see [88,44,43,86]):
Definition 2.8. Let G:[c,d]⊂R→FC(R) be a 𝘍𝘐𝘝𝘍. The fuzzy Riemann integral of G over [c,d], denoted by (FR)∫dcG(x)dx, is defined level-wise by
[(FR)∫dcG(x)dx]𝒿=(IR)∫dcG𝒿(x)dx={∫dcG(x,𝒿)dx:G(x,𝒿)∈R[c,d]}, | (11) |
for all 𝒿∈[0,1], where R[c,d] is the collection of end point functions of 𝘐𝘝𝘍s. G is (FR)-integrable over [c,d] if (FR)∫dcG(x)dx∈FC(R). Note that if both end point functions are Lebesgue-integrable, then G is fuzzy Aumann-integrable, see [81].
Theorem 2.9. Let G:[c,d]⊂R→FC(R) be a 𝘍𝘐𝘝𝘍, whose 𝒿-levels define the family of 𝘐𝘝𝘍s G𝒿:[c,d]⊂R→KC are given by G𝒿(x)=[G∗(x,𝒿),G∗(x,𝒿)] for all x∈[c,d] and for all 𝒿∈[0,1]. Then, G is (FR)-integrable over [c,d] if and only if, G∗(x,𝒿) and G∗(x,𝒿) both are R-integrable over [c,d]. Moreover, if G is (FR)-integrable over [c,d], then
[(FR)∫dcG(x)dx]𝒿=[(R)∫dcG∗(x,𝒿)dx,(R)∫dcG∗(x,𝒿)dx]=(IR)∫dcG𝒿(x)dx, | (12) |
for all 𝒿∈[0,1].
The families of all (FR)-integrable 𝘍𝘐𝘝𝘍s and R-integrable functions over [c,d] are denoted by FR([c,d],𝒿) and R([c,d],𝒿), for all 𝒿∈[0,1].
Definition 2.10. [51] A function G:[a,b]→R+ is named as a P-convex function if
G(sx+(1−s)y)≤G(x)+G(y), | (13) |
for all x,y∈[a,b],s∈[0,1]. If (13) is reversed, then G is named as P-concave.
Definition 2.11. [47] A function G:K→R+ is named as an s-convex function in the second sense if
G(sx+(1−s)y)≤ssG(x)+(1−s)sG(y), | (14) |
for all x,y∈[a,b],s∈[0,1], where s∈(0,1). If (14) is reversed, then G is named as s-concave in the second sense.
Definition 2.12. [55] A function G:[a,b]→R+ is named as a J-convex function if for all x,y∈[a,b],s∈[0,1], we have
G(sx+(1−s)y)≤J(s)G(x)+J(1−s)G(y), | (15) |
where J:L→R+ such that J≢0, [0,1]⊆L. If (15) is reversed, then G is named as J-concave in the second sense.
A function J:L→R+ is named as super multiplicative if for all x,y∈L, we have
J(xy)≥J(x)J(y). | (16) |
If (16) is reversed, then J is known as sub multiplicative. If the equality holds in (16), then J is named as multiplicative.
Definition 2.13. [17] Let p∈R with p≠0. Then, the interval Kp is named as p-convex if
[sxp+(1−s)yp]1p∈Kp, | (17) |
for all x,y∈Kp,s∈[0,1], where p=2n+1 and n∈N.
Definition 2.14. [17] Let p∈R with p≠0 and Kp=[a,b]⊆R. Then, the function G:[a,b]→R+ is named as a p-convex function if
G([sxp+(1−s)yp]1p)≤sG(x)+(1−s)G(y), | (18) |
for all x,y∈[a,b],s∈[0,1]. If the inequality (18) is reversed, then G is named as a p-concave function.
Definition 2.15. [52] Let Kp be a p-convex set and J:[0,1]⊆L→R+ be a nonnegative real-valued function such that J≢0, where L⊆R. Then, function G:Kp→R is named as (p,J)-convex on Kp such that
G([sxp+(1−s)yp]1p)≤J(s)G(x)+J(1−s)G(y), | (19) |
for all x,y∈Kp=[a,b],s∈[0,1], where G(x)≥0 and J:L→R+ such that J≢0 and [0,1]⊆L. If (19) is reversed, then G is named as (p,J)-concave on [a,b]. G is (p,J)-affine if and only if it is both a (p,J)-convex and (p,J)-concave function.
Definition 2.16. [65,66] Let K be a convex set. Then, 𝘍𝘐𝘝𝘍 G:K→FC(R) is named as convex on K if
G(sx+(1−s)y)≼sG(x)˜+(1−s)G(y), | (20) |
for all x,y∈K,s∈[0,1], where G(x)≽˜0. If (20) is reversed, then G is named as concave on [a,b]. G is affine if and only if it is both a convex and concave function.
Definition 2.17. Let Kp be a p-convex set and J:[0,1]⊆L→R+ be a nonnegative real-valued function such that J≢0, where L⊆R. Then, 𝘍𝘐𝘝𝘍 G:Kp→FC(R) is named as (p,J)-convex on Kp such that
G([sxp+(1−s)yp]1p)≼J(s)G(x)˜+J(1−s)G(y), | (21) |
for all x,y∈Kp,s∈[0,1], where G(x)≽˜0 and J:L→R+ such that J≢0 and [0,1]⊆L. If (21) is reversed, then G is named as (p,J)-concave on [a,b]. G is (p,J)-affine if and only if it is both (p,J)-convex and (p,J)-concave 𝘍𝘐𝘝𝘍.
Remark 2.18. The (p,J)-convex 𝘍𝘐𝘝𝘍s have some very nice properties similar to convex 𝘍𝘐𝘝𝘍:
If G is (p,J)-convex 𝘍𝘐𝘝𝘍, then YG is also (p,J)-convex for Y≥0.
If F and G both are (p,J)-convex 𝘍𝘐𝘝𝘍s, then max(F(x),G(x)) is also (p,J)-convex 𝘍𝘐𝘝𝘍.
We now discuss some new and known special cases of (p,J)-convex 𝘍𝘐𝘝𝘍s:
If J(s)=ss with s∈(0,1), then (p,J)-convex 𝘍𝘐𝘝𝘍 becomes (p,s)-convex 𝘍𝘐𝘝𝘍, that is,
G([sxp+(1−s)yp]1p)≼ssG(x)˜+(1−s)sG(y),∀x,y∈Kp,s∈[0,1]. | (22) |
If J(s)=s, then (p,J)-convex 𝘍𝘐𝘝𝘍 becomes p-convex 𝘍𝘐𝘝𝘍, that is,
G([sxp+(1−s)yp]1p)≼sG(x)˜+(1−s)G(y),∀x,y∈Kp,s∈[0,1]. | (23) |
If p≡1, then (p,J)-convex 𝘍𝘐𝘝𝘍 becomes J-convex 𝘍𝘐𝘝𝘍, that is,
G(sx+(1−s)y)≼J(s)G(x)˜+J(1−s)G(y),∀x,y∈K,s∈[0,1]. | (24) |
If J(s)=ss with s∈(0,1) and p≡1, then (p,J)-convex 𝘍𝘐𝘝𝘍 becomes s-convex 𝘍𝘐𝘝𝘍, that is,
G(sx+(1−s)y)≼ssG(x)˜+(1−s)sG(y),∀x,y∈K,s∈[0,1]. | (25) |
If p≡1 and J(s)=s, then (p,J)-convex 𝘍𝘐𝘝𝘍 becomes convex 𝘍𝘐𝘝𝘍, see [65,66], that is,
G(sx+(1−s)y)≼sG(x)˜+(1−s)G(y),∀x,y∈K,s∈[0,1]. | (26) |
Theorem 2.19. Let Kp be a p-convex set, non-negative real valued function J:[0,1]⊆Kp→R such that J≢0, and let G:Kp→FC(R) be a 𝘍𝘐𝘝𝘍, whose 𝒿-levels define the family of 𝘐𝘝𝘍s G𝒿:Kp⊂R→KC+⊂KC are given by
G𝒿(x)=[G∗(x,𝒿),G∗(x,𝒿)], | (27) |
for all x∈Kp and for all 𝒿∈[0,1]. Then, G is (p,J)-convex on Kp if and only if, for all 𝒿∈[0,1], G∗(x,𝒿) and G∗(x,𝒿) both are (p,J)-convex functions .
Proof. Assume that for each 𝒿∈[0,1], G∗(x,𝒿) and G∗(x,𝒿) are (p,J)-convex on Kp. Then, from (19), we have
G∗([sxp+(1−s)yp]1p,𝒿)≤J(s)G∗(x,𝒿)+J(1−s)G∗(y,𝒿),∀x,y∈Kp,s∈[0,1], |
and
G∗([sxp+(1−s)yp]1p,𝒿)≤J(s)G∗(x,𝒿)+J(1−s)G∗(y,𝒿),∀x,y∈Kp,s∈[0,1]. |
Then, by (27), (6) and (8), we obtain
G𝒿([sxp+(1−s)yp]1p)=[G∗([sxp+(1−s)yp]1p,𝒿),G∗([sxp+(1−s)yp]1p,𝒿)], |
≤I[J(s)G∗(x,𝒿),J(s)G∗(x,𝒿)]+[J(1−s)G∗(y,𝒿),J(1−s)G∗(y,𝒿)], |
that is,
G([sxp+(1−s)yp]1p)≼J(s)G(x)˜+J(1−s)G(y),∀x,y∈Kp,s∈[0,1]. |
Hence, G is (p,J)-convex 𝘍𝘐𝘝𝘍 on Kp.
Conversely, let G be (p,J)-convex 𝘍𝘐𝘝𝘍 on Kp. Then, for all x,y∈Kp and s∈[0,1], we have G([sxp+(1−s)yp]1p)≼J(s)G(x)˜+J(1−s)G(y). Therefore, from (27), we have
G𝒿([sxp+(1−s)yp]1p)=[G∗([sxp+(1−s)yp]1p,𝒿),G∗([sxp+(1−s)yp]1p,𝒿)]. |
Again, from (27), (6) and (8), we obtain
J(s)G𝒿(x)˜+J(1−s)G𝒿(x)=[J(s)G∗(x,𝒿),J(s)G∗(x,𝒿)]+[J(1−s)G∗(y,𝒿),J(1−s)G∗(y,𝒿)], |
Then by (p,J)-convexity of G, we have
G∗([sxp+(1−s)yp]1p,𝒿)≤J(s)G∗(x,𝒿)+J(1−s)G∗(y,𝒿), |
and
G∗([sxp+(1−s)yp]1p,𝒿)≤J(s)G∗(x,𝒿)+J(1−s)G∗(y,𝒿), |
for each 𝒿∈[0,1]. Hence, the result follows.
Remark 2.20. If G∗(x,𝒿)=G∗(x,𝒿) with 𝒿=1, then (p,J)-convex 𝘍𝘐𝘝𝘍 reduces to the classical (p,J)-convex function (see [52]).
If G∗(x,𝒿)=G∗(x,𝒿) with 𝒿=1 and J(s)=ss with s∈(0,1), then (p,J)-convex 𝘍𝘐𝘝𝘍 reduces to the classical (p,s)-convex function (see [47]).
If G∗(x,𝒿)=G∗(x,𝒿) with 𝒿=1 and J(s)=s, then (p,J)-convex 𝘍𝘐𝘝𝘍 reduces to the classical p-convex function (see [17]).
If G∗(x,𝒿)=G∗(x,𝒿) with 𝒿=1 and p=1, then (p,J)-convex 𝘍𝘐𝘝𝘍 reduces to the classical J-convex function (see [55]).
Example 2.21. We consider J(s)=s, for s∈[0,1], and the 𝘍𝘐𝘝𝘍 G:[0,1]→FC(R) defined by
G(x)(σ)={σ2xp σ∈[0,2xp]4xp−σ2x2 σ∈(2xp,4xp]0 otherwise, | (28) |
Then, for each 𝒿∈[0,1], we have G𝒿(x)=[2𝒿xp,(4−2𝒿)xp]. Since end point functions G∗(x,𝒿) and G∗(x,𝒿) both are (p,J)-convex functions for each 𝒿∈[0,1]. Hence, G(x) is (p,J)-convex 𝘍𝘐𝘝𝘍.
We introduce the idea of discrete Jensen and Schur type inequality for (p,J)-convex 𝘍𝘐𝘝𝘍s in this section. The discrete Jensen type inequality is further refined in several ways. The discrete Jensen type inequality for (p,J)-convex 𝘍𝘐𝘝𝘍 is shown first in the following result.
Theorem 3.1. (Discrete Jensen type inequality for (p,J)-convex 𝘍𝘐𝘝𝘍) Let wj∈R+, xj∈[a,b], (j=1,2,3,…κ,κ≥2) and G:[a,b]→FC(R) be a (p,J)-convex fuzzy 𝘍𝘐𝘝𝘍 with non-negative real valued function J:[0,1]→R, whose 𝒿-levels define the family of 𝘐𝘝𝘍s G𝒿:[a,b]⊂R→KC+ are given by G𝒿(x)=[G∗(x,𝒿),G∗(x,𝒿)] for all x∈[a,b] and for all 𝒿∈[0,1]. If J is a super-multiplicative function on L, then
G([1Wκ∑κj=1wjxjp]1p)≼∑κjJ(wjWκ)G(xj), | (29) |
where Wκ=∑κj=1wj. If function J is sub-multiplicative and G is (p,J)-concave, then inequality (29) is reversed.
Proof. When κ=2, inequality (29) is true. Consider that inequality (19) is true for κ=n−1, and then
G([1Wn−1∑n−1j=1wjxjp]1p)≼∑n−1j=1J(wjWn−1)G(xj). |
Now, let us prove that inequality (29) holds for κ=n.
G([1Wn∑nj=1wjxjp]1p)=G([1Wn∑n−2j=1wjxjp+wn−1+wnWn(wn−1wn−1+wnxn−1p+wnwn−1+wnxnp]1p). |
Therefore, for each 𝒿∈[0,1], we have
G∗([1Wn∑nj=1wjxjp]1p,𝒿)G∗([1Wn∑nj=1wjxjp]1p,𝒿) |
=G∗([1Wn∑n−2j=1wjxjp+wn−1+wnWn(wn−1wn−1+wnxn−1p+wnwn−1+wnxnp]1p,𝒿),=G∗([1Wn∑n−2j=1wjxjp+wn−1+wnWn(wn−1wn−1+wnxn−1p+wnwn−1+wnxnp]1p,𝒿), |
≤∑n−2j=1J(wjWn)G∗(xj,𝒿)+J(wn−1+wnWn)G∗([wn−1wn−1+wnxn−1p+wnwn−1+wnxnp]1p,𝒿),≤∑n−2j=1J(wjWn)G∗(xj,𝒿)+J(wn−1+wnWn)G∗([wn−1wn−1+wnxn−1p+wnwn−1+wnxnp]1p,𝒿), |
≤∑n−2j=1J(wjWn)G∗(xj,𝒿)+J(wn−1+wnWn)[J(wn−1wn−1+wn)G∗(xn−1,𝒿)+J(wnwn−1+wn)G∗(xn,𝒿)],≤∑n−2j=1J(wjWn)G∗(xj,𝒿)+J(wn−1+wnWn)[J(wn−1wn−1+wn)G∗(xn−1,𝒿)+J(wnwn−1+wn)G∗(xn,𝒿)], |
≤∑n−2j=1J(wjWn)G∗(xj,𝒿)+[J(wn−1Wn)G∗(xn−1,𝒿)+J(wnWn)G∗(xn,𝒿)],≤∑n−2j=1J(wjWn)G∗(xj,𝒿)+[J(wn−1Wn)G∗(xn−1,𝒿)+J(wnWn)G∗(xn,𝒿)], |
=∑nj=1J(wjWn)G∗(xj,𝒿),=∑nj=1J(wjWn)G∗(xj,𝒿). |
From that, we have
[G∗([1Wn∑nj=1wjxjp]1p,𝒿),G∗([1Wn∑nj=1wjxjp]1p,𝒿)]≤I[∑nj=1J(wjWn)G∗(xj,𝒿),∑nj=1J(wjWn)G∗(xj,𝒿)], |
that is,
G([1Wn∑nj=1wjxjp]1p)≼∑nj=1J(wjWn)G(xj), |
and the result follows.
If w1=w2=w3=⋯=wκ=1, then Theorem 3.1 reduces to the following result:
Corollary 3.2. Let xj∈[a,b], (j=1,2,3,…κ,κ≥2) and G:[a,b]→FC(R) be a (p,J)-convex fuzzy 𝘍𝘐𝘝𝘍 with non-negative real valued function J:[0,1]→R, whose 𝒿-levels define the family of 𝘐𝘝𝘍s G𝒿:[a,b]⊂R→KC+ are given by G𝒿(x)=[G∗(x,𝒿),G∗(x,𝒿)] for all x∈[a,b] and for all 𝒿∈[0,1]. If J is a super-multiplicative function, then
G([1Wκ∑κj=1wjxjp]1p)≼∑κJ=1J(1κ)G(xj). | (30) |
If function J is sub-multiplicative, and G is a (p,J)-concave, then inequality (30) is reversed.
Next, Theorem 3.3 gives the Schur-type inequality for (p,J)-convex 𝘍𝘐𝘝𝘍s.
Theorem 3.3. (Discrete Schur-type inequality for (p,J)-convex 𝘍𝘐𝘝𝘍) Let G:[a,b]→FC(R) be a (p,J)-convex 𝘍𝘐𝘝𝘍 with non-negative real valued function J:[0,1]→R, whose 𝒿-levels define the family of 𝘐𝘝𝘍s G𝒿:[a,b]⊂R→KC+ are given by G𝒿(x)=[G∗(x,𝒿),G∗(x,𝒿)] for all x∈[a,b] and for all 𝒿∈[0,1]. If J:L→R+ is a nonnegative super-multiplicative function, then for x1,x2,x3∈[a,b], such that x1<x2<x3 and x3p−x1p, x3p−x2p, x2p−x1p∈L, we have
J(x3p−x1p)G(x2)≼J(x3p−x2p)G(x1)+J(x2p−x1p)G(x3). | (31) |
If the function J is a nonnegative sub-multiplicative function, and G is a (p,J)-concave, then inequality (31) is reversed.
Proof. Let x1,x2,x3∈[a,b] and J(x3p−x1p)>0. Then, by hypothesis, we have
J(x3p−x2px3p−x1p)=J(x3p−x2p)J(x3p−x1p) and J(x2p−x1px3p−x1p)=J(x2p−x1p)J(x3p−x1p). |
Consider s=x3p−x2px3p−x1p, and then x2p=sx1p+(1−s)x3p. Since G is a (p,J)-convex 𝘍𝘐𝘝𝘍, by hypothesis, we have
G(x2)≼J(x3p−x2px3p−x1p)G(x1)+J(x2p−x1px3p−x1p)G(x3). |
Therefore, for each 𝒿∈[0,1], we have
G∗(x2,𝒿)≤J(x3p−x2px3p−x1p)G∗(x1,𝒿)+J(x2p−x1px3p−x1p)G∗(x3,𝒿),G∗(x2,𝒿)≤J(x3p−x2px3p−x1p)G∗(x1,𝒿)+J(x2p−x1px3p−x1p)G∗(x3,𝒿), | (32) |
=J(x3p−x2p)J(x3p−x1p)G∗(x1,𝒿)+J(x2p−x1p)J(x3p−x1p)G∗(x3,𝒿),=J(x3p−x2p)J(x3p−x1p)G∗(x1,𝒿)+J(x2p−x1p)J(x3p−x1p)G∗(x3,𝒿). | (33) |
From (33), we have
J(x3p−x1p)G∗(x2,𝒿)≤J(x3p−x2p)G∗(x1,𝒿)+J(x2p−x1p)G∗(x3,𝒿),J(x3p−x1p)G∗(x2,𝒿)≤J(x3p−x2p)G∗(x1,𝒿)+J(x2p−x1p)G∗(x3,𝒿), |
that is,
[J(x3p−x1p)G∗(x2,𝒿),J(x3p−x1p)G∗(x2,𝒿)] |
≤I[J(x3p−x2p)G∗(x1,𝒿)+J(x2p−x1p)G∗(x3,𝒿),J(x3p−x2p)G∗(x1,𝒿)+J(x2p−x1p)G∗(x3,𝒿)]. |
Hence,
J(x3p−x1p)G(x2)≼J(x3p−x2p)G(x1)+J(x2p−x1p)G(x3). |
A refinement of a Jensen type inequality for (p,J)-convex 𝘍𝘐𝘝𝘍 is given in the following theorem.
Theorem 3.4. Let wj∈R+, xj∈[a,b], (j=1,2,3,…κ,κ≥2) and G:[a,b]→FC(R) be a (p,J)-convex 𝘍𝘐𝘝𝘍 with non-negative real valued function J:[0,1]→R, whose 𝒿-levels define the family of 𝘐𝘝𝘍s G𝒿:[a,b]⊂R→KC+ are given by G𝒿(x)=[G∗(x,𝒿),G∗(x,𝒿)] for all x∈[a,b] and for all 𝒿∈[0,1]. If (L,U)⊆[a,b] and J is a nonnegative super-multiplicative function, then
∑κj=1J(wjWκ)G(xj)≼∑κj=1(J(Up−xjpUp−Lp)J(wjWκ)G(L,𝒿)+J(xjp−LpUp−Lp)J(wjWκ)G(U,𝒿)), | (34) |
where Wκ=∑κj=1wj. If J is a sub-multiplicative function and G is (p,J)-concave, then inequality (34) is reversed.
Proof. Consider L=x1,xj=x2, (j=1,2,3,…κ), U=x3. Then, by hypothesis and inequality (32), we have
G(xj)≤J(Up−xjpUp−Lp)G(L,𝒿)+J(xjp−LpUp−Lp)G(U,𝒿). |
Therefore, for each 𝒿∈[0,1], we have
G∗(xj,𝒿)≤J(Up−xjpUp−Lp)G∗(L,𝒿)+J(xjp−LpUp−Lp)G∗(U,𝒿),G∗(xj,𝒿)≤J(U−xjpUp−Lp)G∗(L,𝒿)+J(xjp−LpUp−Lp)G∗(U,𝒿). |
The above inequality can be written as
J(wjWκ)G∗(xj,𝒿)≤J(Up−xjpUp−Lp)J(wjWκ)G∗(L,𝒿)+J(xjp−LpUp−Lp)J(wjWκ)G∗(U,𝒿),J(wjWκ)G∗(xj,𝒿)≤J(Up−xjpUp−Lp)J(wjWκ)G∗(L,𝒿)+J(xjp−LpUp−Lp)J(wjWκ)G∗(U,𝒿). | (35) |
Taking the sum of all inequalities (35) for j=1,2,3,…κ, we have
∑κj=1J(wjWκ)G∗(xj,𝒿)≤∑κj=1(J(Up−xjpUp−Lp)J(wjWκ)G∗(L,𝒿)+J(xjp−LpUp−Lp)J(wjWκ)G∗(U,𝒿)),∑κj=1J(wjWκ)G∗(xj,𝒿)≤∑κj=1(J(Up−xjpUp−Lp)J(wjWκ)G∗(L,𝒿)+J(xjp−LpUp−Lp)J(wjWκ)G∗(U,𝒿)). |
That is,
∑κj=1J(wjWκ)G(xj)=[∑κj=1J(wjWκ)G∗(xj,𝒿),∑κj=1J(wjWκ)G∗(xj,𝒿)] |
{\le }_{I}\left[{\sum }_{j = 1}^{\kappa }\left(\begin{array}{c}J\left(\frac{{U}^{\mathfrak{p}}-{{\mathfrak{x}}_{j}}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)J\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right){\mathfrak{G}}_{\mathfrak{*}}\left(L, 𝒿\right)\\ +J\left(\frac{{{\mathfrak{x}}_{j}}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)J\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right){\mathfrak{G}}_{\mathfrak{*}}\left(U, 𝒿\right)\end{array}\right), {\sum }_{j = 1}^{\kappa }\left(\begin{array}{c}J\left(\frac{{U}^{\mathfrak{p}}-{{\mathfrak{x}}_{j}}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)J\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right){\mathfrak{G}}^{\mathfrak{*}}\left(L, 𝒿\right)\\ +J\left(\frac{{{\mathfrak{x}}_{j}}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)J\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right){\mathfrak{G}}^{\mathfrak{*}}\left(U, 𝒿\right)\end{array}\right)\right], |
{\le }_{I}{\sum }_{j = 1}^{\kappa }\mathfrak{J}\left(\frac{{U}^{\mathfrak{p}}-{{\mathfrak{x}}_{j}}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\left[{\mathfrak{G}}_{\mathfrak{*}}\left(L, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left(L, 𝒿\right)\right]+{\sum }_{j = 1}^{\kappa }\mathfrak{J}\left(\frac{{U}^{\mathfrak{p}}-{{\mathfrak{x}}_{j}}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\left[{\mathfrak{G}}_{\mathfrak{*}}\left(U, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left(U, 𝒿\right)\right]. |
= {\sum }_{j = 1}^{\kappa }\mathfrak{J}\left(\frac{{U}^{\mathfrak{p}}-{{\mathfrak{x}}_{j}}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\mathfrak{G}\left(L, 𝒿\right)+{\sum }_{j = 1}^{\kappa }\mathfrak{J}\left(\frac{{U}^{\mathfrak{p}}-{{\mathfrak{x}}_{j}}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\mathfrak{G}\left(U, 𝒿\right). |
Thus,
{\sum }_{j = 1}^{\kappa }\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\mathfrak{G}\left({\mathfrak{x}}_{j}\right)\preccurlyeq {\sum }_{j = 1}^{\kappa }\left(\mathfrak{J}\left(\frac{{U}^{\mathfrak{p}}-{{\mathfrak{x}}_{j}}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\mathfrak{G}\left(L\right)+\mathfrak{J}\left(\frac{{{\mathfrak{x}}_{j}}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\mathfrak{G}\left(U\right)\right), |
and this completes the proof.
We now consider some special cases of Theorems 3.1 and 3.4.
If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right) = {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right) , then Theorems 3.1 and 3.4 reduce to the following results:
Corollary 3.5. [52] (Jensen inequality for \left(\mathfrak{p}, \mathfrak{J}\right) -convex function) Let {\mathfrak{w}}_{j}\in {\mathbb{R}}^{+} , {\mathfrak{x}}_{j}\in \left[\mathfrak{a}, \mathfrak{b}\right], \left(j = 1, 2, 3, \dots \kappa, \kappa \ge 2\right) and let \mathfrak{G}:\left[\mathfrak{a}, \mathfrak{b}\right]\to {\mathbb{R}}^{+} be a non-negative real-valued function. If \mathfrak{G} is a \left(\mathfrak{p}, \mathfrak{J}\right) -convex function, and \mathfrak{J} is a nonnegative super-multiplicative function on \mathcal{L} , then
\mathfrak{G}\left({\left[\frac{1}{{W}_{\kappa }}\sum _{j = 1}^{\kappa }{\mathfrak{w}}_{j}{{\mathfrak{x}}_{j}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\le {\sum }_{j = 1}^{\kappa }\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\mathfrak{G}\left({\mathfrak{x}}_{j}\right), | (36) |
where {W}_{\kappa } = \sum _{j = 1}^{\kappa }{\mathfrak{w}}_{j}. If \mathfrak{J} is a sub-multiplicative function, and \mathfrak{G} is \left(\mathfrak{p}, \mathfrak{J}\right) -concave function, then inequality (36) is reversed.
Corollary 3.6. Let {\mathfrak{w}}_{j}\in {\mathbb{R}}^{+} , {\mathfrak{x}}_{j}\in \left[\mathfrak{a}, \mathfrak{b}\right], \left(j = 1, 2, 3, \dots \kappa, \kappa \ge 2\right), \mathfrak{J} be a nonnegative super-multiplicative function on \mathcal{L} and \mathfrak{G}:\left[\mathfrak{a}, \mathfrak{b}\right]\to {\mathbb{R}}^{+} be a non-negative real-valued function. If \mathfrak{G} is a \left(\mathfrak{p}, \mathfrak{J}\right) -convex function, and {\mathfrak{x}}_{1}, {\mathfrak{x}}_{2}, \dots, {\mathfrak{x}}_{j}\in \left(L, U\right)\subseteq [\mathfrak{a}, \mathfrak{b}] , then
{\sum }_{j = 1}^{\kappa }\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\mathfrak{G}\left({\mathfrak{x}}_{j}\right)\le {\sum }_{j = 1}^{\kappa }\left(\mathfrak{J}\left(\frac{{U}^{\mathfrak{p}}-{{\mathfrak{x}}_{j}}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\mathfrak{G}\left(L\right)+\mathfrak{J}\left(\frac{{{\mathfrak{x}}_{j}}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}{{U}^{\mathfrak{p}}-{L}^{\mathfrak{p}}}\right)\mathfrak{J}\left(\frac{{\mathfrak{w}}_{j}}{{W}_{\kappa }}\right)\mathfrak{G}\left(U\right)\right), | (37) |
where {W}_{\kappa } = \sum _{j = 1}^{\kappa }{\mathfrak{w}}_{j}. If \mathfrak{J} is a sub-multiplicative function, and \mathfrak{G} is a \left(\mathfrak{p}, \mathfrak{J}\right) -concave function, then inequality (37) is reversed.
In view of the 𝐻𝐻-inequality in Eq (3) and 𝐻𝐻-inequality in Eq (4), we can deduce the following version of the 𝐻𝐻-inequalities for \left(\mathfrak{p}, \mathfrak{J}\right) -concave 𝘍𝘐𝘝𝘍s.
Theorem 4.1. Let \mathfrak{G}:\left[\mathfrak{a}, \mathfrak{b}\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be a \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍 with non-negative real valued function \mathfrak{J}:[0, 1]\to {\mathbb{R}}^{+} and \mathfrak{J}\left(\frac{1}{2}\right)\ne 0 , whose 𝒿 -levels define the family of 𝘐𝘝𝘍s {\mathfrak{G}}_𝒿:\left[\mathfrak{a}, \mathfrak{b}\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathfrak{G}}_𝒿\left(\mathfrak{x}\right) = \left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\right] for all \mathfrak{x}\in \left[\mathfrak{a}, \mathfrak{b}\right] and for all 𝒿\in \left[0, 1\right] . If \mathfrak{G}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mathfrak{a}, \mathfrak{b}\right], 𝒿\right)} , then
\frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}{\le }_{\mathfrak{p}}\left[\mathfrak{G}\left(\mathfrak{a}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s}. | (38) |
If \mathfrak{G} is a \left(\mathfrak{p}, \mathfrak{J}\right) -concave 𝘍𝘐𝘝𝘍, then
\frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\succcurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}\succcurlyeq \left[\mathfrak{G}\left(\mathfrak{a}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s} . | (39) |
Proof. Let \mathfrak{G} be a \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍. Then, by hypothesis, we have
\frac{1}{\mathfrak{J}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \mathfrak{G}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right){\widetilde + }\mathfrak{G}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right). |
Therefore, for each
𝒿\in \left[0, 1\right] , we have
\begin{array}{c}\frac{1}{\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le {\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}, 𝒿\right), \\ \frac{1}{\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}, 𝒿\right).\end{array} |
Then,
\begin{array}{c}\frac{1}{\mathfrak{J}\left(\frac{1}{2}\right)}{\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)d\mathfrak{s}\le {\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)d\mathfrak{s}+{\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left(\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}, 𝒿\right)d\mathfrak{s}, \\ \frac{1}{\mathfrak{J}\left(\frac{1}{2}\right)}{\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)d\mathfrak{s}\le {\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)d\mathfrak{s}+{\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left(\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}, 𝒿\right)d\mathfrak{s}.\end{array} |
It follows that
\begin{array}{c}\frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}, \\ \frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}.\end{array} |
That is,
\frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}\left[{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\right]{\le }_{I}\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left[{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}, {\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}\right]. |
Thus,
\frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}. | (40) |
In a similar way as above, we have
\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}\preccurlyeq \left[\mathfrak{G}\left(\mathfrak{a}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s}. | (41) |
Combining (40) and (41), we have
\frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}\preccurlyeq \left[\mathfrak{G}\left(\mathfrak{a}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s}. |
Hence, we have the required result.
Remark 4.2. If \mathfrak{J}\left(\mathfrak{s}\right) = {\mathfrak{s}}^{s} , then Theorem 4.1 reduces to the result for \left(\mathfrak{p}, s\right) -convex 𝘍𝘐𝘝𝘍 (see [85]):
{2}^{s-1}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}\preccurlyeq \frac{1}{s+1}\left[\mathfrak{G}\left(\mathfrak{a}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\right]. | (42) |
If \mathfrak{J}\left(\mathfrak{s}\right) = \mathfrak{s} , then Theorem 4.1 reduces to the result for \mathfrak{p} -convex 𝘍𝘐𝘝𝘍 (see [85]):
\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}\preccurlyeq \frac{\mathfrak{G}\left(\mathfrak{a}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)}{2}. | (43) |
If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right) = {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right) with 𝒿 = 1 , then Theorem 4.1 reduces to the result for classical \left(\mathfrak{p}, \mathfrak{J}\right) -convex function (see [52]):
\frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\le \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(R\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}\le \left[\mathfrak{G}\left(\mathfrak{a}\right)+\mathfrak{G}\left(\mathfrak{b}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s}. | (44) |
If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right) = {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right) with 𝒿 = 1 and \mathfrak{J}\left(\mathfrak{s}\right) = \mathfrak{s} , then Theorem 4.1 reduces to the result for classical \mathfrak{p} -convex function (see [17]):
\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\le \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(R\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}\le \frac{\mathfrak{G}\left(\mathfrak{a}\right)+\mathfrak{G}\left(\mathfrak{b}\right)}{2}. | (45) |
If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right) = {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right) with 𝒿 = 1, \mathfrak{p} = 1 and \mathfrak{J}\left(\mathfrak{s}\right) = \mathfrak{s} , then Theorem 4.1 reduces to the result for classical convex function (see [41]):
\mathfrak{G}\left(\frac{\mathfrak{a}+\mathfrak{b}}{2}\right)\le \frac{1}{\mathfrak{b}-\mathfrak{a}}\left(R\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}\le \frac{\mathfrak{G}\left(\mathfrak{a}\right)+\mathfrak{G}\left(\mathfrak{b}\right)}{2}. | (46) |
Example 4.3. Let \mathfrak{p} be an odd number and \mathfrak{J}\left(\mathfrak{s}\right) = \mathfrak{s} for \mathfrak{s}\in \left[0, 1\right] , and the 𝘍𝘐𝘝𝘍 \mathfrak{G}:\left[\mathfrak{a}, \mathfrak{b}\right] = [2, 3]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) is defined by
\mathfrak{G}\left(\mathfrak{x}\right)\left(\sigma \right) = \left\{\begin{array}{c}\frac{\sigma }{\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right)}\ \ \ \ \ \ \ \sigma \in \left[0, 2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right]\\ \frac{2\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right)-\sigma }{\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right)}\ \ \ \ \sigma \in (2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}, 2\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right)]\\\ \ \ \ \ 0\ \ \ \ \ \ \ {\rm{otherwise}}.\end{array}\right. | (47) |
Then, for each 𝒿\in \left[0, 1\right], we have {\mathfrak{G}}_𝒿\left(\mathfrak{x}\right) = \left[𝒿\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right), \left(2-𝒿\right)\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right)\right] . Since end point functions {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right) = 𝒿\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right), {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right) = (2-𝒿)\left(2-{\mathfrak{x}}^{\frac{\begin{array}{c} p\end{array}}{2}}\right) are \left(\mathfrak{p}, \mathfrak{J}\right) -convex functions for each 𝒿\in [0, 1] . Then, \mathfrak{G}\left(\mathfrak{x}\right) is a \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍. We now compute the following:
\begin{array}{c}\frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right) = \frac{4-\sqrt{10}}{2}j, \\ \frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right) = \frac{4-\sqrt{10}}{2}\left(2-𝒿\right), \end{array} |
\begin{array}{c}\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x} = j{\int }_{2}^{3}\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right)d\mathfrak{x} = \frac{21}{50}j, \\ \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x} = (2-j){\int }_{2}^{3}\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right)d\mathfrak{x} = \frac{21}{50}(2-j), \end{array} |
\begin{array}{c}\left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s} = \frac{4-\sqrt{2}-\sqrt{3}}{2}j, \\ \left[{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s} = \frac{4-\sqrt{2}-\sqrt{3}}{2}(2-j), \end{array} |
for all 𝒿\in \left[0, 1\right]. That means
\left[\frac{4-\sqrt{10}}{2}𝒿, \frac{4-\sqrt{10}}{2}\left(2-𝒿\right)\right]{\le }_{I}\left[\frac{21}{50}𝒿, \frac{21}{50}(2-𝒿)\right]{\le }_{I}\left[\frac{4-\sqrt{2}-\sqrt{3}}{2}𝒿, \frac{4-\sqrt{2}-\sqrt{3}}{2}(2-𝒿)\right], for all 𝒿\in \left[0, 1\right], and the Theorem has been demonstrated.
Theorem 4.4. Let \mathfrak{G}:\left[\mathfrak{a}, \mathfrak{b}\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be a \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍 with non-negative real valued function \mathfrak{J}:[0, 1]\to {\mathbb{R}}^{+} and \mathfrak{J}\left(\frac{1}{2}\right)\ne 0, whose 𝒿 -levels define the family of 𝘐𝘝𝘍s {\mathfrak{G}}_𝒿:\left[\mathfrak{a}, \mathfrak{b}\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathfrak{G}}_𝒿\left(\mathfrak{x}\right) = \left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\right] for all \mathfrak{x}\in \left[\mathfrak{a}, \mathfrak{b}\right] and for all 𝒿\in \left[0, 1\right] . If \mathfrak{G}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mathfrak{a}, \mathfrak{b}\right], 𝒿\right)} , then
![]() |
(48) |
where
![]() |
![]() |
and
Proof. Take \left[{\mathfrak{a}}^{\mathfrak{p}}, \frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right], and we have
\frac{1}{\mathfrak{J}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right)\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{2}+\frac{\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right) |
\preccurlyeq \mathfrak{G}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right)\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right){\widetilde + }\mathfrak{G}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right). |
Therefore, for each 𝒿\in \left[0, 1\right] , we have
\begin{array}{c}\frac{1}{\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right)\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{2}+\frac{\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ \le {\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right)\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right), \\ \frac{1}{\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right)\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{2}+\frac{\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ \le {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right)\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right).\end{array} |
In consequence, we obtain
\begin{array}{c}\frac{1}{4\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}, \\ \frac{1}{4\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}.\end{array} |
That is,
\frac{1}{4\mathfrak{J}\left(\frac{1}{2}\right)}\left[{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\right]{\le }_{I}\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left[{\int }_{\mathfrak{a}}^{\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}, {\int }_{\mathfrak{a}}^{\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}\right]. |
It follows that
\frac{1}{4\mathfrak{J}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}. | (49) |
In a similar way as above, we have
\frac{1}{4\mathfrak{J}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+3{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}. | (50) |
Combining (49) and (50), we have
\frac{1}{4\mathfrak{J}\left(\frac{1}{2}\right)}\left[\mathfrak{G}\left({\left[\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}\right){\widetilde + }\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+3{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}\right)\right]\preccurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)d\mathfrak{x}. |
By using Theorem 4.1, we have
\frac{1}{4{\left[\mathfrak{J}\left(\frac{1}{2}\right)\right]}^{2}}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right) = \frac{1}{4{\left[\mathfrak{J}\left(\frac{1}{2}\right)\right]}^{2}}\mathfrak{G}\left({\left[\frac{1}{2}.\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}+\frac{1}{2}.\frac{{\mathfrak{a}}^{\mathfrak{p}}+3{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}\right). |
Therefore, for each 𝒿\in \left[0, 1\right] , we have
\begin{array}{c}\frac{1}{4{\left[\mathfrak{J}\left(\frac{1}{2}\right)\right]}^{2}}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right) = \frac{1}{4{\left[\mathfrak{J}\left(\frac{1}{2}\right)\right]}^{2}}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{1}{2}.\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}+\frac{1}{2}.\frac{{\mathfrak{a}}^{\mathfrak{p}}+3{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right), \\ \frac{1}{4{\left[\mathfrak{J}\left(\frac{1}{2}\right)\right]}^{2}}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right) = \frac{1}{4{\left[\mathfrak{J}\left(\frac{1}{2}\right)\right]}^{2}}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{1}{2}.\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}+\frac{1}{2}.\frac{{\mathfrak{a}}^{\mathfrak{p}}+3{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right), \end{array} |
\begin{array}{c}\le \frac{1}{4{\left[\mathfrak{J}\left(\frac{1}{2}\right)\right]}^{2}}\left[\mathfrak{J}\left(\frac{1}{2}\right){\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)+\mathfrak{J}\left(\frac{1}{2}\right){\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+3{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\right], \\ \le \frac{1}{4{\left[\mathfrak{J}\left(\frac{1}{2}\right)\right]}^{2}}\left[\mathfrak{J}\left(\frac{1}{2}\right){\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{3{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)+\mathfrak{J}\left(\frac{1}{2}\right){\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+3{\mathfrak{b}}^{\mathfrak{p}}}{4}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\right], \end{array} |
![]() |
\begin{array}{c}\le \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}, \\ \le \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}, \end{array} |
\begin{array}{c}\le \left[\frac{{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)}{2}+{\mathfrak{G}}_{\mathfrak{*}}\left(\frac{{\mathfrak{a}}^{p}+{\mathfrak{b}}^{p}}{2}, 𝒿\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s}, \\ \le \left[\frac{{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)}{2}+{\mathfrak{G}}^{\mathfrak{*}}\left(\frac{{\mathfrak{a}}^{p}+{\mathfrak{b}}^{p}}{2}, 𝒿\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s}, \end{array} |
![]() |
\begin{array}{c}\le \left[\frac{{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)}{2}+\mathfrak{J}\left(\frac{1}{2}\right)\left({\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s}, \\ \le \left[\frac{{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)}{2}+\mathfrak{J}\left(\frac{1}{2}\right)\left({\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, \gamma \right)\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s}, \end{array} |
\begin{array}{c} = \left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, \gamma \right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, \gamma \right)\right]\left[\frac{1}{2}+\mathfrak{J}\left(\frac{1}{2}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s}, \\ = \left[{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, \gamma \right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, \gamma \right)\right]\left[\frac{1}{2}+\mathfrak{J}\left(\frac{1}{2}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s}, \end{array} |
that is,
![]() |
![]() |
and hence, the result follows.
Example 4.5. Let \mathfrak{p} be an odd number and \mathfrak{J}\left(\mathfrak{s}\right) = \mathfrak{s}, for \mathfrak{s}\in \left[0, 1\right] , and the 𝘍𝘐𝘝𝘍 \mathfrak{G}:\left[\mathfrak{a}, \mathfrak{b}\right] = [2, 3]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) defined by, {\mathfrak{G}}_𝒿\left(\mathfrak{x}\right) = \left[𝒿\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right), \left(2-𝒿\right)\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right)\right], as in Example 4.3, then \mathfrak{G}\left(\mathfrak{x}\right) is \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍 and satisfying (38). We have {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right) = 𝒿\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right) and {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right) = \left(2-𝒿\right)\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right) . We now compute the following
\begin{array}{c}\left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]\left[\frac{1}{2}+\mathfrak{J}\left(\frac{1}{2}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s} = \frac{4-\sqrt{2}-\sqrt{3}}{2}j, \\ \left[{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]\left[\frac{1}{2}+\mathfrak{J}\left(\frac{1}{2}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)d\mathfrak{s} = \frac{4-\sqrt{2}-\sqrt{3}}{2}\left(2-𝒿\right), \end{array} |
![]() |
![]() |
\begin{array}{c}\frac{1}{2\mathcal{h}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right) = \frac{4-\sqrt{10}}{2}j, \\ \frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right) = \frac{4-\sqrt{10}}{2}\left(2-𝒿\right).\end{array} |
Then, we obtain that
\begin{array}{c}\frac{4-\sqrt{10}}{2}j\le \frac{5-\sqrt{11}}{4}j\le \frac{21}{50}j\le \frac{8-\sqrt{2}-\sqrt{3}-\sqrt{10}}{4}j\le \frac{4-\sqrt{2}-\sqrt{3}}{2}j, \\ \frac{4-\sqrt{10}}{2}\left(2-𝒿\right)\le \frac{5-\sqrt{11}}{4}\left(2-𝒿\right)\le \frac{21}{50}\left(2-𝒿\right)\le \frac{8-\sqrt{2}-\sqrt{3}-\sqrt{10}}{4}\left(2-𝒿\right)\le \frac{4-\sqrt{2}-\sqrt{3}}{2}\left(2-𝒿\right).\end{array} |
Hence, Theorem 4.4 is verified.
Next, Theorems 4.6 and 4.7 obtain the fuzzy interval integral inequalities for the product of \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍s
Theorem 4.6. Let \mathfrak{G}, \mathcal{J}:\left[\mathfrak{a}, \mathfrak{b}\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be two \left(\mathfrak{p}, {\mathfrak{J}}_{1}\right) -convex and \left(\mathfrak{p}, {\mathfrak{J}}_{2}\right) -convex 𝘍𝘐𝘝𝘍s with non-negative real valued functions {\mathfrak{J}}_{1}, {\mathfrak{J}}_{2}:[0, 1]\to \mathbb{R}, respectively, whose 𝒿 -levels define the family of 𝘐𝘝𝘍s {\mathfrak{G}}_𝒿, {\mathcal{J}}_𝒿:\left[\mathfrak{a}, \mathfrak{b}\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are, respectively, given by {\mathfrak{G}}_𝒿\left(\mathfrak{x}\right) = \left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\right] and {\mathcal{J}}_𝒿\left(\mathfrak{x}\right) = \left[{\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right), {\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)\right] for all \mathfrak{x}\in \left[\mathfrak{a}, \mathfrak{b}\right] and for all 𝒿\in \left[0, 1\right] . If \mathfrak{G}\widetilde{\times }\mathcal{J}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mathfrak{a}, \mathfrak{b}\right], 𝒿\right)} , then
\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{x}\right)d\mathfrak{x}\preccurlyeq \mathcal{M}\left(\mathfrak{a}, \mathfrak{b}\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s}{\widetilde + }\mathcal{N}\left(\mathfrak{a}, \mathfrak{b}\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s} , | (51) |
where \mathcal{M}\left(\mathfrak{a}, \mathfrak{b}\right) = \mathfrak{G}\left(\mathfrak{a}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{a}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{b}\right), \mathcal{N}\left(\mathfrak{a}, \mathfrak{b}\right) = \mathfrak{G}\left(\mathfrak{a}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{b}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{a}\right), and \mathcal{M}\left(\mathfrak{a}, \mathfrak{b}\right) = \left[{\mathcal{M}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right), {\mathcal{M}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right)\right] and \mathcal{N}\left(\mathfrak{a}, \mathfrak{b}\right) = \left[{\mathcal{N}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right), {\mathcal{N}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right)\right].
Proof. Since \mathfrak{G} is a \left(\mathfrak{p}, {\mathfrak{J}}_{1}\right) -convex 𝘍𝘐𝘝𝘍 and \mathcal{J} is a \left(\mathfrak{p}, {\mathfrak{J}}_{2}\right) -convex 𝘍𝘐𝘝𝘍 then, for each 𝒿\in \left[0, 1\right] , we have
\begin{array}{c} {\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le {\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right), \\ {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le {\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right), \end{array} |
and
\begin{array}{c} {\mathcal{J}}_{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le {\mathfrak{J}}_{2}\left(\mathfrak{s}\right){\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right){\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right), \\ {\mathcal{J}}^{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le {\mathfrak{J}}_{2}\left(\mathfrak{s}\right){\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right){\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right).\end{array} |
From the definition of \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍s it follows that \mathfrak{G}\left(\mathfrak{x}\right)\succcurlyeq \widetilde{0} and \mathcal{J}\left(\mathfrak{x}\right)\succcurlyeq \widetilde{0} , so
\begin{array}{c} {\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ \le \left(\begin{array}{c}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)\\ +{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\end{array}\right)\times \left(\begin{array}{c}{\mathfrak{J}}_{2}\left(\mathfrak{s}\right){\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)\\ +{\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right){\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)\end{array}\right)\\ = {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)\left[{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)\right]\\ +{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)\left[{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)\right]\\ +{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right){\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)\\ +{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right){\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right), \\ {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ \le \left(\begin{array}{c}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)\\ +{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\end{array}\right)\times \left(\begin{array}{c}{\mathfrak{J}}_{2}\left(\mathfrak{s}\right){\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)\\ +{\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right){\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)\end{array}\right)\\ = {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)\left[{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)\right]\\ +{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)\left[{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)\right]\\ +{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right){\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)\\ +{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right){\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right), \end{array} |
Integrating both sides of above inequality over [0, 1] we get
\begin{array}{c} {\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ = \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)dx\\ \le \left({\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)ds\\ +\left({\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s}, \\ {\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ = \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)dx\\ \le \left({\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s}\\ +\left({\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s}.\end{array} |
It follows that
\begin{array}{c} \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)dx\\ \le {\mathcal{M}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)ds+{\mathcal{N}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s}, \\ \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)dx\\ \le {\mathcal{M}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s}+{\mathcal{N}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s}, \end{array} |
that is,
\begin{array}{c}\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left[{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}, {\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}\right] \\ {\le }_{I}\left[{\mathcal{M}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right), {\mathcal{M}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right)\right]{\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s}\\ +\left[{\mathcal{N}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right), {\mathcal{N}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right)\right]{\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s}.\end{array} |
Thus,
\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{x}\right)d\mathfrak{x}\preccurlyeq \mathcal{M}\left(\mathfrak{a}, \mathfrak{b}\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s}{\widetilde + }\mathcal{N}\left(\mathfrak{a}, \mathfrak{b}\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s}, |
and the theorem has been established.
Theorem 4.7. Let \mathfrak{G}, \mathcal{J}:\left[\mathfrak{a}, \mathfrak{b}\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be two \left(\mathfrak{p}, {\mathfrak{J}}_{1}\right) -convex and \left(\mathfrak{p}, {\mathfrak{J}}_{2}\right) -convex 𝘍𝘐𝘝𝘍s with non-negative real valued functions {\mathfrak{J}}_{1}, {\mathfrak{J}}_{2}:[0, 1]\to {\mathbb{R}}^{+} such that {\mathfrak{J}}_{1}, {\mathfrak{J}}_{2}\not\equiv 0 and {\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\ne 0 , respectively, whose 𝒿 -levels define the family of 𝘐𝘝𝘍s {\mathfrak{G}}_𝒿, {\mathcal{J}}_𝒿:\left[\mathfrak{a}, \mathfrak{b}\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are, respectively, given by {\mathfrak{G}}_𝒿\left(\mathfrak{x}\right) = \left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\right] and {\mathcal{J}}_𝒿\left(\mathfrak{x}\right) = \left[{\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right), {\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)\right] for all \mathfrak{x}\in \left[\mathfrak{a}, \mathfrak{b}\right] and for all 𝒿\in \left[0, 1\right] . If \mathfrak{G}\widetilde{\times }\mathcal{J}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mathfrak{a}, \mathfrak{b}\right], 𝒿\right)} , then
\begin{array}{l}\frac{1}{2{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\widetilde{\times }\mathcal{J}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{x}\right)d\mathfrak{x} \\ {\widetilde + }\mathcal{M}\left(\mathfrak{a}, \mathfrak{b}\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s}{\widetilde + }\mathcal{N}\left(\mathfrak{a}, \mathfrak{b}\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s}, \end{array} | (52) |
where \mathcal{M}\left(\mathfrak{a}, \mathfrak{b}\right) = \mathfrak{G}\left(\mathfrak{a}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{a}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{b}\right), \mathcal{N}\left(\mathfrak{a}, \mathfrak{b}\right) = \mathfrak{G}\left(\mathfrak{a}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{b}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{a}\right), and \mathcal{M}\left(\mathfrak{a}, \mathfrak{b}\right) = \left[{\mathcal{M}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right), {\mathcal{M}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right)\right] and \mathcal{N}\left(\mathfrak{a}, \mathfrak{b}\right) = \left[{\mathcal{N}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right), {\mathcal{N}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right)\right].
Proof. By hypothesis, for each 𝒿\in \left[0, 1\right] , we have
\begin{array}{c}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\end{array} |
\begin{array}{c}\le {\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ +{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}, 𝒿\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}\right]\\ +{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ +{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\end{array}\right], \\ \le {\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ +{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\end{array}\right]\\ +{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ +{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}, 𝒿\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}\right], \end{array} |
\begin{array}{c}\le {\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ +{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\end{array}\right]\\ +{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left({\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right)\\ \times \left({\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right){\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{2}\left(\mathfrak{s}\right){\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)\right)\\ +\left({{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right)\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right)\\ \times \left({\mathfrak{J}}_{2}\left(\mathfrak{s}\right){\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right){\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)\right)\end{array}\right], \\ \le {\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ +{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\end{array}\right]\\ +{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left({\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right)\\ \times \left({\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right){\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{2}\left(\mathfrak{s}\right){\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)\right)\\ +\left({\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right)\\ \times \left({\mathfrak{J}}_{2}\left(\mathfrak{s}\right){\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right){\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{b}, 𝒿\right)\right)\end{array}\right], \end{array} |
= {\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ +{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\end{array}\right] |
+2{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)+{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)\right\}{\mathcal{N}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right)\\ +\left\{{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)+{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)\right\}{\mathcal{M}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right)\end{array}\right], |
\begin{array}{c} = {\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\\ +{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\end{array}\right]\\ +2{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)+{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)\right\}{\mathcal{N}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right)\\ +\left\{{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)+{\mathfrak{J}}_{1}\left(1-\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)\right\}{\mathcal{M}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right)\end{array}\right].\end{array} |
Integrating over \left[0, 1\right], we have
\begin{array}{c} \frac{1}{2{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(R\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right){\times \mathcal{J}}_{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}\\ +{\mathcal{M}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s}+{\mathcal{N}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s}, \\ \frac{1}{2{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(R\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x}\\ +{\mathcal{M}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s}+{\mathcal{N}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s}, \end{array} |
that is,
\begin{array}{c}\frac{1}{2{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\widetilde{\times }\mathcal{J}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)\widetilde{\times }\mathcal{J}\left(\mathfrak{x}\right)d\mathfrak{x}\\ {\widetilde + }\mathcal{M}\left(\mathfrak{a}, \mathfrak{b}\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s}{\widetilde + }\mathcal{N}\left(\mathfrak{a}, \mathfrak{b}\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s}.\end{array} |
Hence, we have the required result.
Example 4.8. Let \mathfrak{p} be an odd number and {\mathfrak{J}}_{1}\left(\mathfrak{s}\right) = \mathfrak{s}, {\mathfrak{J}}_{2}\left(\mathfrak{s}\right) = 1, for \mathfrak{s}\in \left[0, 1\right] , and the \left(\mathfrak{p}, {\mathfrak{J}}_{1}\right) -convex and \left(\mathfrak{p}, {\mathfrak{J}}_{2}\right) -convex 𝘍𝘐𝘝𝘍s \mathfrak{G}, \mathcal{J}:\left[\mathfrak{a}, \mathfrak{b}\right] = [2, 3]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) are, respectively, defined by {\mathfrak{G}}_𝒿\left(\mathfrak{x}\right) = \left[𝒿\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right), \left(2-𝒿\right)\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right)\right], as in Example 4.3, and {\mathcal{J}}_𝒿\left(\mathfrak{x}\right) = \left[𝒿{\mathfrak{x}}^{\mathfrak{p}}, (2-𝒿){\mathfrak{x}}^{\mathfrak{p}}\right] . Since \mathfrak{G}\left(x\right) and \mathcal{J}\left(x\right) both are \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍s, {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right) = 𝒿\left(2-{\mathfrak{x}}^{\frac{\begin{array}{c} p\end{array}}{2}}\right) , {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right) = \left(2-𝒿\right)\left(2-{\mathfrak{x}}^{\frac{\mathfrak{p}}{2}}\right) , and {\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right) = 𝒿{\mathfrak{x}}^{\mathfrak{p}} , {\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right) = (2-𝒿){\mathfrak{x}}^{\mathfrak{p}} , we compute the following.
\begin{array}{c}\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x} = 𝒿^{2}, \\ \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mathfrak{x}, 𝒿\right)d\mathfrak{x} = {(2-𝒿)}^{2}, \end{array} |
\begin{array}{c}{\mathcal{M}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s} = \left(10-2\sqrt{2}-3\sqrt{3}\right)\frac{𝒿^{2}}{2}, \\ {\mathcal{M}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s} = \left(10-2\sqrt{2}-3\sqrt{3}\right)\frac{{(2-𝒿)}^{2}}{2}, \end{array} |
\begin{array}{c}{\mathcal{N}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s} = \left(10-3\sqrt{2}-2\sqrt{3}\right)\frac{𝒿^{2}}{2}\\ {\mathcal{N}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s} = \left(10-3\sqrt{2}-2\sqrt{3}\right)\frac{{(2-𝒿)}^{2}}{2}, \end{array} |
for each 𝒿\in \left[0, 1\right], which means
\begin{array}{c}𝒿^{2}\le \left(20-5\sqrt{2}-5\sqrt{3}\right)\frac{𝒿^{2}}{2}, \\ {(2-𝒿)}^{2}\le \left(20-5\sqrt{2}-5\sqrt{3}\right)\frac{{\left(2-𝒿\right)}^{2}}{2}.\end{array} |
Hence, Theorem 4.6 is demonstrated.
For Theorem 4.7, we have
\begin{array}{c}\frac{1}{2{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\times {\mathcal{J}}_{\mathcal{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right) = \frac{20-5\sqrt{10}}{4}𝒿^{2}, \\ \frac{1}{2{\mathfrak{J}}_{1}\left(\frac{1}{2}\right){\mathfrak{J}}_{2}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\times {\mathcal{J}}^{\mathcal{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right) = \frac{20-5\sqrt{10}}{4}{(2-𝒿)}^{2}, \end{array} |
\begin{array}{c}{\mathcal{M}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s} = \left(10-2\sqrt{2}-3\sqrt{3}\right)\frac{𝒿^{2}}{2}, \\ {\mathcal{M}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(1-\mathfrak{s}\right)d\mathfrak{s} = \left(10-2\sqrt{2}-3\sqrt{3}\right)\frac{{(2-𝒿)}^{2}}{2}, \end{array} |
\begin{array}{c}{\mathcal{N}}_{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s} = \left(10-3\sqrt{2}-2\sqrt{3}\right)\frac{𝒿^{2}}{2}, \\ {\mathcal{N}}^{\mathcal{*}}\left(\left(\mathfrak{a}, \mathfrak{b}\right), 𝒿\right){\int }_{0}^{1}{\mathfrak{J}}_{1}\left(\mathfrak{s}\right){\mathfrak{J}}_{2}\left(\mathfrak{s}\right)d\mathfrak{s} = \left(10-3\sqrt{2}-2\sqrt{3}\right)\frac{{(2-𝒿)}^{2}}{2}, \end{array} |
for each 𝒿\in \left[0, 1\right], which means
\begin{array}{c}\frac{20-5\sqrt{10}}{4}𝒿^{2}\le \left(1+\frac{20-5\sqrt{2}-5\sqrt{3}}{2}\right)𝒿^{2}, \\ \frac{20-5\sqrt{10}}{4}{(2-𝒿)}^{2}\le \left(1+\frac{20-5\sqrt{2}-5\sqrt{3}}{2}\right){\left(2-𝒿\right)}^{2}.\end{array} |
Hence, Theorem 4.7 is verified.
Next, Theorems 4.9 and 4.10 give the second 𝐻𝐻-Fejér inequality and the first 𝐻𝐻-Fejér inequality for \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍, respectively.
Theorem 4.9. (Second 𝐻𝐻-Fejér inequality for \mathfrak{J} -convex 𝘍𝘐𝘝𝘍) Let \mathfrak{G}:\left[\mathfrak{a}, \mathfrak{b}\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be a \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍 with \mathfrak{a} < \mathfrak{b} and \mathfrak{J}:[0, 1]\to {\mathbb{R}}^{+} , whose 𝒿 -levels define the family of 𝘐𝘝𝘍s {\mathfrak{G}}_𝒿:\left[\mathfrak{a}, \mathfrak{b}\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathfrak{G}}_𝒿\left(\mathfrak{x}\right) = \left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\right] for all \mathfrak{x}\in \left[\mathfrak{a}, \mathfrak{b}\right] and for all 𝒿\in \left[0, 1\right] . If \mathfrak{G}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mathfrak{a}, \mathfrak{b}\right], 𝒿\right)} and \mathit{\Omega }:\left[\mathfrak{a}, \mathfrak{b}\right]\to \mathbb{R}, \mathit{\Omega }\left(\mathfrak{x}\right)\ge 0, \mathfrak{p} -symmetric with respect to {\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, then
\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}\preccurlyeq \left[\mathfrak{G}\left(\mathfrak{a}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)d\mathfrak{s}. | (53) |
If \mathfrak{G} is \left(\mathfrak{p}, \mathfrak{J}\right) -concave 𝘍𝘐𝘝𝘍, then inequality (53) is reversed.
Proof. Let \mathfrak{G} be a \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍. Then, for each 𝒿\in \left[0, 1\right] , we have
\begin{array}{c} {\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\\ \le \left(\mathfrak{J}\left(\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+\mathfrak{J}\left(1-\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right), \\ {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\\ \le \left(\mathfrak{J}\left(\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+\mathfrak{J}\left(1-\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right).\end{array} | (54) |
Also,
\begin{array}{c} {\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\\ \le \left(\mathfrak{J}\left(1-\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+\mathfrak{J}\left(\mathfrak{s}\right){\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right), \\ {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\\ \le \left(\mathfrak{J}\left(1-\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+\mathfrak{J}\left(\mathfrak{s}\right){\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right).\end{array} | (55) |
After adding (54) and (55) and integrating over \left[0, 1\right], we get
\begin{array}{c} {\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ +{\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)\left\{\mathfrak{J}\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)+\mathfrak{J}\left(1-\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\right\}\\ +{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\left\{\mathfrak{J}\left(1-\mathfrak{s}\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)+\mathfrak{J}\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\right\}\end{array}\right]ds\\ = 2{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right){\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}ds+2{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right){\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}ds, \\ {\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ +{\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)\left\{\mathfrak{J}\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)+\mathfrak{J}\left(1-\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\right\}\\ +{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\left\{\mathfrak{J}\left(1-\mathfrak{s}\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)+\mathfrak{J}\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\right\}\end{array}\right]ds.\\ = 2{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right){\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}ds+2{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right){\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}ds.\end{array} |
Since \mathit{\Omega } is symmetric,
\begin{array}{c} = 2\left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]{\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}ds, \\ = 2\left[{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]{\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}ds.\end{array} | (56) |
Since
\begin{array}{c} {\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ = {\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ = \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}, \\ {\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ = {\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ = \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}.\end{array} | (57) |
From (57) and integrating with respect to \mathfrak{s} over [0, 1] , we have
\begin{array}{c} \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}\le \left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]{\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}ds, \\ \\ \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}\le \left[{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]{\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}ds, \end{array} |
that is,
\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left[{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}, {\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}\right] |
{\le }_{I}\left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]{\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}d\mathfrak{s} , |
and hence,
\frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}\preccurlyeq \left[\mathfrak{G}\left(\mathfrak{a}\right){\widetilde + }\mathfrak{G}\left(\mathfrak{b}\right)\right]{\int }_{0}^{1}\mathfrak{J}\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)d\mathfrak{s} . |
Theorem 4.10. (First 𝐻𝐻-Fejér inequality for \mathfrak{J} -convex 𝘍𝘐𝘝𝘍) Let \mathfrak{G}:\left[\mathfrak{a}, \mathfrak{b}\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be a \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍 with \mathfrak{a} < \mathfrak{b} and \mathfrak{J}:[0, 1]\to {\mathbb{R}}^{+} such that \mathfrak{J}\left(\frac{1}{2}\right)\not\equiv 0, whose 𝒿 -levels define the family of 𝘐𝘝𝘍s {\mathfrak{G}}_𝒿:\left[\mathfrak{a}, \mathfrak{b}\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathfrak{G}}_𝒿\left(\mathfrak{x}\right) = \left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\right] for all \mathfrak{x}\in \left[\mathfrak{a}, \mathfrak{b}\right] and for all 𝒿\in \left[0, 1\right] . If \mathfrak{G}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mathfrak{a}, \mathfrak{b}\right], 𝒿\right)} and \mathit{\Omega }:\left[\mathfrak{a}, \mathfrak{b}\right]\to \mathbb{R}, \mathit{\Omega }\left(\mathfrak{x}\right)\ge 0, \mathfrak{p} -symmetric with respect to {\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, and {\int }_{\mathfrak{a}}^{\mathfrak{b}}\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x} > 0 , then
\frac{1}{2\mathcal{h}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{p}+{\mathfrak{b}}^{p}}{2}\right]}^{\frac{1}{p}}\right)\preccurlyeq \frac{1}{{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{p-1}\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{p-1}\mathfrak{G}\left(\mathfrak{x}\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}. | (58) |
If \mathfrak{G} is \left(\mathfrak{p}, \mathfrak{J}\right) -concave 𝘍𝘐𝘝𝘍, then inequality (58) is reversed.
Proof. Since \mathfrak{G} is a \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍, for each 𝒿\in \left[0, 1\right] we have
\begin{array}{c} {\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le J\left(\frac{1}{2}\right)\left({\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\right), \\ {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le J\left(\frac{1}{2}\right)\left({\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\right).\end{array} | (59) |
By multiplying (59) by \mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right) = \mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right) and integrating it by \mathfrak{s} over \left[0, 1\right], we obtain
\begin{array}{c} {\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\int }_{0}^{1}\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)d\mathfrak{s}\\ \le J\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)d\mathfrak{s}\\ +{\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)d\mathfrak{s}\end{array}\right), \\ {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right){\int }_{0}^{1}\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)d\mathfrak{s}\\ \le J\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)d\mathfrak{s}\\ +{\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)d\mathfrak{s}\end{array}\right).\end{array} | (60) |
Since
\begin{array}{c} {\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ = {\int }_{0}^{1}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ = \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}, \\ \\ {\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\mathfrak{s}{\mathfrak{a}}^{\mathfrak{p}}+\left(1-\mathfrak{s}\right){\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ = {\int }_{0}^{1}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)ds\\ = \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}, \end{array} | (61) |
from (61), (60) we have
\begin{array}{c} \frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le \frac{1}{{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}, \\ \frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\le \frac{1}{{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}}{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}.\end{array} |
From that, we have
\begin{array}{l} \frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}\left[{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\right]\\ \ \ \ \ {\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{1}{{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}}\left[{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}, {\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}\right], \end{array} |
that is,
\frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}\mathfrak{G}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}\right)\preccurlyeq \frac{1}{{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}}\left(FR\right){\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathfrak{G}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}. |
This completes the proof.
Remark 4.11. If in the Theorems 4.9 and 4.10 \mathfrak{J}\left(\mathfrak{s}\right) = {\mathfrak{s}}^{s} , then we obtain the appropriate theorems for \left(\mathfrak{p}, s\right) -convex 𝘍𝘐𝘝𝘍s on the second sense (see [85]):
If in the Theorems 4.9 and 10 \mathfrak{J}\left(\mathfrak{s}\right) = \mathfrak{s} , then we obtain the appropriate theorems for \mathfrak{p} -convex 𝘍𝘐𝘝𝘍s (see [85]).
If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right) = {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right) with 𝒿 = 1 , then Theorems 4.9 and 4.10 reduce to classical first and second 𝐻𝐻-Fejér inequality for \left(\mathfrak{p}, \mathfrak{J}\right) -convex function.
If in the Theorems 4.9 and 4.10, {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right) = {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right) with 𝒿 = 1 and \mathfrak{J}\left(\mathfrak{s}\right) = \mathfrak{s} , then we obtain the appropriate theorems for \mathfrak{p} -convex function (see [53]).
If in the Theorems 4.9 and 4.10, {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right) = {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right) with 𝒿 = 1 , \mathfrak{J}\left(\mathfrak{s}\right) = \mathfrak{s} and \mathfrak{p} = 1 , then we obtain the appropriate theorems for convex function, [42].
If \mathit{\Omega }\left(\mathfrak{x}\right) = 1, then combining Theorems 4.9 and 4.10, we get Theorem 4.1.
Example 4.12. We consider \mathfrak{J}\left(\mathfrak{s}\right) = \mathfrak{s}, for \mathfrak{s}\in \left[0, 1\right], and the 𝘍𝘐𝘝𝘍 \mathfrak{G}:\left[1, 4\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) defined by,
\mathfrak{G}\left(\mathfrak{x}\right)\left(\sigma \right) = \left\{\begin{array}{c}\frac{\sigma -{e}^{{\mathfrak{x}}^{\mathfrak{p}}}}{{e}^{{\mathfrak{x}}^{\mathfrak{p}}}}, \sigma \in \left[{e}^{{\mathfrak{x}}^{\mathfrak{p}}}, 2{e}^{{\mathfrak{x}}^{\mathfrak{p}}}\right], \\ \frac{4{e}^{{\mathfrak{x}}^{\mathfrak{p}}}-\sigma }{2{e}^{{\mathfrak{x}}^{\mathfrak{p}}}}, \sigma \in \left(2{e}^{{\mathfrak{x}}^{\mathfrak{p}}}, 4{e}^{{\mathfrak{x}}^{\mathfrak{p}}}\right], \\ 0,\ \ \ \ \ \ \ otherwise, \end{array}\right. | (62) |
Then, for each 𝒿\in \left[0, 1\right], we have {\mathfrak{G}}_𝒿\left(\mathfrak{x}\right) = \left[(1+𝒿){e}^{{\mathfrak{x}}^{\mathfrak{p}}}, 2(2-𝒿){e}^{{\mathfrak{x}}^{\mathfrak{p}}}\right] . Since end point functions {\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right), {\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right) are \left(\mathfrak{p}, \mathfrak{J}\right) -convex functions, for each 𝒿\in [0, 1] , \mathfrak{G}\left(\mathfrak{x}\right) is \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍. If
\mathit{\Omega }\left(\mathfrak{x}\right) = \left\{\begin{array}{c}{\mathfrak{x}}^{\mathfrak{p}}-1, \sigma \in \left[1, \frac{5}{2}\right], \\ 4-{\mathfrak{x}}^{\mathfrak{p}}, \sigma \in \left(\frac{5}{2}, 4\right], \end{array}\right. | (63) |
where \mathfrak{p} = 1 , then we have
\begin{array}{c} \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{1}^{4}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x} = \frac{1}{3}{\int }_{1}^{4}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}\\ = \frac{1}{3}{\int }_{1}^{\frac{5}{2}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}+\frac{1}{3}{\int }_{\frac{5}{2}}^{4}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}, \\ = \frac{1}{3}\left(1+𝒿\right){\int }_{1}^{\frac{5}{2}}{e}^{\mathfrak{x}}\left(\mathfrak{x}-1\right)d\mathfrak{x}+\frac{1}{3}\left(1+𝒿\right){\int }_{\frac{5}{2}}^{4}{e}^{\mathfrak{x}}\left(4-\mathfrak{x}\right)d\mathfrak{x}\approx 11\left(1+𝒿\right), \\ \frac{\mathfrak{p}}{{\mathfrak{b}}^{\mathfrak{p}}-{\mathfrak{a}}^{\mathfrak{p}}}{\int }_{1}^{4}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x} = \frac{1}{3}{\int }_{1}^{4}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}\\ = \frac{1}{3}{\int }_{1}^{\frac{5}{2}}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}+\frac{1}{3}{\int }_{\frac{5}{2}}^{4}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}, \\ \begin{array}{c} = \frac{2}{3}\left(2-𝒿\right){\int }_{1}^{\frac{5}{2}}{e}^{\mathfrak{x}}\left(\mathfrak{x}-1\right)d\mathfrak{x}+\frac{2}{3}\left(2-𝒿\right){\int }_{\frac{5}{2}}^{4}{e}^{\mathfrak{x}}\left(4-\mathfrak{x}\right)d\mathfrak{x}\approx 22\left(2-𝒿\right), \\ \end{array}\end{array} | (64) |
and
\begin{array}{c}\left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]{\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}ds\\ \\ \left[{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{a}, 𝒿\right)+{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{b}, 𝒿\right)\right]{\int }_{0}^{1}\begin{array}{c}J\left(\mathfrak{s}\right)\mathit{\Omega }\left({\left[\left(1-\mathfrak{s}\right){\mathfrak{a}}^{\mathfrak{p}}+\mathfrak{s}{\mathfrak{b}}^{\mathfrak{p}}\right]}^{\frac{1}{\mathfrak{p}}}\right)\end{array}ds\\ = \left(1+𝒿\right)\left[e+{e}^{4}\right]\left[{\int }_{0}^{\frac{1}{2}}3{\mathfrak{s}}^{2}d\mathfrak{x}+{\int }_{\frac{1}{2}}^{1}\mathfrak{s}\left(3-3\mathfrak{s}\right)d\mathfrak{s}\right]\approx \frac{43}{2}\left(1+𝒿\right).\\ \\ = 2\left(2-𝒿\right)\left[e+{e}^{4}\right]\left[{\int }_{0}^{\frac{1}{2}}3{\mathfrak{s}}^{2}d\mathfrak{x}+{\int }_{\frac{1}{2}}^{1}\mathfrak{s}\left(3-3\mathfrak{s}\right)d\mathfrak{s}\right]\approx 43\left(2-𝒿\right).\end{array} | (65) |
From (64) and (65), we have
\left[11\left(1+𝒿\right), 22\left(2-𝒿\right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[\frac{43}{2}\left(1+𝒿\right), 43\left(2-𝒿\right)\right],\ {\rm{for}}\ {\rm{each}} \ 𝒿\in \left[0, 1\right]. |
Hence, Theorem 4.9 is verified.
For Theorem 4.10, we have
\begin{array}{c}\frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}_{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\approx \frac{61}{5}\left(1+𝒿\right), \\ \frac{1}{2\mathfrak{J}\left(\frac{1}{2}\right)}{\mathfrak{G}}^{\mathfrak{*}}\left({\left[\frac{{\mathfrak{a}}^{\mathfrak{p}}+{\mathfrak{b}}^{\mathfrak{p}}}{2}\right]}^{\frac{1}{\mathfrak{p}}}, 𝒿\right)\approx \frac{122}{5}\left(2-𝒿\right), \\ \end{array} | (66) |
{\int }_{\mathfrak{a}}^{\mathfrak{b}}\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x} = {\int }_{1}^{\frac{5}{2}}\left(\mathfrak{x}-1\right)d\mathfrak{x}{\int }_{\frac{5}{2}}^{4}\left(4-\mathfrak{x}\right)d\mathfrak{x} = \frac{9}{4}, |
\begin{array}{c} \frac{1}{{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}}{\int }_{1}^{4}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}_{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}\approx \frac{73}{5}\left(1+𝒿\right), \\ \frac{1}{{\int }_{\mathfrak{a}}^{\mathfrak{b}}{\mathfrak{x}}^{\mathfrak{p}-1}\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}}{\int }_{1}^{4}{\mathfrak{x}}^{\mathfrak{p}-1}{\mathfrak{G}}^{\mathfrak{*}}\left(\mathfrak{x}, 𝒿\right)\mathit{\Omega }\left(\mathfrak{x}\right)d\mathfrak{x}\approx \frac{293}{10}\left(2-𝒿\right)\\ \end{array}. | (67) |
From (66) and (67), we have
\left[\frac{61}{5}\left(1+𝒿\right), \frac{122}{5}\left(2-𝒿\right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[\frac{73}{5}\left(1+𝒿\right), \frac{293}{10}\left(2-𝒿\right)\right]. |
Hence, Theorem 4.10 is demonstrated.
The \left(\mathfrak{p}, \mathfrak{J}\right) -convex (concave, affine) class for 𝘍𝘐𝘝𝘍s was established in this paper. For \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍, we created some brand-new discrete Jensen and Schur type inequalities. Additionally, using fuzzy Riemann integrals, we discovered several HH -inequalities for \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍s. Examples were used to demonstrate how our findings apply to a broad class of previously undiscovered and well-known inequalities for \left(\mathfrak{p}, \mathfrak{J}\right) -convex 𝘍𝘐𝘝𝘍s and their variant forms. We will try to analyze Jensen and HH -inequalities for 𝘐𝘝𝘍 and 𝘍𝘐𝘝𝘍s on a temporal scale in the future as we explore these ideas. We hope that the theories and methods presented in this paper can serve as a springboard for additional study in this field.
The Rector of COMSATS University Islamabad in Islamabad, Pakistan, is acknowledged by the writers for offering top-notch research and academic settings.
The authors declare that they have no competing interests.
[1] |
B. de Andrade, A. Viana, Abstract Volterra integro-differential equations with applications to parabolic models with memory, Math. Ann., 369 (2017), 1131–1175. https://doi.org/10.1007/s00208-016-1469-z doi: 10.1007/s00208-016-1469-z
![]() |
[2] |
P. Biler, J. Dziubanski, W. Hebisch, Scattering of small solutions to generalized Benjamin-Bona-Mahony equation in several space dimensions, Commun. Partial Differ. Equations, 17 (1992), 1737–1758. https://doi.org/10.1080/03605309208820902 doi: 10.1080/03605309208820902
![]() |
[3] |
Y. Chen, H. Gao, M. J. Garrido-Atienza, B. Schmalfuss, Pathwise solutions of SPDEs driven by Holder-continuous integrators with exponent larger than \frac{1}{2} and random dynamical systems, arXiv, 2014. https://doi.org/10.48550/arXiv.1305.6903 doi: 10.48550/arXiv.1305.6903
![]() |
[4] |
Y. Cao, J. Yin, C. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differ. Equations, 246 (2009), 4568–4590. https://doi.org/10.1016/j.jde.2009.03.021 doi: 10.1016/j.jde.2009.03.021
![]() |
[5] |
H. Dong, D. Kim, L_p-estimates for time fractional parabolic equations with coefficients measurable in time, Adv. Math., 345 (2019), 289–345. https://doi.org/10.1016/j.aim.2019.01.016 doi: 10.1016/j.aim.2019.01.016
![]() |
[6] |
M. Fardi, M. Ghasemi, A numerical solution strategy based on error analysis for time-fractional mobile/immobile transport model, Soft Comput., 25 (2021), 11307–11331. https://doi.org/10.1007/s00500-021-05914-y doi: 10.1007/s00500-021-05914-y
![]() |
[7] |
M. Fardi, Y. Khan, A fast difference scheme on a graded mesh for time-fractional and space distributed-order diffusion equation with nonsmooth data, Int. J. Mod. Phys. B, 36 (2022), 15. https://doi.org/10.1142/S021797922250076X doi: 10.1142/S021797922250076X
![]() |
[8] |
M. Fardi, S. K. Q. Al-Omari, S. Araci, A pseudo-spectral method based on reproducing kernel for solving the time-fractional diffusion-wave equation, Adv. Contin. Discret Model., 2022 (2022), 54. https://doi.org/10.1186/s13662-022-03726-4 doi: 10.1186/s13662-022-03726-4
![]() |
[9] |
Y. Giga, T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo's time fractional derivative, Commun. Partial Differ. Equation, 42 (2017), 1088–1120. https://doi.org/10.1080/03605302.2017.1324880 doi: 10.1080/03605302.2017.1324880
![]() |
[10] | R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer, 2014. |
[11] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[12] |
L. Jin, L. Li, S. Fang, The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation, Comput. Math. Appl., 73 (2017), 2221–2232. https://doi.org/10.1016/j.camwa.2017.03.005 doi: 10.1016/j.camwa.2017.03.005
![]() |
[13] | G. Karch, Asymptotic behaviour of solutions to some pesudoparabolic equations, Math. Methods Appl. Sci., 20 (1997), 271–289. |
[14] |
M. Kirane, Y. Laskri, N. E. Tatar, Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives, J. Math. Anal. Appl., 312 (2005), 488–501. https://doi.org/10.1016/j.jmaa.2005.03.054 doi: 10.1016/j.jmaa.2005.03.054
![]() |
[15] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science, 2006. |
[16] |
L. Li, J. G. Liu, L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differ. Equations, 265 (2018), 1044–1096. https://doi.org/10.1016/j.jde.2018.03.025 doi: 10.1016/j.jde.2018.03.025
![]() |
[17] |
Y. Li, Y. Yang, The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain, Electron. Res. Arch., 31 (2023), 2555–2567. https://doi.org/10.3934/era.2023129 doi: 10.3934/era.2023129
![]() |
[18] |
Y. Li, Q. Zhang, Blow-up and global existence of solutions for a time fractional diffusion equation, Fract. Calc. Appl. Anal., 21 (2018), 1619–1640. https://doi.org/10.1515/fca-2018-00859 doi: 10.1515/fca-2018-00859
![]() |
[19] | F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, Waves Stab. Contin. Media, 1994 (1994), 246–251. |
[20] |
B. B. Mandelbrot, J. W. V. Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437. https://doi.org/10.1137/1010093 doi: 10.1137/1010093
![]() |
[21] |
R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37 (2004), 161–208. https://doi.org/10.1088/0305-4470/37/31/R01 doi: 10.1088/0305-4470/37/31/R01
![]() |
[22] |
E. Orsingher, L. Beghin, Fractional diffusion equations and processes with randomly varying time, Ann. Probab., 37 (2009), 206–249. https://doi.org/10.1214/08-AOP401 doi: 10.1214/08-AOP401
![]() |
[23] | I. Podlubny, Fractional differential euations, Elsevier Science, 1999. |
[24] |
M. Ralf, K. Joseph, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3
![]() |
[25] |
W. R. Schneider, W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), 134–144. https://doi.org/10.1063/1.528578 doi: 10.1063/1.528578
![]() |
[26] |
Y. F. Sun, Z. Zeng, J. Song, Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation, Numer. Algebra Control Optim., 10 (2020), 157–164. https://doi.org/10.3934/naco.2019045 doi: 10.3934/naco.2019045
![]() |
[27] |
N. H. Tuan, V. V. Au, R. Xu, Semilinear Caputo time-fractional pseudo-parabolic equations, Commun. Pure Appl. Anal., 20 (2020), 583–621. https://doi.org/10.3934/cpaa.2020282 doi: 10.3934/cpaa.2020282
![]() |
[28] |
K. Zennir, H. Dridi, S. Alodhaibi, S. Alkhalaf, Nonexistence of global solutions for coupled system of pseudoparabolic equations with variable exponents and weak memories, J. Funct. Space, 2021 (2021), 5573959. https://doi.org/10.1155/2021/5573959 doi: 10.1155/2021/5573959
![]() |
[29] |
K. Zennir, T. Miyasita, Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory, Alexandria Eng. J., 59 (2020), 957–964. https://doi.org/10.1016/j.aej.2020.03.016 doi: 10.1016/j.aej.2020.03.016
![]() |
[30] |
Q. Zhang, H. Sun, The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation, Topol. Methods Nonlinear Anal., 46 (2015), 69–92. https://doi.org/10.12775/TMNA.2015.038 doi: 10.12775/TMNA.2015.038
![]() |
1. | Muhammad Bilal Khan, Adriana Cătaş, Najla Aloraini, Mohamed S. Soliman, Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings, 2023, 7, 2504-3110, 223, 10.3390/fractalfract7030223 | |
2. | Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Tareq Saeed, Mohamed S. Soliman, On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings, 2023, 169, 09600779, 113274, 10.1016/j.chaos.2023.113274 | |
3. | Muhammad Bilal Khan, Hakeem A. Othman, Aleksandr Rakhmangulov, Mohamed S. Soliman, Alia M. Alzubaidi, Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation, 2023, 11, 2227-7390, 1356, 10.3390/math11061356 | |
4. | Koushik Das, Savin Treanţă, Muhammad Bilal Khan, Set-valued fractional programming problems with \sigma -arcwisely connectivity, 2023, 8, 2473-6988, 13181, 10.3934/math.2023666 | |
5. | Muhammad Bilal Khan, Jorge E. Macías-Díaz, Saeid Jafari, Abdulwadoud A. Maash, Mohamed S. Soliman, Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation, 2023, 15, 2073-8994, 862, 10.3390/sym15040862 | |
6. |
Hong-Ping Yin, Xi-Min Liu, Jing-Yu Wang, Feng Qi,
SEVERAL NEW INTEGRAL INEQUALITIES OF THE SIMPSON TYPE FOR |
|
7. | Muhammad Bilal Khan, Ali Althobaiti, Cheng-Chi Lee, Mohamed S. Soliman, Chun-Ta Li, Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities, 2023, 11, 2227-7390, 2851, 10.3390/math11132851 | |
8. | Silvio Antonio Bueno Salgado, Estevão Esmi, Sérgio Martins de Souza, Onofre Rojas, Laécio Carvalho de Barros, Fuzzy stationary Schrödinger equation with correlated fuzzy boundaries, 2023, 1432-7643, 10.1007/s00500-023-09488-9 | |
9. | Nasser Aedh Alreshidi, Muhammad Bilal Khan, Daniel Breaz, Luminita-Ioana Cotirla, New Versions of Fuzzy-Valued Integral Inclusion over p-Convex Fuzzy Number-Valued Mappings and Related Fuzzy Aumman’s Integral Inequalities, 2023, 15, 2073-8994, 2123, 10.3390/sym15122123 | |
10. | Serap Kemali, On Hermite-Hadamard Inequality for s-convex Functions in the Fourth Sense and Its Applications, 2025, 24, 2224-2880, 443, 10.37394/23206.2025.24.42 |