Research article

kNN local linear estimation of the conditional density and mode for functional spatial high dimensional data

  • Traditionally, regression problems are examined using univariate characteristics, including the scale function, marginal density, regression error, and regression function. When the correlation between the response and the predictor is reasonably straightforward, these qualities are helpful and instructive. Given the predictor, the response's conditional density provides more specific information regarding the relationship. This study aims to examine a nonparametric estimator of a scalar response variable's function of a density and mode, given a functional variable when the data are spatially dependent. The estimator is then derived and established by combining the local linear and the k nearest neighbors methods. Next, the suggested estimator's uniform consistency in the number of neighbors (UNN) is proved. Finally, to demonstrate the efficacy and superiority of the acquired results, we applied our new estimator to simulated and real data and compared it to the existing competing estimator.

    Citation: Fatimah Alshahrani, Wahiba Bouabsa, Ibrahim M. Almanjahie, Mohammed Kadi Attouch. kNN local linear estimation of the conditional density and mode for functional spatial high dimensional data[J]. AIMS Mathematics, 2023, 8(7): 15844-15875. doi: 10.3934/math.2023809

    Related Papers:

    [1] Yaya Wang, Md Nurul Raihen, Esin Ilhan, Haci Mehmet Baskonus . On the new sine-Gordon solitons of the generalized Korteweg-de Vries and modified Korteweg-de Vries models via beta operator. AIMS Mathematics, 2025, 10(3): 5456-5479. doi: 10.3934/math.2025252
    [2] Wei Gao, Gulnur Yel, Haci Mehmet Baskonus, Carlo Cattani . Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation. AIMS Mathematics, 2020, 5(1): 507-521. doi: 10.3934/math.2020034
    [3] Zeliha Korpinar, Mustafa Inc, Ali S. Alshomrani, Dumitru Baleanu . The deterministic and stochastic solutions of the Schrodinger equation with time conformable derivative in birefrigent fibers. AIMS Mathematics, 2020, 5(3): 2326-2345. doi: 10.3934/math.2020154
    [4] Maheen Waqar, Khaled M. Saad, Muhammad Abbas, Miguel Vivas-Cortez, Waleed M. Hamanah . Diverse wave solutions for the (2+1)-dimensional Zoomeron equation using the modified extended direct algebraic approach. AIMS Mathematics, 2025, 10(6): 12868-12887. doi: 10.3934/math.2025578
    [5] M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397
    [6] Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu . New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447
    [7] M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
    [8] Abdullahi Yusuf, Tukur A. Sulaiman, Mustafa Inc, Sayed Abdel-Khalek, K. H. Mahmoud . Mtruncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains. AIMS Mathematics, 2021, 6(9): 9207-9221. doi: 10.3934/math.2021535
    [9] Muhammad Bilal, Javed Iqbal, Ikram Ullah, Aditi Sharma, Hasim Khan, Sunil Kumar Sharma . Novel optical soliton solutions for the generalized integrable (2+1)- dimensional nonlinear Schrödinger system with conformable derivative. AIMS Mathematics, 2025, 10(5): 10943-10975. doi: 10.3934/math.2025497
    [10] M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625
  • Traditionally, regression problems are examined using univariate characteristics, including the scale function, marginal density, regression error, and regression function. When the correlation between the response and the predictor is reasonably straightforward, these qualities are helpful and instructive. Given the predictor, the response's conditional density provides more specific information regarding the relationship. This study aims to examine a nonparametric estimator of a scalar response variable's function of a density and mode, given a functional variable when the data are spatially dependent. The estimator is then derived and established by combining the local linear and the k nearest neighbors methods. Next, the suggested estimator's uniform consistency in the number of neighbors (UNN) is proved. Finally, to demonstrate the efficacy and superiority of the acquired results, we applied our new estimator to simulated and real data and compared it to the existing competing estimator.



    The notion of fractional derivative (FD) is more than three thousand years old, the role of fractional calculus has been increasing due to its application zone in various domains including biology, semiconductor industry, optical communication, energy quantization, quantum chemistry, wave propagation, protein folding and bending, condensed matter physics, solid state physics, nanotechnology and industry, laser propagation, nonlinear optics etc. the fractional differential equations (FDEs), have received a great deal of interest from scholars and researchers. Many mathematicians presented diverse types of FDs, such as that given in [1,2]. The most famous ones are Hadamard, Marchaud, Riemann-Liouville, Grunwald-Letnikov, Kober, Caputo, Riesz and Erdelyi.

    Lately, a novel FD has been presented by Khalil et al. [3] and others [4,5,6], called conformable FD. Due to the significance of the exact solutions of NLSEs, plenty of mathematicians solved them with conformable derivative, who used the different methods like first integral method (FIM) [7,8], functional variable method (FVM) [7,9], trial equation method (TEM) [10], modified trial equation method (MTEM) [11], direct algebraic method (DAM) [12] and sine-Gordon expansion method (SGEM) [13] to find the exact solutions to NLSEs.

    In [14], Younas et al. presented CTFMNLSE and studied the exact solutions of it by the generalized exponential rational function method. Also in [15,16], authors introduced some new solutions of CTFMNLSE via FIM, FVM, TEM and MTEM.

    Motivated by the work done in [14,15,16], we consider the following CTFMNLSE:

    iDατΨ+σ1ΨXX+σ2|Ψ|2Ψ=iδ1ΨXXX+iδ2Ψ2ΨXiδ3|Ψ|2ΨX+δ4Ψ0<α1, (1.1)

    where σ1=P08K20(3cos(Θ)+2), σ2=P0K202, δ1=P0cos(Θ)16K30(5cos2(Θ)6), δ2=P0K0cos(Θ)4, δ3=3P0K02,δ4=K0|Ψ|2X|X=0, P0 and K0 are the frequency and the wave number of the carrier wave, respectively, and the operator Dα of order α, where α(0,1] represents the conformable fractional derivative.

    In this section, we present some properties and definitions of the conformal derivative and other Preliminaries.

    Definition 2.1. [3] Suppose Ω:(0,)R is a function. Therefore the conformal fractional derivative of Ω of order α is as follows

    Tα(τ)=limϵ0Ω(τ+ϵτ1α)Ω(τ)ϵ (2.1)

    for all 0<α<1,0<τ.

    Definition 2.2. [3] Suppose ι0 and τι. Also, suppose Ω is a function defined on (ι,τ] and αR. Therefore, the α-fractional integral of Ω is defined by,

    IαιΩ(τ)=τιΩ(ς)ς1αdς, (2.2)

    if the Riemann improper integral exists.

    Theorem 2.3. [3]Suppose 0<α1, and Ω and are αdifferentiable at a point τ, therefore

    (i) Tα(ϖ1Ω+ϖ2)=ϖ1Tα(Ω)+ϖ2Tα(),ϖ1,ϖ2R.

    (ii) Tα(tϖ)=ϖτϖα,ϖR.

    (iii) τTα(Ω)=ΩTα()+Tα(Ω).

    (iv) Tα(Ω)=Tα(Ω)ΩTα()2.

    Furthermore, if Ω is differentiable, then Tα(Ω)(τ)=τ1αdΩdτ.

    Theorem 2.4. [3] Suppose Ω:(0,)R is a function s.t. Ω is differentiable and also α-differentiable. Suppose is a function defined in the range of Ω and also differentiable; therefore, one has the following rule

    Tα(Ωo)(τ)=τ1α(τ)Ω((τ)).

    Remark 2.5. Let

    Q(ξ)=Ln(A)(P0+P1Q(ξ)+P2Q2(ξ)),A0,1. (2.3)

    The solutions of ODE (2.3) are:

    (1) When P214P0P2<0 and P20,

    Q1(ξ)=P12P2+(P214P0P2)2P2tanA((P214P0P2)2ξ),
    Q2(ξ)=P12P2(P214P0P2)2P2cotA((P214P0P2)2ξ),
    Q3(ξ)=P12P2+(P214P0P2)2P2tanA((P214P0P2)ξ)±sr(P214P0P2)2P2secA((P214P0P2)ξ),
    Q4(ξ)=P12P2(P214P0P2)2P2cotA((P214P0P2)ξ)±sr(P214P0P2)2P2cscA((P214P0P2)ξ),
    Q5(ξ)=P12P2+(P214P0P2)4P2tanA((P214P0P2)4ξ)(P214P0P2)4P2cotA((P214P0P2)4ξ),

    (2) When P214P0P2>0 and P20,

    Q6(ξ)=P12P2P214P0P22P2tanhA(P214P0P22ξ),
    Q7(ξ)=P12P2P214P0P22P2cothA(P214P0P22ξ),
    Q8(ξ)=P12P2P214P0P22P2tanhA(P214P0P2ξ)±isr(P214P0P2)2P2sechA(P214P0P2ξ),
    Q9(ξ)=P12P2P214P0P22P2cothA(P214P0P2ξ)±sr(P214P0P2)2P2cschA(P214P0P2ξ),
    Q10(ξ)=P12P2P214P0P24P2tanhA(P214P0P24ξ)P214P0P24P2cothA(P214P0P24ξ),

    where generalized hyperbolic and triangular functions are given by

    coshA(θ)=sAθ+rAθ2,sinhA(θ)=sAθrAθ2,
    cothA(θ)=sAθ+rAθseθreθ,tanhA(θ)=sAθrAθseθ+reθ,
    cschA(θ)=2sAθrAθ,sechA(θ)=2sAθ+rAθ,
    cosA(θ)=sAiθ+rAiθ2i,sinA(θ)=sAiθrAiθ2i,
    cotA(θ)=isAiθ+rAiθsAiθrAiθ,tanA(θ)=isAiθrAiθsAiθ+rAiθ,
    cscA(θ)=2isAiθrAiθ,secA(θ)=2sAiθ+rAiθ,

    where θ is an independent variable, A0,1, and s and r are arbitrary constants greater than zero and are called deformation parameters.

    In this section, we present the first step of the DAM and the SGEM, for finding analytical solutions of CTFMNLSE defined as (1.1). Suppose a CTFNLPDE,

    Γ(Φ,Φτ,ΦX,DατΦ,DβXΦ,D2ατ,D2βX,)=0,0<α,β1, (3.1)

    where Γ and Φ are a polynomial and an unknown function in its arguments, respectively. Using a fractional travelling wave transformation

    Φ(X,τ)=Λ(ξ),ξ=XVατα (3.2)

    where V is velocity and substituting (3.2) into (3.1), we have a NLODE given by

    Υ(Λ,Λ,Λ,Λ,)=0, (3.3)

    in which signifies the derivative with respect to ξ.

    Since Ψ=Ψ(X,τ) in (1.1) is a complex function, we begin with the following travelling wave assumption

    Ψ(X,τ)=Λ(ξ)eiψ (3.4)

    where ξ=η(XVατα) and ψ=KX+Pατα+ζ, and ζ,P and K are parameters, represent the phase constant, frequency and wave number respectively. Substitute (3.4) into (1.1), we get real and imaginary parts as follows

    η2(σ13δ1K)Λ+(σ2+(δ2+δ3)K)Λ3+(Pσ1K2+δ1K3δ4)Λ=0, (3.5)

    and

    (3δ1K2V2σ1K)Λδ1η2Λ+(δ3δ2)Λ2Λ=0. (3.6)

    Now integrating the imaginary part of the equation and taking constant equal to zero one may have

    3(3δ1K2V2σ1K)Λ3δ1η2Λ+(δ3δ2)Λ3=0. (3.7)

    From (3.5) and (3.7), it can be followed that

    K3δ1Pσ1K2δ43(3δ1K2V2σ1)K=σ13δ1K3δ1=Kδ2+Kδ3+σ2δ3δ2. (3.8)

    From above, it can be followed that

    V=δ1P+δ1δ4+2K(σ12δ1K)2σ13δ1K,
    K=σ1(δ2δ3)3σ2δ16δ1δ2.

    Rewrite (3.5) into following form

    Λ+λ1Λ3λ2Λ=0 (3.9)

    or

    Λ=λ2Λλ1Λ3 (3.10)

    where λ1=σ2+(δ2+δ3)Kη2(σ13δ1K) and λ2=Pσ1K2+δ1K3δ4η2(σ13δ1K).

    In the next two subsections, we investigate the primary steps for detecting the exact solution of (3.5) by using DAM and the SGEM. Similarly we can find the exact solution of (3.7).

    Firstly, CTFNLPDE (3.1) is reduced to NLODE (3.3) under the transformation (3.2). Secondly, let us consider that Eq (3.3) has a formal solution of the form

    Λ(ξ)=Nj=0bjQj(ξ),bN0, (3.11)

    where bj(j=0,,N) are constant coefficients to be detected later and Q(ξ) satisfies the ODE in the form (2.3). Now, we are able to determine the value N in (3.11) by balancing the highest order derivative term and the highest order nonlinear term in (3.3). Substitute (3.11) along with its required derivatives into (3.3) and compares the coefficients of powers of Q(ξ) in the resultant equation for getting the set of algebraic equation. In the end, we {solve} the set of algebraic equations and put the results generated in (3.11) to obtain the exact solutions of (3.1).

    Now, balancing the order of Λ and Λ3 in (3.10), we get N=1. Therefore, Eq (3.11) is presented by

    Λ(ξ)=b0+b1Q(ξ). (3.12)

    By substituting (3.12) into (3.10) and gathering all terms with the same order of Q(ξ) together, the left-hand side of (3.10) are converted into polynomial in Q(ξ). {Putting} every coefficient of every polynomial to zero, we get a set of algebraic equations for b0 and b1. Now, we have

    Λ3=b30+3b20b1Q+3b0b21Q2+b31Q3andΛ=b1Q, (3.13)

    where

    Q=Ln2(A)(P0+P1Q+P2Q2)[P1+2P2Q]. (3.14)

    Coefficients of Q(ξ) as follows:

    0:b1Ln2(A)P0P1+λ1b30λ2b0=01:b1Ln2(A)[P21+2P0P2]+3λ1b20b1λ2b1=02:3b1Ln2(A)P1P2+3λ1b0b21=03:2b1Ln2(A)P22+λ1b31=0.

    We earn the following values, by solving the above system of equations for b0 and b1:

    b0=±i2λ1Ln(A)P1,b1=±i2λ1Ln(A)P2. (3.15)

    The solutions of (1.1) corresponding to (3.4), (3.12) and (3.15) are:

    (1) When P214P0P2<0, and P20,

    Ψ1,2(X,τ)=(±i)ln(A)(P214P0P2)2λ1ei(KX+Pατα+ζ)tanA((P214P0P2)2(η(XVατα)+ξ0)),
    Ψ1,3(X,τ)=(±i)ln(A)(P214P0P2)2λ1ei(KX+Pατα+ζ)cotA((P214P0P2)2(η(XVατα)+ξ0)),
    Ψ1,4(X,τ)=(±i)ln(A)ei(KX+Pατα+ζ)[(P214P0P2)2λ1tanA((P214P0P2)(η(XVατα)+ξ0))±sr(P214P0P2)2λ1secA((P214P0P2)(η(XVατα)+ξ0))],
    Ψ1,5(X,τ)=(±i)ln(A)ei(KX+Pατα+ζ)[(P214P0P2)2λ1cotA((P214P0P2)(η(XVατα)+ξ0))±sr(P214P0P2)2λ1cscA((P214P0P2)(η(XVατα)+ξ0)),
    Ψ1,6(X,τ)=(±i)ln(A)ei(KX+Pατα+ζ)[(P214P0P2)8λ1tanA((P214P0P2)4(η(XVατα)+ξ0))(P214P0P2)8λ1cotA((P214P0P2)4(η(XVατα)+ξ0))],

    (2) When P214P0P2>0, and P20,

    Ψ1,7(X,τ)=(±i)ln(A)P214P0P22λ1ei(KX+Pατα+ζ)tanhA(P214P0P22(η(XVατα)+ξ0)),
    Ψ1,8(X,τ)=(±i)ln(A)P214P0P22λ1ei(KX+Pατα+ζ)cothA(P214P0P22(η(XVατα)+ξ0)),
    Ψ1,9(X,τ)=(±i)ln(A)ei(KX+Pατα+ζ)[P214P0P22λ1tanhA(P214P0P2(η(XVατα)+ξ0))±isr(P214P0P2)2λ1sechA(P214P0P2(η(XVατα)+ξ0))],
    Ψ1,10(X,τ)=±ei(KX+Pατα+ζ)[P214P0P22λ1cothA(P214P0P2(η(XVατα)+ξ0))±sr(P214P0P2)2λ1cschA(P214P0P2(η(XVατα)+ξ0))],
    Ψ1,11(X,τ)=(±i)ln(A)ei(KX+Pατα+ζ)[P214P0P28λ1tanhA(P214P0P24(η(XVατα)+ξ0))+P214P0P28λ1cothA(P214P0P24(η(XVατα)+ξ0))],

    where ξ0 is an arbitrary constant. For more details see [17,18].

    Consider the sine-Gordon equation from [19,20]

    ΨXXΨττ=m2sin(Ψ), (3.16)

    where Ψ=Ψ(X,τ) and m is a constant. To solve the equation through sine-Gordon expansion algorithm, first we use the transformation Ψ(X,τ)=Λ(ξ) where ξ=μ(Xcτ) which reduce (3.16) to the following NLODE:

    Λ=m2μ2(1c2)sin(Λ). (3.17)

    After that, we multiply Λ on both sides of (3.17) and integrate it once which gives

    [(Λ2)]2=m2μ2(1c2)sin2(Λ2)+k, (3.18)

    in which k is an integration constant. Therefore by putting k=0,Λ2=w(ξ), and m2μ2(1c2)=a2 in (3.18), we get

    w=asin(w), (3.19)

    which by setting a=1 in (3.19), we have

    w=sin(w). (3.20)

    Equation (3.20) is a simplified form of the sine-Gordon Eq (3.16). Thus, it has the following solutions:

    sin(w)=sech(ξ),cos(w)=tanh(ξ), (3.21)

    and

    sin(w)=icsch(ξ),cos(w)=coth(ξ). (3.22)

    Here, firstly, CTFNLPDE (3.1) is reduced to NLODE (3.3) under the transformation (3.2). Secondly, we apply the following transformation

    Λ(w)=Nj=1cosj1(w)[Bjsin(w)+Ajcos(w)]+A0. (3.23)

    It is supposed that the solution Λ(ξ) of the nonlinear (3.3) along with (3.21) and (3.22) can be demonstrated as

    Λ(ξ)=Nj=1tanhj1(ξ)[Bjsech(ξ)+Ajtanh(ξ)]+A0. (3.24)

    and

    Λ(ξ)=Nj=1cothj1(ξ)[Bjcsch(ξ)+Ajcoth(ξ)]+A0. (3.25)

    After detecting the value of N by means of using the homogeneous balance principle, substituting its value into (3.23) and setting the result into the reduced ODE (3.20) give a nonlinear algebraic system. Equating the coefficients of sinj(w) and cosj(w) equal to zero and solving the acquired system yield the values of Aj and Bj. Finally, after substituting the values of Aj and Bj into (3.24) and (3.25), we are able to earn the solitary wave solutions for (3.1).

    We used the balancing technique to Eq (3.10) by considering the highest derivative Λ and the highest power nonlinear term Λ3, which the value of N is gained as N+2=3N or N=1. Thus, we have the following equations

    Λ(w)=B1sin(w)+A1cos(w)+A0, (3.26)
    Λ(w)=B1cos(w)sin(w)A1sin2(w), (3.27)

    and

    Λ(w)=B1[cos2(w)sin(w)sin3(w)]2A1sin2(w)cos(w). (3.28)

    Also we have

    Λ3=B31sin3(w)+A31cos3(w)+3A0B21sin2(w)+3A21A0cos2(w)+3A20B1sin(w)+3A20A1cos(w)+3A1B21sin2(w)cos(w)+3A21B1cos2(w)sin(w)+6A0A1B1sin(w)cos(w)+A30. (3.29)

    By substituting (3.26)–(3.29) into (3.10), we obtain the following nonlinear algebraic system:

    sin3(w):B1+λ1B31=0,cos3(w):λ1A31=0,sin2(w):3λ1A0B21=0,cos2(w)3λ1A1A0=0,sin(w):3λ1A20B1λ2B1=0cos(w):3λ1A20A1λ2A1=0,sin2(w)cos(w):2A1+3λ1A1B21=0,cos2(w)sin(w):B1+3λ1A21B1=0,sin(w)cos(w):6λ1A0A1B1=0,sin0(w)cos0(w):λ1A30λ2A0=0.

    Using (3.21) and (3.26), we earn the following traveling wave solutions:

    Case 1: A0=±λ2λ1or±λ23λ1or0,A1=±13λ1,B1=0.

    Ψ2,1=ei(KX+Pατα+ζ)[±13λ1tanh(η(XVατα)+ξ0)+A0], (3.30)
    Ψ2,2=ei(KX+Pατα+ζ)[±13λ1coth(η(XVατα)+ξ0)+A0]. (3.31)

    Case 2: A0=±λ2λ1or±λ23λ1or0,A1=0,B1=±23λ1.

    Ψ2,3=ei(KX+Pατα+ζ)[±23λ1sech(η(XVατα)+ξ0)+A0], (3.32)
    Ψ2,4=ei(KX+Pατα+ζ)[±i23λ1csch(η(XVατα)+ξ0)+A0]. (3.33)

    Case 3: A0=±λ2λ1or±λ23λ1or0,A1=0,B1=±1λ1.

    Ψ2,5=ei(KX+Pατα+ζ)[±1λ1sech(η(XVατα)+ξ0)+A0], (3.34)
    Ψ2,6=ei(KX+Pατα+ζ)[±i1λ1csch(η(XVατα)+ξ0)+A0]. (3.35)

    Case 4: A0=±λ2λ1or±λ23λ1or0,A1=±13λ1,B1=±1λ1.

    Ψ2,7=ei(KX+Pατα+ζ)[±1λ1sech(η(XVατα)+ξ0)±13λ1tanh(η(XVατα)+ξ0)+A0], (3.36)
    Ψ2,8=ei(KX+Pατα+ζ)[±i1λ1csch(η(XVατα)+ξ0)±13λ1coth(η(XVατα)+ξ0)+A0]. (3.37)

    Case 5: A0=±λ2λ1or±λ23λ1or0,A1=±13λ1,B1=±23λ1.

    Ψ2,9=ei(KX+Pατα+ζ)[±23λ1sech(η(XVατα)+ξ0)±13λ1tanh(η(XVατα)+ξ0)+A0], (3.38)
    Ψ2,10=ei(KX+Pατα+ζ)[±i23λ1csch(η(XVατα)+ξ0)±13λ1coth(η(XVατα)+ξ0)+A0], (3.39)

    where ξ0 is an arbitrary constant. For more details, see [21,22].

    Let δ1=δ3=η=s=r=P0=P1=P2=1,P=δ2=δ4=σ2=A=2,ζ=V=0.5,K=0.25,σ1=1,α=0.90,ξ0=A0=0. Therefore, we have λ1=1.57143 and λ2=2.24107. We now present numerical results in tables and charts.

    Figure 1 (a) and (e) show the 3D with the both real and imaginary parts of the solution Ψ1,1 and Ψ1,3 for different values of X and τ and also, Figure 1 (b), (f) and (c), (d) show the 3D and 2D with the both real and imaginary part of the solution Ψ1,1 and Ψ1,3 for fixed X and different values of τ through DAM, using the above values. Now, Figure 2 (a) and (c) show the 3D with the both real and imaginary parts of the solution Ψ2,1 and Ψ2,3 for different values of X and τ and also Figure 2 (b) and (d) show the 3D with the both real and imaginary part of the solution Ψ2,1 and Ψ2,3 for fixed X and different values of τ through SGEM, using the above values.

    Figure 1.  The figures (a) and (e) show the 3D with the both real and imaginary parts of the solution Ψ1,1 and Ψ1,3 for different values of X and τ and also the figures (b), (f) and (c), (d) show 3D and 2D with the both real and imaginary parts of the solution Ψ1,1 and Ψ1,3 for fixed X and different values of τ through DAM, under the values presented in Section 4.
    Figure 2.  The figures (a) and (c) show the 3D with the both real and imaginary parts of the solution Ψ2,1 and Ψ2,3 for different values of X and τ. The figures (b) and (d) show 3D with the both real and imaginary parts of the solution Ψ2,1 and Ψ2,3 for fixed X and different values of τ through SGEM, under the values presented in Section 4.

    Moreover, Figure 3 displays the 3D with the real and imaginary part of solution Ψ2,1 for fixed X and different values of α(=0.500.09), obtained via SGEM.

    Figure 3.  The 3D with the real and imaginary parts of solution Ψ2,1 for fixed X and different values of α(=0.500.09), obtained via SGEM.

    Figure 4 (a) shows the 3D with the differences between the real and also the imaginary part of solutions Ψ1,1 and Ψ2,1, and also Figure 4 (b) shows the 3D with the differences between the real and also the imaginary part of solutions Ψ1,3 and Ψ2,3, for fixed X and fixed α. Note that, these differences are minor in a wide range of domains. which implies that both methods leads to similar results except for some values.

    Figure 4.  (a) shows the 3D with the differences between the real and also the imaginary part of solutions Ψ1,1 and Ψ2,1, and also (b) shows the 3D with the differences between the real and also the imaginary part of the solutions Ψ1,3 and Ψ2,3, for fixed X and fixed α.

    Tables 14 present the numerical results of the solutions of CTFMNLSE (1.1) obtained by DAM and SGEM with several point sources trough arbitrary.

    Table 1.  The real part of exact solutions of CTFMNLSE (1.1) obtained by DAM, with several point sources trough arbitrary.
    X τ Ψ1,1(X,τ) Ψ1,2(X,τ) Ψ1,3(X,τ) Ψ1,4(X,τ)
    0.012 0.00058 -0.00058 587.19354 -587.19354
    0.012 0.037 -0.00550 0.00550 -55.91444 55.91444
    0.062 -0.01056 0.01056 -26.29075 26.29075
    0.012 0.00933 -0.00933 36.46445 -36.46445
    0.037 0.037 0.00284 -0.00284 109.34814 -109.34814
    0.062 -0.00266 0.00266 -105.25186 105.25186
    0.012 0.01816 -0.01816 18.87874 -18.87874
    0.062 0.037 0.01124 -0.01124 27.81915 -27.81915
    0.062 0.00531 -0.00531 53.34247 -53.34247

     | Show Table
    DownLoad: CSV
    Table 2.  The imaginary part of exact solutions of CTFMNLSE (1.1) obtained by DAM, with several point sources trough arbitrary.
    X τ Ψ1,1(X,τ) Ψ1,2(X,τ) Ψ1,3(X,τ) Ψ1,4(X,τ)
    0.012 0.00034 -0.00034 350.78189 -350.78189
    0.012 0.037 -0.00385 0.00385 -39.18969 39.18969
    0.062 -0.00852 0.00852 -21.21368 21.21368
    0.012 0.00549 -0.00549 21.47530 -21.47530
    0.037 0.037 0.00196 -0.00196 75.62594 -75.62594
    0.062 -0.00212 0.00212 -83.84577 83.84577
    0.012 0.01054 -0.01054 10.96007 -10.96007
    0.062 0.037 0.00767 -0.00767 18.98398 -18.98398
    0.062 0.00417 -0.00417 41.95143 -41.95143

     | Show Table
    DownLoad: CSV
    Table 3.  The real part of exact solutions of CTFMNLSE (1.1) obtained by SGEM, with several point sources trough arbitrary.
    X τ Ψ2,1(X,τ) Ψ2,2(X,τ) Ψ2,3(X,τ) Ψ2,4(X,τ)
    0.012 0.00065 -0.00065 241.48348 -241.48348
    0.012 0.037 -0.00624 0.00624 -22.75660 22.75660
    0.062 -0.01197 0.01197 -10.70930 10.70930
    0.012 0.01055 -0.01055 14.88481 -14.88481
    0.037 0.037 0.00320 -0.00320 44.79798 -44.79798
    0.062 -0.00304 0.00304 -42.62661 42.62661
    0.012 0.02052 -0.02052 7.71125 -7.71125
    0.062 0.037 0.01270 -0.01270 11.36482 -11.36482
    0.062 0.00599 -0.00599 21.83731 -21.83731

     | Show Table
    DownLoad: CSV
    Table 4.  The imaginary part of exact solutions of CTFMNLSE (1.1) obtained by SGEM, with several point sources trough arbitrary.
    X τ Ψ2,1(X,τ) Ψ2,2(X,τ) Ψ2,3(X,τ) Ψ2,4(X,τ)
    0.012 0.00038 -0.00038 144.25913 -144.25913
    0.012 0.037 -0.00437 0.00437 -15.94980 15.94980
    0.062 -0.00965 0.00965 -8.64120 8.64120
    0.012 0.00621 -0.00621 8.76623 -8.76623
    0.037 0.037 0.00221 -0.00221 30.98259 -30.98259
    0.062 -0.00241 0.00241 -33.95722 33.95722
    0.012 0.01191 -0.01191 4.47677 -4.47677
    0.062 0.037 0.00866 -0.00866 7.75543 -7.75543
    0.062 0.00471 -0.00471 17.17404 -17.17404

     | Show Table
    DownLoad: CSV

    In Table 5, based on Tables 14, separately, we calculate the differences between solutions Ψ1,1,Ψ1,3,Ψ2,1, and Ψ2,3, represented by ΔΨ1,1,ΔΨ2,1,ΔΨ2,1, and ΔΨ2,3, for fixed X=0.012 and different values of τ. Note that and show the real and imaginary part of solutions. As we can observe, for fixed X by changing the value of τ, both DAM and SGEM result major changes for solutions Ψ1,3 and Ψ2,3, and here we are not dealing with an advantageous result. Nevertheless, SGEM results more minor changes than DAM.

    Table 5.  According to Tables 1-4, separately, we calculate the differences between solutions Ψ1,1,Ψ1,3,Ψ2,1, and Ψ2,3, represented by ΔΨ1,1,ΔΨ2,1,ΔΨ2,1, and ΔΨ2,3, for fixed X=0.012 and different values of τ. Note that and show the real and imaginary part of solutions.
    X=0.012
    τ=0.012,0.037,0.062
    DAM SGEM
    ΔΨ1,1 ΔΨ1,1 ΔΨ1,3 ΔΨ1,3 ΔΨ2,1 ΔΨ2,1 ΔΨ2,3 ΔΨ2,3
    0.00608 0.00419 643.10798 389.97158 0.00689 0.00475 264.24008 160.20893
    0.01114 0.00886 613.48429 771.99557 0.01262 0.01003 252.19278 152.90033
    0.00506 0.00467 29.62369 17.97601 0.00573 0.00528 12.04730 7.30860

     | Show Table
    DownLoad: CSV

    Tables 69 propose the real and imaginary part of exact solutions of CTFMNLSE (1.1) obtained by six different methods: FIM, FVM, TEM, MTEM [15,16] and also DAM and SGEM, with several point sources trough arbitrary. For some values the results obtained through DAM and SGEM, are near to the results obtained in four other methods.

    Table 6.  The real part of exact solutions of CTFMNLSE (1.1) obtained by 6 different methods, with several point sources trough arbitrary.
    X τ FIMΨ1,2(X,τ) FVMΨ1,2(X,τ) TEMΨ1,2(X,τ) MTEMΨ1,2(X,τ) DAMΨ1,2(X,τ) SGEMΨ1,2(X,τ)
    0.012 0.012 0.00099 0.86524 ± 1.44911 0.00083 ± 0.00057 ± 0.00064
    0.037 ± 0.01209 0.96849 ± 1.38186 ± 0.00941 0.00549 0.00623
    0.062 ± 0.02666 1.06066 ± 1.31204 ± 0.02081 0.01055 0.01196
    0.087 ± 0.04264 1.14551 ± 1.23880 ± 0.03333 0.01482 0.01679
    0.037 0.012 0.01689 0.85415 ± 1.45334 0.01342 ± 0.00933 ± 0.01055
    0.037 0.00583 0.95628 ± 1.38820 0.00478 ± 0.00283 ± 0.00319
    0.062 ± 0.00691 1.04758 ± 1.32017 ± 0.00518 0.00266 0.00303
    0.087 ± 0.02124 1.13177 ± 1.24849 ± 0.01639 0.00738 0.00838
    0.062 0.012 0.03247 0.84187 ± 1.45547 0.02575 ± 0.01815 ± 0.02052
    0.037 0.02346 0.94274 ± 1.39254 0.01873 ± 0.01124 ± 0.01270
    0.062 0.01251 1.03303 ± 1.32641 0.01019 ± 0.00530 ± 0.00598
    0.087 ± 0.00016 1.11640 ± 1.25641 0.00028 ± 0.00013 ± 0.00012
    0.087 0.012 0.04776 0.82848 ± 1.45550 0.03784 ± 0.02705 ± 0.03053
    0.037 0.04079 0.92793 ± 1.39486 0.03244 ± 0.01972 ± 0.02227
    0.062 0.03165 1.01707 ± 1.33074 0.02533 ± 0.01336 ± 0.01509
    0.087 0.02062 1.09949 ±1.26251 0.01673 ± 0.00773 ± 0.00872

     | Show Table
    DownLoad: CSV
    Table 7.  The real part of exact solutions of CTFMNLSE (1.1) obtained by 6 different methods, with several point sources through arbitrary.
    X τ FIMΨ3,4(X,τ) FVMΨ3,4(X,τ) TEMΨ3,4(X,τ) MTEMΨ3,4(X,τ) DAMΨ3,4(X,τ) SGEMΨ3,4(X,τ)
    0.012 0.012 378.21073 70.07373 ±351.38054 351.20376 ±587.19354 ±241.48348
    0.037 ± 38.81779 30.84863 39.15773 ±39.17920 55.91443 22.75659
    0.062 ± 21.08640 19.36377 21.19424 ±21.20629 26.29074 10.70930
    0.087 ± 15.32460 14.48859 15.38516 ±15.39533 16.74259 6.82515
    0.037 0.012 21.73603 28.35492 ±21.46931 21.47600 ±36.46444 ±14.88481
    0.037 78.99292 24.09697 ±75.68598 75.67674 ±109.34813 ±44.79797
    0.062 ± 80.05677 18.81347 83.68725 ±83.77139 105.25185 42.62660
    0.087 ± 30.34363 15.03660 30.84459 ±30.86541 33.98710 13.82036
    0.062 0.012 11.06619 16.76490 ±10.95095 10.95634 ±18.87873 ±7.71124
    0.037 19.30540 16.27571 ±18.97941 18.98481 ±27.8191 ±11.36481
    0.062 43.52313 14.65664 ±41.97445 41.97341 ±53.34247 ±21.83730
    0.087 ±3894.75067 12.88518 ±1783.25721 1751.00331 ±1903.01800 ±950.20622
    0.087 0.012 7.36271 11.81796 ±7.29069 7.29620 ±12.76218 ± 5.21999
    0.037 10.90080 11.82677 ±10.75601 10.76155 ±15.99035 ±6.53613
    0.062 16.93629 11.28924 ±16.60991 16.61494 ±21.40072 ±8.74788
    0.087 30.39447 10.50579 ±29.40686 29.40818 ±33.17835 ±13.57924

     | Show Table
    DownLoad: CSV
    Table 8.  The imaginary part of exact solutions of CTFMNLSE (1.1) obtained by 6 different methods, with several point sources through arbitrary.
    X τ FIMΨ1,2(X,τ) FVMΨ1,2(X,τ) TEMΨ1,2(X,τ) MTEMΨ1,2(X,τ) DAMΨ1,2(X,τ) SGEMΨ1,2(X,τ)
    0.012 0.012 ± 0.00165 ±1.44929 ±0.86568 ±0.00140 ±0.00034 ±0.00038
    0.037 0.01726 ±1.38406 ±0.96853 0.01342 0.00385 0.00437
    0.062 0.033041 ±1.31780 ±1.05867 0.02579 0.00851 0.00965
    0.087 0.04635 ±1.24922 ±1.13976 0.03622 0.01364 0.01544
    0.037 0.012 ± 0.02868 ±1.45317 ±0.85592 ±0.02279 ±0.00549 ±0.00621
    0.037 ± 0.00844 ±1.38971 ±0.96009 ±0.00691 ±0.00196 ±0.00220
    0.062 0.00867 ±1.32525 ±1.05167 0.00651 0.00212 0.00241
    0.087 0.02338 ±1.25853 ±1.13434 0.01804 0.00671 0.00762
    0.062 0.012 ± 0.05593 ±1.45494 ±0.84497 ±0.04436 ±0.01054 ±0.01191
    0.037 ± 0.03438 ±1.39330 ±0.95027 ±0.02745 ±0.00767 ±0.00866
    0.062 ± 0.01591 ±1.33069 ±1.04316 ±0.01295 ±0.00417 ±0.00470
    0.087 0.00018 ±1.26590 ±1.12728 ±0.00031 ±0.00011 ±0.00011
    0.087 0.012 ± 0.08346 ±1.45459 ±0.83287 ±0.06613 ±0.01548 ±0.01747
    0.037 ± 0.06058 ±1.39481 ±0.93913 ±0.04818 ±0.01327 ±0.01499
    0.062 ±0.04077 ±1.33411 ±1.03317 ±0.03263 ±0.01037 ±0.01171
    0.087 ±0.02328 ±1.27129 ±1.11860 ±0.01889 ±0.00685 ±0.00773

     | Show Table
    DownLoad: CSV
    Table 9.  The imaginary part of exact solutions of CTFMNLSE (1.1) obtained by 6 different methods, with several point sources through arbitrary.
    X τ FIMΨ3,4(X,τ) FVMΨ3,4(X,τ) TEMΨ3,4(X,τ) MTEMΨ3,4(X,τ) DAMΨ3,4(X,τ) SGEMΨ3,4(X,τ)
    0.012 0.012 ±633.10822 ±12.28177 588.19565 ±587.89974 ±350.78189 ±144.25913
    0.037 55.38382 ±19.40644 ±55.86884 55.89947 39.18969 15.94980
    0.062 26.13300 ±14.23268 ±26.26665 26.28158 21.21368 8.64120
    0.087 16.65633 ±10.67754 ±16.72216 16.73321 15.40396 6.27945
    0.037 0.012 ±36.90715 7.51554 36.45427 ±36.46563 ±21.47530 ±8.76623
    0.037 ±114.21647 ±1.26633 109.43494 ±109.42158 ±75.62594 ±30.98259
    0.062 100.49552 ±4.11852 ±105.05287 105.15849 83.84576 33.95722
    0.087 33.39707 ±4.55124 ±33.94843 33.97135 30.87972 12.55679
    0.062 0.012 ±19.06153 6.31111 18.86303 ±18.87231 ±10.96007 ±4.47677
    0.037 ±28.29015 2.73162 27.81244 ±27.82036 ±18.98398 ±7.75543
    0.062 ±55.34093 0.47397 53.37174 ±53.37043 ±41.95143 ±17.17404
    0.087 4340.87665 ±0.69068 1987.52122 ±1951.57277 ±1707.43866 ±852.55044
    0.087 0.012 ±12.86682 5.00514 12.74097 ±12.75059 ±7.30283 ±2.98701
    0.037 ±16.19046 3.32263 15.97541 ±15.98364 ±10.76607 ±4.40068
    0.062 ±21.81420 2.01126 21.39382 ±21.40030 ±16.61527 ±6.79175
    0.087 ±34.30495 1.10820 33.19028 ±33.19177 ±29.39629 ±12.03132

     | Show Table
    DownLoad: CSV

    Using the DAM and SGEM, firstly we found the exact solutions of CTFMNLSE (1.1) and finally, we presented numerical results in tables and charts. Also, we compared the real and imaginary parts of the exact solutions of CTFMNLSE (1.1) obtained by DAM and SGEM with four other different methods: FIM, FVM, TEM, MTEM. For some values the results obtained through DAM and SGEM, were near to the results obtained in four other methods. Overall, the performance of the proposed methods (DAM and SGEM) is reliable and effective and gives more solutions. These methods are direct and concise. Therefore, we conclude these methods can be extended to solve many nonlinear conformable fractional PDEs which are arising in the theory of solitons and other areas.

    The authors T. Abdeljawad and N. Mlaiki would like to thank Prince Sultan University for paying the APC and for the support through the TAS research lab.

    The authors declare no conflicts of interest.



    [1] G. Collomb, W. Härdle, S. Hassani, A note on prediction via estimation of the conditional mode function, J. Stat. Plan. Infer., 15 (1987), 227–236. https://doi.org/10.1016/0378-3758(86)90099-6 doi: 10.1016/0378-3758(86)90099-6
    [2] F. Ferraty, P. Vieu, Nonparametric functional data analysis: theory and practice, New York: Springer, 2006. https://doi.org/10.1007/0-387-36620-2
    [3] A. Baíllo, A. Grané, Local linear regression for functional predictor and scalar response, J. Multivariate Anal., 100 (2009), 102–111. https://doi.org/10.1016/j.jmva.2008.03.008 doi: 10.1016/j.jmva.2008.03.008
    [4] J. Barrientos-Marin, F. Ferraty, P. Vieu, Locally modelled regression and functional data, J. Nonparametr. Stat., 22 (2010), 617–632. https://doi.org/10.1080/10485250903089930 doi: 10.1080/10485250903089930
    [5] J. Demongeot, A. Laksaci, F. Madani, M. Rachdi, Functional data: local linear estimation of the conditional density and its application, Statistics, 47 (2013), 26–44. https://doi.org/10.1080/02331888.2011.568117 doi: 10.1080/02331888.2011.568117
    [6] M. Rachdi, A. Laksaci, J. Demongeot, A. Abdali, F. Madani, Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data, Comput. Stat. Data Anal., 73 (2014), 53–68. https://doi.org/10.1016/j.csda.2013.11.011 doi: 10.1016/j.csda.2013.11.011
    [7] Z. Y. Zhou, Z. Y. Lin, Asymptotic normality of locally modelled regression estimator for functional data, J. Nonparametr. Stat., 28 (2016), 116–131. https://doi.org/10.1080/10485252.2015.1114112 doi: 10.1080/10485252.2015.1114112
    [8] I. M. Almanjahie, Z. Kaid, A. Laksaci, M. Rachdi, Estimating the conditional density in scalar-on-function regression structure: k-N-N local linear approach, Mathematics, 10 (2022), 1–16. https://doi.org/10.3390/math10060902 doi: 10.3390/math10060902
    [9] F. Belarbi, S. Chemikh, A. Laksaci, Local linear estimate of the nonparametric robust regression in functional data, Stat. Probabil. Lett., 134 (2018), 128–133. https://doi.org/10.1016/j.spl.2017.11.003 doi: 10.1016/j.spl.2017.11.003
    [10] A. Chahad, L. Ait-Hennani, A. Laksaci, Functional local linear estimate for functional relative-error regression, J. Stat. Theory Pract., 11 (2017), 771–789. https://doi.org/10.1080/15598608.2017.1321071 doi: 10.1080/15598608.2017.1321071
    [11] M. Attouch, A. Laksaci, F. Rafaa, Local linear estimate of the regression operator by the kNN method, C. R. Math., 355 (2017), 824–829. https://doi.org/10.1016/j.crma.2017.05.007 doi: 10.1016/j.crma.2017.05.007
    [12] J. Fan, I. Gijbels, Local polynomial modelling and its applications, London: Chapman & Hall, 1996. https://doi.org/10.1201/9780203748725
    [13] M. Hallin, Z. D. Lu, L. T. Tran, Local linear spatial regression, Ann. Statist., 32 (2004), 2469–2500. https://doi.org/10.1214/009053604000000850 doi: 10.1214/009053604000000850
    [14] M. Hallin, Z. D. Lu, K. M. Yu, Local linear spatial quantile regression, Bernouilli, 15 (2009), 659–686. https://doi.org/10.3150/08-BEJ168 doi: 10.3150/08-BEJ168
    [15] A. Chouaf, A. Laksaci, On the functional local linear estimate for spatial regression, Statist. Risk Model., 29 (2012), 189–214. https://doi.org/10.1524/strm.2012.1114 doi: 10.1524/strm.2012.1114
    [16] A. Laksaci, M. Rachdi, S. Rahmani, Spatial modelization: local linear estimation of the conditional distribution for functional data, Spatial Stat., 6 (2013), 1–23. https://doi.org/10.1016/j.spasta.2013.04.004 doi: 10.1016/j.spasta.2013.04.004
    [17] A. Gheriballah, A. Laksaci, R. Rouane, Robust nonparametric estimation for spatial regression, J. Stat. Plan. Infer., 140 (2010), 1656–1670. https://doi.org/10.1016/j.jspi.2010.01.042 doi: 10.1016/j.jspi.2010.01.042
    [18] M. Attouch, A. Laksaci, N. Messabihi, Nonparametric relative error regression for spatial random variables, Stat. Papers, 58 (2017), 987–1008. https://doi.org/10.1007/s00362-015-0735-6 doi: 10.1007/s00362-015-0735-6
    [19] M. Abeidallah, B. Mechab, T. Merouan, Local linear estimate of the point at high risk: spatial functional data case, Commun. Stat. Theory Methods, 49 (2020), 2561–2584. https://doi.org/10.1080/03610926.2019.1580735 doi: 10.1080/03610926.2019.1580735
    [20] M. Rachdi, A. Laksaci, F. A. Al-Awhadi, Parametric and nonparametric conditional quantile regression modelisation for dependent spatial functional data, Spatial Stat., 43 (2021), 100498. https://doi.org/10.1016/j.spasta.2021.100498 doi: 10.1016/j.spasta.2021.100498
    [21] M. Rachdi, A. Laksaci, N. M. Al-Kandari, Expectile regression for spatial functional data analysis (sFDA), Metrika, 85 (2022), 627–655. https://doi.org/10.1007/s00184-021-00846-x doi: 10.1007/s00184-021-00846-x
    [22] A. Amiri, S. Dabo-Niang, M. Yahaya, Nonparametric recursive density estimation for spatial data, C. R. Math., 354 (2016), 205–210. https://doi.org/10.1016/j.crma.2015.10.010 doi: 10.1016/j.crma.2015.10.010
    [23] R. Giraldo, S. Dabo-Niang, S. Martínez, Statistical modeling of spatial big data: an approach from a functional data analysis perspective, Stat. Probabil. Lett., 136 (2018), 126–129. https://doi.org/10.1016/j.spl.2018.02.025 doi: 10.1016/j.spl.2018.02.025
    [24] M. Chaouch, N. Laïb, D. Louani, Rate of uniform consistency for a class of mode regression on functional stationary ergodic data, Stat. Methods Appl., 26 (2017), 19–47. https://doi.org/10.1007/s10260-016-0356-9 doi: 10.1007/s10260-016-0356-9
    [25] B. Maillot, C. Chesneau, On the conditional density estimation for continuous time processes with values in functional in spaces, Stat. Probabil. Lett., 178 (2021), 109179. https://doi.org/10.1016/j.spl.2021.109179 doi: 10.1016/j.spl.2021.109179
    [26] J. L. Kirkby, A. Leitao, D. Nguyen, Nonparametric density estimation and bandwidth selection with B-spline bases: a novel Galerkin method, Comput. Stat. Data Anal., 159 (2021), 107202. https://doi.org/10.1016/j.csda.2021.107202 doi: 10.1016/j.csda.2021.107202
    [27] T. Cover, Estimation by the nearest neighbor rule, IEEE Trans. Inform. Theory, 14 (1968), 50–55. https://doi.org/10.1109/TIT.1968.1054098 doi: 10.1109/TIT.1968.1054098
    [28] N. L. Kudraszow, P. Vieu, Uniform consistency of kNN regressors for functional variables, Stat. Probabil. Lett., 83 (2013), 1863–1870. https://doi.org/10.1016/j.spl.2013.04.017 doi: 10.1016/j.spl.2013.04.017
    [29] L. Kara, A. Laksaci, M. Rachdi, P. Vieu, Data-driven kNN estimation in nonparametric functional data analysis, J. Multivariate Anal., 153 (2017), 176–188. https://doi.org/10.1016/j.jmva.2016.09.016 doi: 10.1016/j.jmva.2016.09.016
    [30] M. Attouch, W. Bouabsa, Z. Chiker el Mozoaur, The k-nearest neighbors estimation of the conditional mode for functional data under dependency, Int. J. Stat. Econ., 19 (2018), 48–60.
    [31] I. M. Almanjahie, K. A. Assiri, A. Laksaci, Z. Chikr Elmezouar, The k nearest neighbors smoothing of the relative-error regression with functional regressor, Commun. Stat. Theory Methods, 51 (2022), 4196–4209. https://doi.org/10.1080/03610926.2020.1811870 doi: 10.1080/03610926.2020.1811870
    [32] W. Bouabsa, Nonparametric relative error estimation via functional regressor by the k nearest neighbors smoothing under truncation random data, Appl. Appl. Math., 16 (2021), 97–116.
    [33] W. Bouabsa, Unform in bandwith of the conditional distribution function with functional explanatory variable: the case of spatial data with the k nearest neighbour method, Econometrics, 26 (2022), 30–46. https://doi.org/10.15611/eada.2022.2.03 doi: 10.15611/eada.2022.2.03
    [34] T. Bodnar, O. Okhrin, N. Parolya, Optimal shrinkage estimator for high-dimensional mean vector, J. Multivariate Anal., 170 (2019), 63–79. https://doi.org/10.1016/j.jmva.2018.07.004 doi: 10.1016/j.jmva.2018.07.004
    [35] Y. Gao, H. L. Shang, Y. R. Yang, High-dimensional functional time series forecasting: an application to age-specific mortality rates, J. Multivariate Anal., 170 (2019), 232–243. https://doi.org/10.1016/j.jmva.2018.10.003 doi: 10.1016/j.jmva.2018.10.003
    [36] J. R. Berrendero, B. Bueno-Larraz, A. Cuevas, An RKHS model for variable selection in functional linear regression, J. Multivariate Anal., 170 (2019), 25–45. https://doi.org/10.1016/j.jmva.2018.04.008 doi: 10.1016/j.jmva.2018.04.008
    [37] C. Aaron, A. Cholaquidis, R. Fraiman, B. Ghattas, Multivariate and functional robust fusion methods for structured big data, J. Multivariate Anal., 170 (2019), 149–161. https://doi.org/10.1016/j.jmva.2018.06.012 doi: 10.1016/j.jmva.2018.06.012
    [38] P. Hall, M. Hosseini-Nasab, On properties of functional principal components analysis, J. R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006), 109–126. https://doi.org/10.1111/j.1467-9868.2005.00535.x doi: 10.1111/j.1467-9868.2005.00535.x
    [39] P. Hall, H. G. Muller, J. L. Wang, Properties of principal component methods for functional and longitudinal data analysis, Ann. Statist., 34 (2006), 1493–1517. https://doi.org/10.1214/009053606000000272 doi: 10.1214/009053606000000272
    [40] L. T. Tran, Kernel density estimation on random fields, J. Multivariate Anal., 34 (1990), 37–53. https://doi.org/10.1016/0047-259X(90)90059-Q doi: 10.1016/0047-259X(90)90059-Q
    [41] X. Guyon, Estimation d'un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien, In: Proceedings of the sixth Franco-Belgian meeting of statisticians, 1987.
    [42] P. Doukhan, Mixing: properties and examples, New York: Springer, 1994. https://doi.org/10.1007/978-1-4612-2642-0
    [43] M. Carbon, L. T. Tran, B. Wu, Kernel density estimation for random fields (density estimation for random fields), Stat. Probabil. Lett., 36 (1997), 115–125. https://doi.org/10.1016/S0167-7152(97)00054-0 doi: 10.1016/S0167-7152(97)00054-0
    [44] S. Dabo-Niang, M. Rachdi, A. F. Yao, Kernel regression estimation for spatial functional random variables, Far East J. Theor. Stat., 37 (2011), 77–113.
    [45] A. Tadj, Sur les modèles non paramétriques conditionnels en statistique fonctionnelle, Thèse de doctorat, Université de Toulouse, 2011.
    [46] G. Biau, B. Cadre, Nonparametric spatial prediction, Stat. Infer. Stoch. Pro., 7 (2004), 327–349. https://doi.org/10.1023/B:SISP.0000049116.23705.88 doi: 10.1023/B:SISP.0000049116.23705.88
  • This article has been cited by:

    1. Muhammad Shakeel, Aysha Bibi, Dean Chou, Asim Zafar, Study of optical solitons for Kudryashov’s Quintuple power-law with dual form of nonlinearity using two modified techniques, 2023, 273, 00304026, 170364, 10.1016/j.ijleo.2022.170364
    2. Shaofu Wang, Novel soliton solutions of CNLSEs with Hirota bilinear method, 2023, 0972-8821, 10.1007/s12596-022-01065-x
    3. Safoura Rezaei Aderyani, Reza Saadati, Stability and controllability results by n–ary aggregation functions in matrix valued fuzzy n–normed spaces, 2023, 643, 00200255, 119265, 10.1016/j.ins.2023.119265
    4. Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 9, 978-3-031-55563-3, 231, 10.1007/978-3-031-55564-0_9
    5. Safoura Rezaei Aderyani, Reza Saadati, Javad Vahidi, Multiple exp-function method to solve the nonlinear space–time fractional partial differential symmetric regularized long wave (SRLW) equation and the (1+1)-dimensional Benjamin–Ono equation, 2023, 37, 0217-9792, 10.1142/S0217979223502132
    6. Saad Abdelkebir, Brahim Nouiri, Analytical method for solving a time-conformable fractional telegraph equation, 2023, 37, 0354-5180, 2773, 10.2298/FIL2309773A
    7. Jamshad Ahmad, Kanza Noor, Sonia Akram, Stability analysis and solitonic behaviour of Schrödinger’s nonlinear (2+1) complex conformable time fractional model, 2024, 56, 1572-817X, 10.1007/s11082-024-06521-5
    8. Donal O’Regan, Safoura Rezaei Aderyani, Reza Saadati, Mustafa Inc, Soliton Solution of the Nonlinear Time Fractional Equations: Comprehensive Methods to Solve Physical Models, 2024, 13, 2075-1680, 92, 10.3390/axioms13020092
    9. Donal O’Regan, Safoura Rezaei Aderyani, Reza Saadati, Tofigh Allahviranloo, Solving the Fornberg–Whitham Model Derived from Gilson–Pickering Equations by Analytical Methods, 2024, 13, 2075-1680, 74, 10.3390/axioms13020074
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1436) PDF downloads(69) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog