Research article Special Issues

New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative

  • The exact wave solutions to the space-time fractional modified Benjamin-Bona-Mahony (mBBM) and space time fractional Zakharov-Kuznetsov Benjamin-Bona-Mahony (ZKBBM) equations are studied in the sense of conformable derivative. The existence of chain rule and the derivative of composite functions permit the nonlinear fractional differential equations (NLFDEs) to convert into the ordinary differential equation using wave transformation. The wave solutions of these equations are examined by means of the expanding and effective two variable (G'/G, 1/G)-expansion method. The solutions are obtained in the form of hyperbolic, trigonometric and rational functions containing parameters. The method is efficient, convenient, accessible and is the generalization of the original (G'/G)-expansion method.

    Citation: M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque. New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative[J]. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199

    Related Papers:

    [1] William Ramírez, Can Kızılateş, Daniel Bedoya, Clemente Cesarano, Cheon Seoung Ryoo . On certain properties of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. AIMS Mathematics, 2025, 10(1): 137-158. doi: 10.3934/math.2025008
    [2] Letelier Castilla, William Ramírez, Clemente Cesarano, Shahid Ahmad Wani, Maria-Fernanda Heredia-Moyano . A new class of generalized Apostol–type Frobenius–Euler polynomials. AIMS Mathematics, 2025, 10(2): 3623-3641. doi: 10.3934/math.2025167
    [3] Mohra Zayed, Taghreed Alqurashi, Shahid Ahmad Wani, Cheon Seoung Ryoo, William Ramírez . Several characterizations of bivariate quantum-Hermite-Appell Polynomials and the structure of their zeros. AIMS Mathematics, 2025, 10(5): 11184-11207. doi: 10.3934/math.2025507
    [4] Mohra Zayed, Shahid Ahmad Wani . Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials. AIMS Mathematics, 2024, 9(9): 25145-25165. doi: 10.3934/math.20241226
    [5] Mohra Zayed, Shahid Ahmad Wani, Georgia Irina Oros, William Ramírez . Unraveling multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials via fractional operators. AIMS Mathematics, 2024, 9(7): 17291-17304. doi: 10.3934/math.2024840
    [6] Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . New expressions for certain polynomials combining Fibonacci and Lucas polynomials. AIMS Mathematics, 2025, 10(2): 2930-2957. doi: 10.3934/math.2025136
    [7] Rajiniganth Pandurangan, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the Generalized ¯θ(t)-Fibonacci sequences and its bifurcation analysis. AIMS Mathematics, 2025, 10(1): 972-987. doi: 10.3934/math.2025046
    [8] Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in q-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303
    [9] Tingting Du, Li Wang . On the power sums problem of bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2024, 9(4): 7810-7818. doi: 10.3934/math.2024379
    [10] Tingting Du, Zhengang Wu . Some identities involving the bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2023, 8(3): 5838-5846. doi: 10.3934/math.2023294
  • The exact wave solutions to the space-time fractional modified Benjamin-Bona-Mahony (mBBM) and space time fractional Zakharov-Kuznetsov Benjamin-Bona-Mahony (ZKBBM) equations are studied in the sense of conformable derivative. The existence of chain rule and the derivative of composite functions permit the nonlinear fractional differential equations (NLFDEs) to convert into the ordinary differential equation using wave transformation. The wave solutions of these equations are examined by means of the expanding and effective two variable (G'/G, 1/G)-expansion method. The solutions are obtained in the form of hyperbolic, trigonometric and rational functions containing parameters. The method is efficient, convenient, accessible and is the generalization of the original (G'/G)-expansion method.


    Special polynomials, generating functions, and the trigonometric functions are used not only in mathematics but also in many branches of science such as statistics, mathematical physics, and engineering.

    Let N,Z,R and C indicate the set of positive integers, the set of integers, the set of real numbers, and the set of complex numbers, respectively. Let αN0=N{0} and λC (or R).

    The Apostol-Bernoulli polynomials B(α)n(x;λ) of order α are defined by means of the following exponential generating function (see [1,2,3]):

    n=0B(α)n(x;λ)tnn!=(tλet1)αext, (1.1)
    (λC; |t|<2π, when λ=1; and |t|<|logλ|, when λ1). (1.2)

    Note that B(α)n(x;1)=B(α)n(x) denote the Bernoulli polynomials of order α and B(α)n(0;λ)=B(α)n(λ) denote the Apostol-Bernoulli numbers of order α, respectively. Setting α=1 into (1.1), we get B(1)n(λ)=Bn(λ) which are the so-called Apostol-Bernoulli numbers.

    The Apostol-Euler polynomials E(α)n(x;λ) of order α are defined by means of the following exponential generating function (see [4,5]):

    n=0E(α)n(x;λ)tnn!=(2λet+1)αext, (1.3)
    (|t|<π when λ=1; |t|<|log(λ)| when λ1;1α:=1). (1.4)

    By virtue of (1.3), we have E(α)n(x;1)=E(α)n(x) denote the Euler polynomials of order α and E(α)n(0;λ)=E(α)n(λ) denote the Apostol-Euler numbers of order α, respectively. Setting α=1 into (1.3), we get E(1)n(λ)=En(λ) which are the so-called Apostol-Euler numbers.

    The Apostol-Genocchi polynomials G(α)n(x;λ) of order α are defined by means of the following exponential generating function (see [6]):

    n=0G(α)n(x;λ)tnn!=(2tλet+1)αext, (1.5)
    (|t|<π when λ=1; |t|<|log(λ)| when λ1;1α:=1). (1.6)

    By virtue of (1.5), we have G(α)n(x;1)=G(α)n(x) denote the Genocchi polynomials of order α and G(α)n(0;λ)=G(α)n(λ) denote the Apostol-Genocchi numbers of order α, respectively. Setting α=1 into (1.5), we get G(1)n(λ)=Gn(λ) which are the so-called Apostol-Genocchi numbers.

    In recent years, many generalizations of these polynomials have been studied by mathematicians. See for example [7,8,9,10,11,12,13,14,15,16,17,18,19,20]. With the aid of these polynomials two parametric kinds of Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi of order α defined by Srivastava et al. [15,19] whose generating functions are given by

    n=0B(c,α)n(x,y;λ)tnn!=(tλet1)αextcos(yt), (1.7)
    n=0B(s,α)n(x,y;λ)tnn!=(tλet1)αextsin(yt), (1.8)

    and

    n=0E(c,α)n(x,y;λ)tnn!=(2λet+1)αextcos(yt), (1.9)
    n=0E(s,α)n(x,y;λ)tnn!=(2λet+1)αextsin(yt), (1.10)

    and

    n=0G(c,α)n(x,y;λ)tnn!=(2tλet+1)αextcos(yt), (1.11)
    n=0G(s,α)n(x,y;λ)tnn!=(2tλet+1)αextsin(yt). (1.12)

    Remark 1.1. Note that the symbols c and s occurring in the superscripts on the left-hand sides of these last Eqs (1.7)–(1.12) indicate the presence of the trigonometric cosine and the trigonometric sine functions, respectively, in the generating functions on the corresponding right-hand sides.

    The motivation of this paper is to obtain F-analogues of the Eqs (1.7)–(1.12) with the help of the Golden calculus. Namely, we define the parametric Apostol Bernoulli-Fibonacci, the Apostol Euler-Fibonacci, and the Apostol Genocchi-Fibonacci polynomials by means of the Golden Calculus. Utilizing the Golden-Euler formula and these generating functions with their functional equations, numerous properties of these polynomials are given. The special cases of these polynomials and numbers are studied in detail. The rest of this paper is structured as follows. In Section 2, we present some key definitions and properties that are crucial to Golden calculus. Then, with the help of the Golden calculus, we mention some polynomials that have been previously defined in the literature. In Section 3, considering the properties of Golden calculus, we introduce six families of two-parameter polynomials with the help of Golden trigonometric functions and exponential functions. Then, in the three subsections of this section, we examine the various properties of these polynomials defined with the help of generating functions and their functional equations.

    In this part of the our paper, we mention some definitions and properties related to Golden calculus (or F-calculus).

    The Fibonacci sequence is defined by means of the following recurrence relation:

    Fn=Fn1+Fn2,  n2

    where F0=0, F1=1. Fibonacci numbers can be expressed explicitly as

    Fn=αnβnαβ,

    where α=1+52 and β=152. α1,6180339 is called Golden ratio. The golden ratio is frequently used in many branches of science as well as mathematics. Interestingly, this mysterious number also appears in architecture and art. Miscellaneous properties of Golden calculus have been defined and studied in detail by Pashaev and Nalci [21]. Therefore, [21] is the key reference for Golden calculus. In addition readers can also refer to Pashaev [22], Krot [23], and Ozvatan [24].

    The product of Fibonacci numbers, called F-factorial was defined as follows:

    F1F2F3Fn=Fn!, (2.1)

    where F0!=1. The binomial theorem for the F-analogues (or-Golden binomial theorem) are given by

    (x+y)nF=nk=0(1)(k2)(nk)Fxnkyk, (2.2)

    in terms of the Golden binomial coefficients, called as Fibonomials

    (nk)F=Fn!Fnk!Fk!

    with n and k being nonnegative integers, nk. Golden binomial coefficients (or-Fibonomial coefficients) satisfy the following identities as follows:

    (nk)F=βk(n1k)F+αnk(n1k1)F,

    and

    (nk)F=αk(n1k)F+βnk(n1k1)F.

    The Golden derivative defined as follows:

    FFx(f(x))=f(αx)f(xα)(α(1α))x=f(αx)f(βx)(αβ)x. (2.3)

    The Golden Leibnitz rule and the Golden derivative of the quotient of f(x) and g(x) can be given as

    FFx(f(x)g(x))=FFxf(x)g(αx)+f(xα)FFxg(x),
    FFx(f(x)g(x))=FFxf(x)g(αx)FFxg(x)f(αx)g(αx)g(xα),

    respectively. The first and second type of Golden exponential functions are defined as

    exF=n=0(x)nFFn!, (2.4)

    and

    ExF=n=0(1)(n2)(x)nFFn!. (2.5)

    Briefly, we use the following notations throughout the paper

    exF=n=0xnFn!, (2.6)

    and

    ExF=n=0(1)(n2)xnFn!. (2.7)

    Using the Eqs (2.2), (2.4), and (2.5), the following equation can be given

    exFEyF=e(x+y)FF. (2.8)

    The Fibonacci cosine and sine (Golden trigonometric functions) are defined by the power series as

    cosF(x)=n=0(1)nx2nF2n!, (2.9)

    and

    sinF(x)=n=0(1)nx2n+1F2n+1!. (2.10)

    For arbitrary number k, Golden derivatives of ekxF, EkxF, cosF(kx), and sinF(kx) functions are

    FFx(ekxF)=kekxF, (2.11)
    FFx(EkxF)=kEkxF, (2.12)
    FFx(cosF(kx))=ksinF(kx), (2.13)

    and

    FFx(sinF(x))=kcosF(kx). (2.14)

    Using (2.4), Pashaev and Ozvatan [25] defined the Bernoulli-Fibonacci polynomials and related numbers. After that Kus et al. [26] introduced the Euler-Fibonacci numbers and polynomials. Moreover they gave some identities and matrix representations for Bernoulli-Fibonacci polynomials and Euler-Fibonacci polynomials. Very recently, Tuglu and Ercan [27] (also, [28]) defined the generalized Bernoulli-Fibonacci polynomials and generalized Euler-Fibonacci polynomials, namely, they studied the Apostol Bernoulli-Fibonacci and Apostol Euler-Fibonacci of order α as follows:

    (tλetF1)αextF=n=0Bαn,F(x;λ)tnFn!,

    and

    (2λetF+1)αextF=n=0Eαn,F(x;λ)tnFn!.

    Krot [23] defined the fibonomial convolution of two sequences as follows. Let an and bn are two sequences with the following generating functions

    AF(t)=n=0antnFn! and BF(t)=n=0bntnFn!,

    then their fibonomial convolution is defined as

    cn=anbn=nl=0(nk)Falbnl.

    So, the generating function takes the form

    CF(t)=AF(t)BF(t)=n=0cntnFn!.

    Let p,qR. The Taylor series of the functions eptFcosF(qt) and eptFsinF(qt) can be express as follows:

    eptFcosF(qt)=n=0Cn,F(p,q)tnFn!, (3.1)

    and

    eptFsinF(qt)=n=0Sn,F(p,q)tnFn!, (3.2)

    where

    Cn,F(p,q)=n2k=0(1)k(n2k)F pn2kq2k, (3.3)
    Sn,F(p,q)=n12k=0(1)k(n2k+1)F pn2k1q2k+1. (3.4)

    By virtue of above definitions of Cn,F(p,q) and Sn,F(p,q) and the numbers B(α)n,F(λ), E(α)n,F(λ) and G(α)n,F(λ), we can define two parametric types of the Apostol Bernoulli-Fibonacci polynomials, the Apostol Euler-Fibonacci polynomials, and the Apostol Genocchi-Fibonacci polynomials of order α, as follows:

    B(c,α)n,F(p,q;λ)=B(α)n,F(λ)Cn,F(p,q),
    B(s,α)n,F(p,q;λ)=B(α)n,F(λ)Sn,F(p,q),
    E(c,α)n,F(p,q;λ)=E(α)n,F(λ)Cn,F(p,q),
    E(s,α)n,F(p,q;λ)=E(α)n,F(λ)Sn,F(p,q),
    G(c,α)n,F(p,q;λ)=G(α)n,F(λ)Cn,F(p,q),
    G(s,α)n,F(p,q;λ)=G(α)n,F(λ)Sn,F(p,q),

    whose exponential generating functions are given, respectively, by

    (tλetF1)αeptFcosF(qt)=n=0B(c,α)n,F(p,q;λ)tnFn!, (3.5)
    (tλetF1)αeptFsinF(qt)=n=0B(s,α)n,F(p,q;λ)tnFn!, (3.6)
    (2λetF+1)αeptFcosF(qt)=n=0E(c,α)n,F(p,q;λ)tnFn!, (3.7)
    (2λetF+1)αeptFsinF(qt)=n=0E(s,α)n,F(p,q;λ)tnFn!, (3.8)
    (2tλetF+1)αeptFcosF(qt)=n=0G(c,α)n,F(p,q;λ)tnFn!, (3.9)
    (2tλetF+1)αeptFsinF(qt)=n=0G(s,α)n,F(p,q;λ)tnFn!. (3.10)

    Remark 3.1. By virtue of (3.5) and (3.6), when λ1, B(c,α)0,F(p,q;λ)=0 and when λ=1, B(c,α)0,F(p,q;1)=1. Moreover for λC, B(s,α)0,F(p,q;λ)=0.

    Remark 3.2. By virtue of (3.7), when λ=1, E(c,α)0,F(p,q;1) is undefined and when λ1, E(c,α)0,F(p,q;λ)=(2λ+1)α. Also, from (3.8), when λ1, E(s,α)0,F(p,q;λ)=0. For λ=1, E(s,α)0,F(p,q;1) is determined according to the values of α.

    Remark 3.3. By virtue of (3.9) and (3.10), when λ1, G(c,α)0,F(p,q;λ)=0 and λ=1, G(c,α)0,F(p,q;1)=(2)α. Moreover for λC, G(s,α)0,F(p,q;λ)=0.

    Remark 3.4. If we take α=1 and q=0 in (3.5), (3.7), and (3.9), we get Apostol Bernoulli-Fibonacci polynomials, Apostol Euler-Fibonacci polynomials, and Apostol Genocchi-Fibonacci polynomials

    teptFλetF1=n=0Bn,F(p;λ)tnFn!, (3.11)
    2eptFλetF+1=n=0En,F(p;λ)tnFn!, (3.12)
    2teptFλetF+1=n=0Gn,F(p;λ)tnFn!, (3.13)

    respectively. If we take p=0 in (3.11)–(3.13), we obtain Apostol Bernoulli-Fibonacci numbers Bn,F(λ), Apostol Euler-Fibonacci numbers En,F(λ), and Apostol Genocchi-Fibonacci numbers Gn,F(λ).

    Theorem 3.1. The following identities hold true:

    B(c,α)n,F(p+r,q;λ)=nk=0(1)(nk2)(nk)FB(c,α)k,F(p,q;λ)rnk, (3.14)

    and

    B(s,α)n,F(p+r,q;λ)=nk=0(1)(nk2)(nk)FB(s,α)k,F(p,q;λ)rnk. (3.15)

    Proof. By applying (3.5), we first derive the following functional equation:

    n=0B(c,α)n,F(p+r,q;λ)tnFn!=(tλetF1)αe(p+r)FtFcosF(qt)=(tλetF1)αeptFcosF(qt)ErtF,

    which readily yields

    n=0B(c,α)n,F(p+r,q;λ)tnFn!=(n=0B(c,α)n,F(p,q;λ)tnFn!)(n=0(1)(n2)(rt)nFn!)=n=0(nk=0(1)(nk2)(nk)FB(c,α)k,F(p,q;λ)rnk)tnFn!.

    Comparing the coefficients of tn on both sides of this last equation, we have

    B(c,α)n,F(p+r,q;λ)=nk=0(1)(nk2)(nk)FB(c,α)k,F(p,q;λ)rnk,

    which proves the result (3.14). The assertion (3.15) can be proved similarly.

    Remark 3.5. We claim that

    B(c,α)n,F(p+1,q;λ)B(c,α)n,F(p,q;λ)=n1k=0(1)(nk2)(nk)FB(c,α)k,F(p,q;λ),

    and

    B(s,α)n,F(p+1,q;λ)B(s,α)n,F(p,q;λ)=n1k=0(1)(nk2)(nk)FB(s,α)k,F(p,q;λ).

    Theorem 3.2. For every nN, following identities hold true:

    FFp{B(c,α)n,F(p,q;λ)}=FnB(c,α)n1,F(p,q;λ), (3.16)
    FFp{B(s,α)n,F(p,q;λ)}=FnB(s,α)n1,F(p,q;λ), (3.17)
    FFq{B(c,α)n,F(p,q;λ)}=FnB(s,α)n1,F(p,q;λ), (3.18)

    and

    FFq{B(s,α)n,F(p,q;λ)}=FnB(c,α)n1,F(p,q;λ). (3.19)

    Proof. Using (3.5) and applying the Golden derivative operator FFp, we obtain

    n=0FFp{B(c,α)n,F(p,q;λ)}tnFn!=FFp{(tλetF1)αeptF}cosF(qt)=t(tλetF1)αeptFcosF(qt)=n=0B(c,α)n,F(p,q;λ)tn+1Fn!=n=1B(c,α)n1,F(p,q;λ)tnFn1!.

    By comparing the coefficients of tn on both sides of this last equation, we arrive at the desired result (3.16). To prove (3.18), using (3.5) and applying the Golden derivative operator FFq, we find that

    n=0FFq{B(c,α)n,F(p,q;λ)}tnFn!=FFq{(tλetF1)αeptFcosF(qt)}=FFq{cosF(qt)}(tλetF1)αeptF=tsinF(qt)(tλetF1)αeptF=n=1B(s,α)n1,F(p,q;λ)tnFn1!.

    Comparing the coefficients of tn on both sides of this last equation, we arrive at the desired result (3.18). Equations (3.17) and (3.19) can be similarly derived.

    Theorem 3.3. The following identities hold true:

    B(c,1)n,F(p,q;λ)=nk=0(nk)FBk,F(λ)Cnk(p,q), (3.20)

    and

    B(s,1)n,F(p,q;λ)=nk=0(nk)FBk,F(λ)Snk(p,q). (3.21)

    Proof. Setting α=1 in (3.5) and using (3.1), we find that

    n=0B(c,1)n,F(p,q;λ)tnFn!=tλetF1eptFcosF(qt)=(n=0Bn,F(p;λ)tnFn!)(n=0Cn,F(p,q)tnFn!)=n=0(nk=0(nk)FBk,F(λ)Cnk(p,q))tnFn!.

    Comparing the coefficients of tn on both sides of this last equation, we arrive at the desired result (3.20). Equation (3.21) can be similarly derived.

    Theorem 3.4. The following identities hold true:

    B(c,1)n,F(p,q;λ)=n2k=0(1)kq2k(n2k)FBn2k,F(p;λ), (3.22)

    and

    B(s,1)n,F(p,q;λ)=n12k=0(1)kq2k+1(n2k+1)FBn2k1,F(p;λ). (3.23)

    Proof. Setting α=1 in (3.5) and using (2.9), we find that

    n=0B(c,1)n,F(p,q;λ)tnFn!=tλetF1eptFcosF(qt)=(n=0Bn,F(p;λ)tnFn!)(n=0(1)nq2nt2nF2n!)=n=0(n2k=0(1)kq2k(n2k)FBn2k,F(p;λ))tnFn!.

    Comparing the coefficients of tn on both sides of this last equation, we arrive at the desired result (3.22). Equation (3.23) can be similarly derived.

    Theorem 3.5. The following identities hold true:

    Cn,F(p,q)=λnk=01Fk+1(nk)FB(c,1)nk,F(p,q;λ)+(λ1)Fn+1B(c,1)n+1,F(p,q;λ), (3.24)

    and

    Sn,F(p,q)=λnk=01Fk+1(nk)FB(s,1)nk,F(p,q;λ)+(λ1)Fn+1B(s,1)n+1,F(p,q;λ). (3.25)

    Proof. Using the following equation for the proof of (3.24), we have

    eptFcosF(qt)=λetF1ttλetF1eptFcosF(qt)n=0Cn,F(p,q)tnFn!=(λn=0tn1Fn!1t)(n=0B(c,1)n,F(p,q;λ)tnFn!)=(λn=1tn1Fn!+λ1t)(n=0B(c,1)n,F(p,q;λ)tnFn!).

    Considering B(c,1)0,F(p,q;λ)=0, and doing some calculations, we arrive at the desired result (3.24). Equation (3.25) can be similarly derived.

    Theorem 3.6. The following identities hold true:

    B(c,1)n,F(p,q;λ)=nk=0pk(nk)FB(c,1)nk,F(q;λ), (3.26)

    and

    B(s,1)n,F(p,q;λ)=nk=0pk(nk)FB(s,1)nk,F(q;λ). (3.27)

    Proof. By applying (3.5), we have

    n=0B(c,1)n,F(p,q;λ)tnFn!=tλetF1eptFcosF(qt)=(n=0B(c,1)n,F(q;λ)tnFn!)(n=0pntnFn!)=n=0(nk=0pk(nk)FB(c,1)nk,F(q;λ))tnFn!.

    Comparing the coefficients of tn on both sides of this last equation, we arrive at the desired result (3.26). Equation (3.27) can be similarly derived.

    Theorem 3.7. Determinantal forms of the cosine and sine Apostol Bernoulli-Fibonacci polynomials are given by

    B(c,1)n+1,F(p,q;λ)=1(λ1)n+2|Fn+1Cn,F(p,q)λFn+1λFn+1(n1)Fλ(nn)FFnCn1,F(p,q)λ1λFn(n10)Fλ(n1n1)FFn1Cn2,F(p,q)0λ1λ(n2n2)FF0C1,F(p,q)00λ1|,

    and

    B(s,1)n+1,F(p,q;λ)=1(λ1)n+2|Fn+1Sn,F(p,q)λFn+1λFn+1(n1)Fλ(nn)FFnSn1,F(p,q)λ1λFn(n10)Fλ(n1n1)FFn1Sn2,F(p,q)0λ1λ(n2n2)FF0S1,F(p,q)00λ1|.

    Proof. Equation (3.24) cause the system of unknown (n+2)-equations with B(c,1)n,F(p,q;λ), (n=0,1,2,). Then we apply the Cramer's rule to solve this equation. We obtain the desired result. In a similar way, we can obtain the determinantal form for sine Apostol Bernoulli-Fibonacci polynomials.

    In subsections 3.2 and 3.3, we give the some basic properties of the polynomials E(c,α)n,F(p,q;λ), E(s,α)n,F(p,q;λ), G(c,α)n,F(p,q;λ), and G(s,α)n,F(p,q;λ). Their proofs run parallel to those of the results presented in this subsection; so, the proofs are omitted.

    Theorem 3.8. The following identities hold:

    E(c,α)n,F(p+r,q;λ)=nk=0(1)(nk2)(nk)FE(c,α)k,F(p,q;λ)rnk

    and

    E(s,α)n,F(p+r,q;λ)=nk=0(1)(nk2)(nk)FE(s,α)k,F(p,q;λ)rnk.

    Remark 3.6. We claim that

    E(c,α)n,F(p+1,q;λ)E(c,α)n,F(p,q;λ)=n1k=0(1)(nk2)(nk)FE(c,α)k,F(p,q;λ),
    E(s,α)n,F(p+1,q;λ)E(s,α)n,F(p,q;λ)=n1k=0(1)(nk2)(nk)FE(s,α)k,F(p,q;λ).

    Theorem 3.9. For every nN, following identities hold true:

    FFp{E(c,α)n,F(p,q;λ)}=FnE(c,α)n1,F(p,q;λ),
    FFp{E(s,α)n,F(p,q;λ)}=FnE(s,α)n1,F(p,q;λ),
    FFq{E(c,α)n,F(p,q;λ)}=FnE(s,α)n1,F(p,q;λ),

    and

    FFq{E(s,α)n,F(p,q;λ)}=FnE(c,α)n1,F(p,q;λ).

    Theorem 3.10. The following identities hold true:

    E(c,1)n,F(p,q;λ)=nk=0(nk)FEk,F(λ)Cnk(p,q),

    and

    E(s,1)n,F(p,q;λ)=nk=0(nk)FEk,F(λ)Snk(p,q).

    Theorem 3.11. The following identities hold true:

    E(c,1)n,F(p,q;λ)=n2k=0(1)kq2k(n2k)FEn2k,F(p;λ),

    and

    E(s,1)n,F(p,q;λ)=n12k=0(1)kq2k+1(n2k+1)FEn2k1,F(p;λ).

    Theorem 3.12. The following identities hold true:

    Cn,F(p,q)=12E(c,1)n,F(p,q;λ)+λ2nk=0(nk)FE(c,1)nk,F(p,q;λ),

    and

    Sn,F(p,q)=12E(s,1)n,F(p,q;λ)+λ2nk=0(nk)FE(s,1)nk,F(p,q;λ).

    Theorem 3.13. The following identities hold true:

    E(c,1)n,F(p,q;λ)=nk=0pk(nk)FE(c,1)nk,F(q;λ),

    and

    E(s,1)n,F(p,q;λ)=nk=0pk(nk)FE(s,1)nk,F(q;λ).

    Theorem 3.14. Determinantal forms of the cosine and sine Apostol Euler-Fibonacci polynomials are given by

    E(c,1)n,F(p,q;λ)=(2λ+1)n+1|Cn,F(p,q)λ2(n1)Fλ2(n2)Fλ2(nn)FCn1,F(p,q)λ+12λ2(n11)Fλ2(n1n1)FCn2,F(p,q)0λ+12λ2(n2n2)FC0,F(p,q)00λ+12|,

    and

    E(s,1)n,F(p,q;λ)=(2λ+1)n+1|Sn,F(p,q)λ2(n1)Fλ2(n2)Fλ2(nn)FSn1,F(p,q)λ+12λ2(n11)Fλ2(n1n1)FSn2,F(p,q)0λ+12λ2(n2n2)FS0,F(p,q)00λ+12|.

    Theorem 3.15. The following identities hold true:

    G(c,α)n,F(p+r,q;λ)=nk=0(1)(nk2)(nk)FG(c,α)k,F(p,q;λ)rnk,

    and

    G(s,α)n,F(p+r,q;λ)=nk=0(1)(nk2)(nk)FG(s,α)k,F(p,q;λ)rnk.

    Remark 3.7. We claim that

    G(c,α)n,F(p+1,q;λ)G(c,α)n,F(p,q;λ)=n1k=0(1)(nk2)(nk)FG(c,α)k,F(p,q;λ),
    G(s,α)n,F(p+1,q;λ)G(s,α)n,F(p,q;λ)=n1k=0(1)(nk2)(nk)FG(s,α)k,F(p,q;λ).

    Theorem 3.16. For every nN, following identities hold true:

    FFp{G(c,α)n,F(p,q;λ)}=FnG(c,α)n1,F(p,q;λ),
    FFp{G(s,α)n,F(p,q;λ)}=FnG(s,α)n1,F(p,q;λ),
    FFq{G(c,α)n,F(p,q;λ)}=FnG(s,α)n1,F(p,q;λ),

    and

    FFq{G(s,α)n,F(p,q;λ)}=FnG(c,α)n1,F(p,q;λ).

    Theorem 3.17. The following identities hold true:

    G(c,1)n,F(p,q;λ)=nk=0(nk)FGk(λ)Cnk(p,q),

    and

    G(s,1)n,F(p,q;λ)=nk=0(nk)FGk,F(λ)Snk(p,q).

    Theorem 3.18. The following identities hold true:

    G(c,1)n,F(p,q;λ)=n2k=0(1)kq2k(n2k)FGn2k,F(p;λ),

    and

    G(s,1)n,F(p,q;λ)=n12k=0(1)kq2k+1(n2k+1)FGn2k1,F(p;λ).

    Theorem 3.19. The following identities hold true:

    Cn,F(p,q)=λ2nk=01Fk+1(nk)FG(c,1)nk,F(p,q;λ)+λ+12Fn+1G(c,1)n+1,F(p,q;λ),

    and

    Sn,F(p,q)=λ2nk=01Fk+1(nk)FG(s,1)nk,F(p,q;λ)+λ+12Fn+1G(s,1)n+1,F(p,q;λ).

    Theorem 3.20. The following identities hold true:

    G(c,1)n,F(p,q;λ)=nk=0pk(nk)FG(c,1)nk,F(q;λ),

    and

    G(s,1)n,F(p,q;λ)=nk=0pk(nk)FG(s,1)nk,F(q;λ).

    Theorem 3.21. Determinantal forms of the cosine and sine Apostol Genocchi-Fibonacci polynomials are given by

    G(c,1)n+1,F(p,q;λ)=(2λ+1)n+2|Fn+1Cn,F(p,q)λ2Fn+1(n0)Fλ2Fn+1(n1)Fλ2(nn)FFnCn1,F(p,q)λ+12λ2Fn(n10)Fλ2(n1n1)FFn1Cn2,F(p,q)0λ+12λ2(n2n2)F000λ+12|,

    and

    G(s,1)n+1,F(p,q;λ)=(2λ+1)n+2|Fn+1Sn,F(p,q)λ2Fn+1(n0)Fλ2Fn+1(n1)Fλ2(nn)FFnSn1,F(p,q)λ+12λ2Fn(n10)Fλ2(n1n1)FFn1Sn2,F(p,q)0λ+12λ2(n2n2)F000λ+12|.

    Our aim in this article is to define the F-analogues of the parametric types of the Apostol Bernoulli, the Apostol Euler, and the Apostol Genocchi polynomials studied by Srivastava et al. [15,19]. Namely, we have defined parametric types of the Apostol Bernoulli-Fibonacci, the Apostol Euler-Fibonacci, and the Apostol Genocchi-Fibonacci polynomials using the Golden calculus and investigated their properties. In our future work, we plan to define the parametric types of some special polynomials with the help of Golden calculus and to obtain many combinatorial identities with the help of their generating functions.

    All authors declare no conflicts of interest in this paper.



    [1] G. C. Wu, A fractional variational iteration method for solving fractional nonlinear differential equations, Comput. Math. Appl., 61 (2011), 2186-2190.
    [2] J. Ji, J. B. Zhang, Y. J. Dong, The fractional variational iteration method improved with the Adomian series, Appl. Math. Lett., 25 (2012), 2223-2226. doi: 10.1016/j.aml.2012.06.007
    [3] M. T. Gencoglu, H. M. Baskonus, H. Bulut, Numerical simulations to the noninear model of interpersonal relationship with time fractional derivative, AIP Conf. Proc., 1798 (2017), 020103.
    [4] S. Guo, L. Mei, The fractional variational iteration method using He's polynomial, Phys. Lett. A, 375 (2011), 309-313. doi: 10.1016/j.physleta.2010.11.047
    [5] A. R. Seadawy, Approximation solutions to derivative nonlinear Schrodinger equation with computational applications by variational method, Eur. Phys. J. Plus, 130 (2015), 182.
    [6] A. M. A. El-Sayed, S. H. Behiry, W. E. Raslan, Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation, Comput. Math. Appl., 59 (2010), 1759-1765. doi: 10.1016/j.camwa.2009.08.065
    [7] A. M. A. El-Sayedand, M. Gaber, The Adomian's decomposition method for solving partial differential equation of fractional orderin finite domains, Phys. Lett. A, 359 (2006), 175-182. doi: 10.1016/j.physleta.2006.06.024
    [8] S.S. Ray, A new approach for the application of Adomian's decomposition method for the solution to fractional space diffusion equation with insulated ends, Appl. Math. Comput., 202 (2008), 544-549.
    [9] Z. Odibat, S. Momani, A Generalized Differential Transform Method for Linear Partian Differential Equations of fractional Order, Appl. Math. Lett., 21 (2008), 194-199.
    [10] V. S. Erturk, S. Momani, Z. Odibat, Application of Generalized Transformation Method to Multi-order Fractional Differential Equations, Commun. Nonlinear. Sci., 13 (2008), 1642-1654. doi: 10.1016/j.cnsns.2007.02.006
    [11] M. Yavuz, N. Ozdemir, H. M. Baskonus, Solution of fractional partial differential equation using the operator involving non-singular kernal, Eur. Phys. J. Plus, 133 (2018), 1-12. doi: 10.1140/epjp/i2018-11804-8
    [12] D. Kumar, J. Singh, H. M. Baskonus, et al., An effective computational approach for solving local fractional Telegraph equations, Nonlinear. Sci. Lett. A, 8 (2017), 200-206.
    [13] M. Dehghan, J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method, Z. Naturforsch., 64 (2009), 420-430.
    [14] M. Dehghan, J. Manafian, A. Saadatmandi, Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl. Sci., 33 (2010), 1384-1398.
    [15] A. R. Seadawy, The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrodinger equation and its solutions, Optic, 139 (2017), 31-43.
    [16] M. L. Wang, X. Z. Li, J. L. Zhang, The (G'/G)-expansion method and the traveling wave solutions to nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417-423. doi: 10.1016/j.physleta.2007.07.051
    [17] B. Zhang, (G'/G)-expansion method for solving fractional partial differential equation in the theory of mathematical physics, Commun. Theor. Phys., 58 (2012), 623-630.
    [18] M. A. Akbar, N. H. M. Ali, E. M. E. Zayed, A generalized and improved (G'/G)-expansion method for nonlinear evolution equation, Math. Probl. Eng., 20 (2012), 12-22.
    [19] M. A. Akbar, N. H. M. Ali, E. M. E. Zayed, Abundant exact traveling wave solutions to the generalized Bretherton equation via the improved (G'/G)-expansion method, Commun. Theo. Phys., 57 (2012), 173-178. doi: 10.1088/0253-6102/57/2/01
    [20] H. M. Baskonusand H. Bulut, Regarding the prototype solutions for the nonlinear fractional order biological population model, AIP Conf. proc., 1738 (2016), 290004.
    [21] H. Bulut, G. Yel, H. M. Baskonus, An application of improved Bernoulli sub-equation function method to the nonlinear time fractional Burgers equation, Tur. J. Math. Comput. Sci., 5 (2016), 1-17.
    [22] M. Foroutan, I. Zamanpour, J. manafian, Applications of IBSOM and ETEM for solving the nonlinear chains of atoms with long range interactions, Eur. Phys. J. Plus, 132 (2017), 421.
    [23] M. Foroutan, J. Manafian, A. Ranjbaran, Lump solution and its interaction to (3+1)-D potential-YTSF equation, Nonlinear. Dynam., 92 (2018), 2077-2092. doi: 10.1007/s11071-018-4182-5
    [24] A. Esen, T. A. Sulaiman, H. Bulut, et al. Optical solutions to the space time fractional (1+1)-dimensional couple nonlinear Schrodinger equation, Optic, 167 (2018), 150-156.
    [25] J. Manafian, On the complex structure of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, Eur. Phys. J. Plus, 130 (2015), 1-20. doi: 10.1140/epjp/i2015-15001-1
    [26] M. Dehghan, J. Manafian, A. Saadatmandi, Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method, Int. J. Mod. Phys. B, 25 (2011), 2965-2981. doi: 10.1142/S021797921110148X
    [27] M. A. Akbar, N. H. M. Ali, New solitary and periodic solutions to nonlinear evolution equation by Exp- function method, World Appl. Sci. J., 17 (2012),1603-1610.
    [28] B. Lu, Backlund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations, Phys. Lett. A, 376 (2012), 2045-2048. doi: 10.1016/j.physleta.2012.05.013
    [29] S. M. Guo, L. Q. Mei, Y. Li, et al. The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys. Lett. A., 376 (2012), 407-411. doi: 10.1016/j.physleta.2011.10.056
    [30] S. Zhang, H. Q. Zhang, Fractional sub-equation method and its application to the nonlinear fractional PDEs, Phys. Lett. A, 375 (2011), 1069-1073. doi: 10.1016/j.physleta.2011.01.029
    [31] B. Lu, The first integral method for some time fractional differential equation, J. Math. Anal. Appl., 395 (2012), 684-693. doi: 10.1016/j.jmaa.2012.05.066
    [32] A. Bekir, O. Guner, O. Unsal, The First Integral Method for exact Solutions to nonlinear Fractional Differential Equation, J. Compt. Nonlinear. Dynam., 10 (2015).
    [33] M. H. Uddin, M. A. Akbar, M. A. Khan, et al. Close Form Solutions to the Fractional Generalized Reaction Duffing Model and the Density Dependent Fractional Diffusion Reaction Equation, Appl. Comput. Math., 6 (2017), 177-184. doi: 10.11648/j.acm.20170604.13
    [34] L. X. Li, E. Q. Li, M. L. Wang, The (G'/G)-expansion method and its application to travelling wave solutions to the Zakharovequation, Appl. Math. B., 25 (2010), 454-462. doi: 10.1007/s11766-010-2128-x
    [35] E. M. E. Zayed, M. A. M. Abdelaziz, The two variable (G'/G)-expansion method for solving the nonlinear KdV-mkdV equation, Math. Probl. Eng., 2012 (2012), 725061.
    [36] H. M. Baskonus, H. Bulut, On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method, Open Math., 13 (2015), 547-556.
    [37] S. H. Seyedi, B. N. Saray, A. Ramazani, On the multiscale simulation of squeezing nanofluid flow by a highprecision scheme, Power Tech., 340 (2018), 264-273. doi: 10.1016/j.powtec.2018.08.088
    [38] S. H. Seyedi, B. N. Saray, M. R. H. Nobari, Using interpolation scaling functions based on Galerkin method for solving non-Newtonian fluid flow between two vertical flat plates, Appl. Math. Comput., 269 (2015), 488-496.
    [39] J. F. Alzaidy, Fractional sub-equation method and its application to the space time fractional differential equation in mathematical physics, British J. Math. Comput. Sci., 3 (2013), 153-163. doi: 10.9734/BJMCS/2013/2908
    [40] S. M. Ege, E. Misirli, The modified Kudryashov method for solving some fractional order nonlinear equations, Adv. Differ. Equations, 2014 (2014).
    [41] A. Bekir, O. Guner, O. Unsal, The first integral method for exact solution to nonlinear fractional differential equations, J. Comput. Nonlinear Dynam., 10 (2015) 021020.
    [42] M. Song, C. Yang, Exact traveling wave solutions to the Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation, Appl. Math. Comput., 216 (2010), 3234-3243.
    [43] E. Aksoy, M. Kaplan, A. Bekir, Exponential rational function method for space time fractional differential equation, J. Waves Random. Complex Media, 26 (2016) 142-151.
    [44] M. Ekici, E. M. E. Zayed, A. Sonmezoglu, A new fractional sub-equation for solving the space time fractional differential equation in mathematical physics, Comput. Methods Differ. Equations, 2 (2014), 153-170.
    [45] R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
    [46] Y. Cenesiz, D. Baleanu, A. Kurt, et al. New exact solution to Burgers' type equations with conformable derivative, J. Waves Random. Complex Media, 27 (2016), 103-116.
    [47] A. M. Wazwaz, Partial Differential Equations and Solitary Wave Theory, New York: Springer, 2009.
    [48] S. T. Mohyud-Din, S. Bibi, Exact solutions for nonlinear fractional differential equations using (G'/G)-expansion method, Alexandria Eng. J., 57 (2018), 1003-1008. doi: 10.1016/j.aej.2017.01.035
  • This article has been cited by:

    1. Hao Guan, Waseem Ahmad Khan, Can Kızılateş, Cheon Seoung Ryoo, On Certain Properties of Parametric Kinds of Apostol-Type Frobenius–Euler–Fibonacci Polynomials, 2024, 13, 2075-1680, 348, 10.3390/axioms13060348
    2. Maryam Salem Alatawi, Waseem Ahmad Khan, Can Kızılateş, Cheon Seoung Ryoo, Some Properties of Generalized Apostol-Type Frobenius–Euler–Fibonacci Polynomials, 2024, 12, 2227-7390, 800, 10.3390/math12060800
    3. Ugur Duran, Mehmet Acikgoz, A note on Fibonacci-Hermite polynomials, 2025, 117, 0350-1302, 91, 10.2298/PIM2531091D
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5092) PDF downloads(1273) Cited by(18)

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog