Processing math: 100%
Research article Special Issues

Homogenization of nonlinear hyperbolic problem with a dynamical boundary condition

  • In this work, we look at homogenization results for nonlinear hyperbolic problem with a non-local boundary condition. We use the periodic unfolding method to obtain a homogenized nonlinear hyperbolic equation in a fixed domain. Due to the investigation's peculiarity, the unfolding technique must be developed with special attention, creating an unusual two-scale model. We note that the non-local boundary condition caused a damping on the homogenized model.

    Citation: Mogtaba Mohammed. Homogenization of nonlinear hyperbolic problem with a dynamical boundary condition[J]. AIMS Mathematics, 2023, 8(5): 12093-12108. doi: 10.3934/math.2023609

    Related Papers:

    [1] Naveed Iqbal, Azmat Ullah Khan Niazi, Ikram Ullah Khan, Rasool Shah, Thongchai Botmart . Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order $ (1, 2) $. AIMS Mathematics, 2022, 7(5): 8891-8913. doi: 10.3934/math.2022496
    [2] Kui Liu . Stability analysis for $ (\omega, c) $-periodic non-instantaneous impulsive differential equations. AIMS Mathematics, 2022, 7(2): 1758-1774. doi: 10.3934/math.2022101
    [3] Jiali Yu, Yadong Shang, Huafei Di . Existence and nonexistence of global solutions to the Cauchy problem of thenonlinear hyperbolic equation with damping term. AIMS Mathematics, 2018, 3(2): 322-342. doi: 10.3934/Math.2018.2.322
    [4] Manal Alfulaij, Mohamed Jleli, Bessem Samet . A hyperbolic polyharmonic system in an exterior domain. AIMS Mathematics, 2025, 10(2): 2634-2651. doi: 10.3934/math.2025123
    [5] Heping Jiang . Complex dynamics induced by harvesting rate and delay in a diffusive Leslie-Gower predator-prey model. AIMS Mathematics, 2023, 8(9): 20718-20730. doi: 10.3934/math.20231056
    [6] Feiting Fan, Xingwu Chen . Dynamical behavior of traveling waves in a generalized VP-mVP equation with non-homogeneous power law nonlinearity. AIMS Mathematics, 2023, 8(8): 17514-17538. doi: 10.3934/math.2023895
    [7] Mohamed Jleli, Bessem Samet . On a nonlinear time-fractional cable equation. AIMS Mathematics, 2024, 9(9): 23584-23597. doi: 10.3934/math.20241146
    [8] Said Mesloub, Hassan Altayeb Gadain, Lotfi Kasmi . On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms. AIMS Mathematics, 2024, 9(2): 2964-2992. doi: 10.3934/math.2024146
    [9] Jing Zhang, Shengmao Fu . Hopf bifurcation and Turing pattern of a diffusive Rosenzweig-MacArthur model with fear factor. AIMS Mathematics, 2024, 9(11): 32514-32551. doi: 10.3934/math.20241558
    [10] Juan Wang, Wenzhen Qu, Xiao Wang, Rui-Ping Xu . Stress analysis of elastic bi-materials by using the localized method of fundamental solutions. AIMS Mathematics, 2022, 7(1): 1257-1272. doi: 10.3934/math.2022074
  • In this work, we look at homogenization results for nonlinear hyperbolic problem with a non-local boundary condition. We use the periodic unfolding method to obtain a homogenized nonlinear hyperbolic equation in a fixed domain. Due to the investigation's peculiarity, the unfolding technique must be developed with special attention, creating an unusual two-scale model. We note that the non-local boundary condition caused a damping on the homogenized model.



    The study of integral-type, non-local boundary conditions are fascinating area of rapidly evolving differential equations theory. Non-local boundary conditions are useful in a variety of contexts, including wave equations, electric conduction, petroleum exploitation, heat diffusion, and the elastic behavior of perforated materials, see for instance [1,15,24,26]. Mathematicians, engineers and applied scientist intensively invest gated problems with non-local boundary conditions, from theoretical and computational point of views, see for instance [7,10,17,18,19]. For homogenization for boundary value problems with Dirichlet Nuemann and Robin conditions, we refer to [9,12,14]. The first work dealing with homogenization for non-local boundary problems we refer to [10], where the authors investigated the periodic homogenization using the periodic unfolding techniques for the elastic torsion problem of an infinite 3-dimensional rod along with the overall electro-conductivity problem within presence of a significant number of excellent conductors. Their results were further developed to time-dependent problems by Amar et al. in [2,3], where the authors obtained homogenization for classes of linear parabolic problems with non-local boundaries using the periodic unfolding techniques. The results in [2] are for a linear parabolic problem with special oscillations in the coefficients, whereas the results in [3] are for a linear parabolic problem with time space oscillations in the coefficients. To the best of the author's knowledge, there are no results for homogenization of boundary value problems with non-local boundary conditions in the hyperbolic framework. The goal of this paper is to extend the results of [2] by looking into homogenization results for a nonlinear hyperbolic problem with a non-local boundary condition involving the solution's time derivative. The author's forthcoming studies will concentrate on homogenization of hyperbolic problems with nonlocal boundary conditions when the coefficients oscillate in both the space and time variables at different scales, which is more technical and requires more complicated analysis. As for homogenization of deterministic linear hyperbolic problems with Dirichlet and Neumann boundary conditions, we refer to [16] and the references therein. For homogenization for nonlinear hyperbolic problems with Dirichlet boundary condition, see [25], where the authors obtained homogenization for similar model to the one in this paper, but with Dirichlet condition using multi-scale convergence in fixed domain. We also mention the work on homogenization of hyperbolic SPDEs, see [20,21,22]. Here, we consider the following nonlinear hyperbolic problem with non-local boundary condition.

    {2vϵt2div(Aϵvϵ)+βϵ(vϵ,vϵ)=f in Dϵ×(0,T),γvϵt=1ϵnΓϵηvϵνϵAϵdσx on Γϵη×(0,T),ηXϵ,vϵ=Bη(t) on Γϵη×(0,T),ηXϵ,vϵ(0,x)=vϵt(0,x)=0 in D,vϵ=0 on D×(0,T). (1.1)

    For all (x,y,t)D×Yx×(0,T). The domain in which this problem is studied is described further below.

    F is an open subset of Rn such that F+z=F for all zZn.

    Yx=(0,1)×(0,1)××(0,1)Rn.

    Fu=FYx, Fs=YxˉF, Γ=FYx and FuYx=ϕ which implies that Fu=Γ.

    D is an open connected and bounded subset of Rn and and DT=D×(0,T).

    Xϵ={ηZn:ϵ(η+Yx)D}, where ϵ represents a sequence of positive real numbers that tends to zero.

    Fϵη:=ϵ(Fu+η) and Γϵη=Fϵη.

    Fϵ=ηXϵFϵη is disconnected with smooth boundary and Γϵ=Fϵ.

    Dϵ=D¯Fϵ is connected.

    ν is the unit outward normal on Γ and it is extended to Rn by periodicity.

    νϵ=ν(xϵ) is the unit outward normal on Γϵ.

    Let us mention that vϵνϵAϵ=ni,j=1ai,j(xϵ)νj(xϵ)vϵxi. For a better understanding of the domain, we add Figure 1.

    Figure 1.  The domain Dϵ.

    Let us state our data assumptions.

    (H1) Bη(t) is a constant function with respect to the spatial variable x depending on η and t.

    (H2) A=(ai,j)1i,jn a symmetric matrix such that ai,jL(D;Lper(Yx)) where Aϵ(x)=A(x,xϵ) such that

    α1|ξ|2A(x,y)ξξα2|ξ|2, for all ξRn,α1,α2>0. (1.2)

    (H3) βϵ(t,x,vϵ,vϵ)=β(xϵ,vϵ,vϵ) is measurable with respect to (φ,ψ)R×Rn and Yx-periodic with respect to the first arguments, such that

    (a) |β(y,φ,ψ)|c0(1+|φ|r+1+|ψ|).

    (b) β(y,φ,ψ)Φc1|φ|rφΦc2(1+|Φ||ψ|).

    (c) |φβ(y,φ,ψ)|c0(1+|φ|r).

    (d) |ψβ(y,φ,ψ)|c3.

    (e) For all (φ1,ψ1,Φ1), (φ2,ψ3,Φ2)R×Rn×R, we have

    (β(y,φ1,ψ1)β(y,φ2,ψ2))(Φ1Φ2)c4(|φ1|r+|φ2|r)|φ1φ2||Φ1Φ2|c5|ψ1ψ2||Φ1Φ2|, (1.3)

    where c0,c1,,c5 are positive constants and

    {r[1,), if n=1,2,r[1,nn2), if n3. (1.4)

    (H4) γ>0.

    (H5) fL2(DT).

    We shall refer to both the original function and its extension to the entire of D as vϵ for the simplicity's sake. Following [2,10], we introduce the following spaces

    Hϵ={φL2(0,T;Wϵ0):φtL2(0,T;L2ϵ)}, (1.5)
    Hϵ1={φL2(0,T;L2ϵ):φtL2(0,T;[Wϵ0])}, (1.6)

    where, see [10]

    L2ϵ={φL2(D):φ|Fϵη=Cη for all ηXϵ},
    Wϵ0={φW1,20(D):φ|Fϵη=Cη for all ηXϵ},

    and [Wϵ0] is the dual space of Wϵ0. The existence and uniqueness results for system (1.1) for fixed ϵ>0, are obtained by combining ideas from [1,8]. With this, we can write system (1.1) in the following weak formulation:

    T0Dϵ2vϵt2φdxdt+T0DϵAϵvϵφdxdt+T0Dϵβϵ(vϵ,vϵ)φdxdt+ηXϵT0ΓϵηvϵνϵAϵφdσxdt=T0Dϵfφdxdt, (1.7)

    for all φD(D)×(0,T). For a better formulation of our system we introduce the following set of test function

    Uϵ={φϵD(D):φϵ|Fϵη=Cη for all ηXϵ}. (1.8)

    Now, testing our problem by a function from the set Uϵ, we have

    T0Dϵ2vϵt2φϵdxdt+T0DϵAϵvϵφϵdxdt+T0Dϵβϵ(vϵ,vϵ)φϵdxdt+γ|Fu|T0Fϵvϵtφϵdxdt=T0Dϵfφϵdxdt. (1.9)

    Since vϵ is somehow taken to be constant in each Fϵη, we may take φϵ=2vϵt in (1.9). We have

    2t0Dϵ2vϵt2vϵtdxdt+2t0DϵAϵvϵ(vϵt)dxdt+2t0Dϵβϵ(vϵ,vϵ)vϵtdxdt+2γ|Fu|t0Fϵvϵtvϵtdxdt=2t0Dϵfvϵtdxdt. (2.1)

    Simple calculations on the first and second terms of (2.1) give

    vϵt(t)2L2ϵ+(Aϵvϵ(t),vϵ(t))L2ϵ+2t0Dϵβϵ(vϵ,vϵ)vϵtdxdt+2γ|Fu|t0Fϵvϵtvϵtdxdt=2t0Dϵfvϵtdxdt. (2.2)

    From (H3(b)), we see that

    2t0Dϵβ(xϵ,vϵ,vϵ)vϵtdxdt2c1t0Dϵ|vϵ|rvϵvϵtdxdt2c2t0Dϵ(1+|vϵt||vϵ|)dxdt=2c1r+2Dϵt0t(|vϵ|r+2)dtdx2c2t0Dϵ(1+|vϵt||vϵ|)dxdt=2c1r+2vϵ(t)r+2Lr+2ϵ2c2t0Dϵ(1+|vϵt||vϵ|)dxdt. (2.3)

    Using (H2), (H4), (2.3) and Young's inequality, we get

    supt[0,T]vϵt(t)2L2ϵ+α1supt[0,T]vϵ(t)2L2ϵ+2c1r+2supt[0,T]vϵ(t)r+2Lr+2ϵ+2α3|Fu|T0Fϵ|vϵt|2dxdtL1+L2T0{vϵt(t)2L2ϵ+vϵ(t)2L2ϵ}dt. (2.4)

    This inequality and Grownall's inequality gives

    supt[0,T]vϵt(t)2L2ϵ+supt[0,T]vϵ(t)2L2ϵ+supt[0,T]vϵ(t)r+2Lr+2ϵC. (2.5)

    From (H3(a)), one easily see that

    Dϵ|β(xϵ,vϵ,vϵ)|2dxCDϵ(1+|vϵ|2(r+1)+|vϵ|2)dxC(1+vϵ2(r+1)L2(r+1)ϵ+vϵ2L2ϵ). (2.6)

    Thanks to this and (2.5), we claim that β(xϵ,vϵ,vϵ) belongs to L2(DϵT), by which and the leading equation in (1.1) we have that

    2vϵt2L2(0,T;[Wϵ0]).

    In this section, we give some definitions and properties of the time-space periodic unfolding operator, that was essentially given in [2], see also [4,5]. For this, we set

    ˆDϵ=Int{ηXϵϵ(η+ˉYx)} and Λϵx,t=ˆDϵ×(0,T).

    Yϵx=ϵ([ϵ1x]Yx+Yx) x=ϵ([xϵ1]Yx+{xϵ1}Yx), where [a] is the integer part of any real number a.

    Definition 3.1. [2,4] Let u be a Lebesgue measurable function on the set D×(0,T), then we define the periodic unfolding operator for this function as

    Tϵ(u)(t,x,y)={u(ϵ[xϵ1]Yx+ϵy,t)(t,x,y)Λϵx,t×Yx,0otherwise.

    If u is an integrable function in D×(0,T), we define the average operator as:

    Aϵ(u)(t,x)={(ϵn)1Yϵxu(t,y)dy(t,x)Λϵx,t,0otherwise.

    Note that

    Aϵ(u)(t,x)=YxTϵ(u)(t,x,y,τ)dydτ=MYx(Tϵ(u))(t,x),

    where MV stands for the usual integral average on the set V. We also define the oscillation operator as

    Oϵ(φ)(t,x,y)=Tϵ(φ)(t,x,y)Aϵ(φ)(t,x).

    The following proposition gives some of the main properties for the time-space unfolding operator:

    Proposition 3.1. [2,4,10] The operator Tϵ:L2(D×(0,T))L2(D×(0,T);L2(E)) satisfies the following:

    (1) Tϵ is linear, continuous and

    Tϵ(φ1φ2)=Tϵ(φ1)Tϵ(φ2),

    for all φ1,φ2L2(D×(0,T)).

    (2) For every φL2(D×(0,T)), we have

    Tϵ(φ)L2(D×(0,T);L2(Yx))φL2(D×(0,T)),

    and

    |T0DϕdxdtT0DYxTϵ(φ)dydxdt|(0,T)DˆDϵϕdxdt. (3.1)

    (3) For every φW1,2(D×(0,T)), the following are true.

    (a) Tϵ(φ)φ strongly in L2(D×(0,T);L2(Yx)),

    (b) Tϵ(φ)φ strongly in L2(D×(0,T);L2(Yx)),

    (c) Tϵ(φt)φt strongly in L2(D×(0,T);L2(Yx)).

    (4) If ϕϵL2(Yx) is given by φϵ(x)=φ(xϵ1) for all xRn, then

    (a)

    Tϵ(φϵ)(x,y)={φ(y)(x,y)ˆDϵ×Yx,0otherwise.

    (b) Tϵ(φϵ)φ strongly in L2(D×(0,T);L2(Yx)).

    (c) Furthermore if yφL2(Yx), then

    y(Tϵ(φϵ))yφ strongly in L2(D×Yx).

    (5) Let uϵL2(D×(0,T)) such that uϵu strongly in L2(D×(0,T)), then

    Tϵ(uϵ)u strongly in L2(D×(0,T);L2(Yx)). (3.2)

    (6) Let {uϵ} be a bounded sequence in L2(D×(0,T)), then

    Tϵ(uϵ)u weakly in L2(D×(0,T);L2(Yx)), (3.3)
    uϵAϵ(uϵ) weakly in L2(D×(0,T)). (3.4)

    (7) For uL2(D×(0,T)), we have

    ϵ1[Oϵ(u)]yxu strongly in L2(D×(0,T);L2(Yx)), (3.5)

    where y=(y112,y212,,yn12).

    (8) Assume that {uϵ} be abounded sequence in L2(0,T;W1,20(D)), and that

    uϵu weakly in L2(0,T;W1,20(D)). (3.6)

    Then there exists ˆu=ˆu(t,x,y) in L2(DT;W1,2#(Yx)), where MYx(ˆu)=0 such that up to sub-sequence

    Tϵ(xuϵ)xu+yˆu weakly in L2(DT;L2(Yx)), (3.7)
    ϵ1[Oϵ(u)]yxu+ˆu weakly in L2(DT;W1,2#(Yx)). (3.8)

    In this section, we use the unfolding operator to pass to the limit in the weak formulation (1.9). Before that, let us introduce the following spaces, see [2,11]

    H:={φL2(0,T;W1,20(D)):φtL2(0,T;L2(D))},
    H1:={φL2(0,T;L2(D)):φtL2(0,T;W1,1(D))},
    WΓ#(Yx):={φW1,2#(Yx):φ|Fu= constant },
    WΓ(DT;Yx):=L2((0,T)×Yx;W1,20(D))W1,2(DT;L2#(Yx))L2(DT;WΓ#(Yx)),
    W(DT;Yx):={(v,ˆv):vH, and ˆvL2(DT;W1,2#(Yx)),MYx(ˆv)=0,yxv+ˆv is independent of y on DT×Fu}.

    Theorem 4.1. Suppose that (H1)–(H5) hold true and vϵ be the solution for system (1.1). There exists a pair (v,ˆv)W(DT;Yx) such that up to sub-sequence

    Tϵ(vϵ)v, weakly in L2(D×(0,T);L2(Yx)), (4.1)
    Tϵ(vϵt)vt, weakly in L2(D×(0,T);L2(Yx)), (4.2)
    Tϵ(vϵ)v, strongly in L2(r+1)(DT×Yx), (4.3)
    Tϵ(vϵ)v, strongly in L2(D×(0,T);L2(Yx)), (4.4)
    Tϵ(xvϵ)xv+yˆv, weakly in L2(D×(0,T);L2(Fs)), (4.5)
    Tϵ(xvϵ)0, weakly in L2(D×(0,T);L2(Fu)), (4.6)
    1ϵOϵ(vϵ)yx+ˆv, weakly in L2(D×(0,T);L2(Yx)), (4.7)
    yx+ˆv, is independent of y on DT×Fu. (4.8)

    Proof. Convergences (4.1) and (4.2), easily obtained using Definition 3.1, estimates (2.5) and [13, Theorem 2.19, P. 536]. Regarding convergence (4.3), we not that vϵL2(r+1)(0,T;W1,20(D)), where 1<2(r+1)<2nn2=2. Then, Sobolev embedding theorem [11, Theorem 3.27, P.49], shows that W1,20(D) is compactly embedded in L2(r+1)(D), which implies the strong convergence of vϵ to v in L2(r+1)(D×(0,T), this gives (4.3). Similarly, we note that vϵHϵ and by [11, Theorem 3.59, P. 61], Hϵ is compactly embedded in L2(DT), which leads to (4.4). Convergences (4.5)–(4.8) obtained as in [2, Lemma 4.1, P. 1482].

    Let us state the main results of this subsection.

    Theorem 4.2. Assume that (H1)–(H5) hold and

    Tϵ(Aϵ)A, strongly in L2(D×Yx). (4.9)

    Then, the pair (v,ˆv)W(DT;Yx) uniquely satisfies the following system

    DTFs{2vt2ϕdydxdt+A(v+yˆv)(ϕ+yˆϕ)}dydxdt+DTFs˜β(v,v+yˆv)ϕdydxdt+η|Fu|DTFu(vt)ϕdydxdtDTFsfϕdydxdt, (4.10)

    where (ϕ,ˆϕ)W(DT;Yx).

    We first acquire some preliminaries before establishing this result.

    Lemma 4.1. Let ˉΦ=(Φ1,Φ2,,Φn), where ΦiC0(DT)Cper(Yx) and vϵ is the solution of system (1.1). Then

    Tϵ(βϵ)(t,x,v,Φϵ)β(t,y,v,Φ), weakly in L2(DT;W1,2(Yx)), (4.11)

    where βϵ(t,x,vϵ,Φϵ)=β(t,ϵ1x,vϵ(t,x),Φ(t,x,ϵ1x)).

    Proof. It is easy to see from estimate (2.6) that β(t,y,v,Φ)L2(DT;Cper(Yx), we also have

    Tϵ(βϵ)(t,x,v,Φϵ)=β([t,ϵ1x]Y+y,Tϵ(vϵ),Tϵ(Φϵ)(t,x,y))=β(t,y,Tϵ(vϵ),Tϵ(Φϵ)(t,x,y)). (4.12)

    From (4.12) and (1.3), we obtain the following

    DT(Tϵ(βϵ)(t,x,v,Φϵ)β(t,y,v,Φ))ϕdxdtC4DT(|Tϵ(vϵ)|r+|v|r)|Tϵ(vϵ)v||ϕ|dxdt+C5DT|Tϵ(Φϵ)Φ||ϕ|dxdtC4(Tϵ(vϵ)rLp(DT)+vrLp(DT))Tϵ(vϵ)vLp(DT)ϕL2(DT)+C5Tϵ(Φϵ)ΦL2(DT)ϕL2(DT), (4.13)

    where we have used the generalized Holder inequality in the first term on the right hand side for rp+1p+12=1 such that p=2(r+1). But,

    Tϵ(vϵ)v strongly in Lp(DT×Yx), (4.14)
    Tϵ(Φϵ)Φ strongly in L2(DT;W1,2per(Yx)). (4.15)

    Since ϕ is an arbitrary, we have

    limϵ0DT(Tϵ(βϵ)(t,x,v,Φϵ)β(t,y,v,Φ))ϕdxdt=0. (4.16)

    Thus,

    Tϵ(βϵ)(t,x,vϵ,Φϵ)β(t,y,v,Φ) weakly in L2(DT;W1,2per(E)). (4.17)

    Remark 4.1. As in [25], if we let Ψϵ=φ0(t,x)+φ1(t,x,xϵ), where φ0D(DT) and φ1D(DT)Dper(Yx), we see that

    Tϵ(βϵ)(t,x,vϵ,Ψϵ)β(t,y,v,φ0+yφ1) weakly in L2(DT;W1,2per(E)). (4.18)

    Now, we state and proof the following lemma.

    Lemma 4.2. The nonlinear term βϵ(t,x,vϵ,vϵ) satisfies the following convergence

    Tϵ(βϵ)(t,x,vϵ,Ψϵ)˜β(v,v+yˆv) weakly in L2(DT;W1,2per(Yx)), (4.19)

    where

    ˜β(v,v+yˆv)=Yxβ(t,y,v,v+yˆv)dy.

    Proof. First note that the sequence Tϵ(βϵ) is bounded in L2(DT×Yx) thus, there exists a functions βL2(DT×Yx) such that up to sub-sequence

    Tϵ(βϵ)(t,x,vϵ,vϵ)β weakly in L2(DT×Yx). (4.20)

    We use (1.3) to obtain

    DTYx[βϵ(t,y,Tϵ(vϵ),Tϵ(vϵ))βϵ(t,y,Tϵ(vϵ),Tϵ(Ψϵ))][Tϵ(vϵ)Tϵ(Ψϵ)]dxdtdy+C5DTYx|Tϵ(vϵ)Tϵ(Ψϵ)||Tϵ(vϵ)Tϵ(Ψϵ)|dxdtdy0.

    Alternatively, to be more specific

    DTYx[βϵ(t,y,Tϵ(vϵ),Tϵ(vϵ))βϵ(t,y,Tϵ(vϵ),Tϵ(Ψϵ))][Tϵ(vϵ)Tϵ(Ψϵ)]dxdtdy+C5Tϵ(vϵ)Tϵ(Ψϵ)L2(DT×Yx)Tϵ(vϵ)Tϵ(Ψϵ)L2(DT×Yx)0. (4.21)

    Before passing to the limit in (4.21). We first note that by (4.3) one easily obtain

    Tϵ(vϵ)Tϵ(Ψϵ)L2(DT×Yx)vφ0L2(DT×Yx). (4.22)

    Using the same steps as in [23, Theorem 2.2], we can demonstrate that

    Tϵ(vϵ)Tϵ(Ψϵ)L2(DT×Yx)(xv+yˆv)(xφ0+yφ1)L2(DT×Yx). (4.23)

    Now, we use (4.18), (4.20), (4.22) and (4.23) to pass to the limit in (4.21), we get

    DTYx[ββ(t,y,v,φ0+yφ1)][vφ0]dxdtdy+C5vφ0L2(DT×Yx)(xv+yˆv)(xφ0+yφ1)L2(DT×Yx)0. (4.24)

    Take φ0=vλu and φ1=ˆvλˆu where (u,ˆu)W(DT;Yx), we are led to

    DTYx[ββ(t,y,v,(vλu)+(yˆvλyˆu))]λudxdtdy (4.25)
    +C5λ2uL2(DT×Yx)xu+yˆu)L2(DT×Yx)0. (4.26)

    Divide both sides of the above inequality by λ and then let λ0. We get

    DTYx[ββ(y,τ,v,v+yˆv)]udxdtdydτ0. (4.27)

    Because u was arbitrarily chosen, this completes the proof.

    Proof of Theorem 4.2. Following [2], we use as test function in (1.7) Φϵ(t,x)=ϵΦ(t,x,xϵ) such that

    Φ(t,x,y)=Aϵ(ψ)(t,x)b(y)+ψ(t,x)c(y), (4.28)

    where ψC([0,T];D(D)), bD(Yx)WΓ#(Yx),cC#(Yx) and c|Fv0. We have

    ϵT0Dϵvϵ([Aϵ(ψtt)b+ψttc])dxdt+T0DϵAϵvϵ(Aϵ(ψ)yb+ψyc)dxdt+ϵT0DϵAϵvϵ(xψc)dxdt+ϵT0Dϵβϵ(vϵ,vϵ)([Aϵ(ψ)b+ψc])dxdtϵγ|Fu|T0Fϵvϵ(Aϵ(ψt)b+ψtc)dxdt=ϵT0Dϵf(Aϵ(ψ)b+ψc)dxdt. (4.29)

    Unfolding (4.29) and using (4.1) to pass to the limit we obtain

    DTFsTϵ(Aϵ)Tϵ(vϵ)(Tϵ(a)[Tϵ(Aϵ(ψ)yb)+Tϵ(ψyc)])dydxdtDTFsA(xv+yˆv)y(b+c)ψdydxdt. (4.30)

    All of the remaining terms on (4.29) converge to zero. Therefore we have

    DTFsA(xv+yˆv)y(b+c)ψdydxdt=0. (4.31)

    See [2], this can always be written as

    DTFsA(xv+yˆv)yΨdydxdt=0. (4.32)

    Where ΨWΓ(DT;Yx). Now, we replace our test function by Φϵ(t,x)=Φ(t,x,xϵ) such that

    Φ(t,x,y)=Aϵ(ψ)(t,x)b(y)+ψ(t,x)(1b(y)), (4.33)

    where ψ and b as in (4.28) and b|Fv1. From this it is clear that

    Φϵψ strongly in L2(DT×Yx). (4.34)

    Then we have

    T0Dϵvϵ(Aϵ(ψtt)b+ψtt(1b))dxdt+T0DϵAϵvϵ(ϵ1[Aϵ(ψ)ψ]yb+xψ(1b))dxdt+T0Dϵβϵ(vϵ,vϵ)(Aϵ(ψ)b+ψ(1b))dxdtγ|Fu|T0Fϵvϵ(Aϵ(ψt)b+ψt(1b))dxdt=T0Dϵf(Aϵ(ψ)b+ψ(1b))dxdt. (4.35)

    Let us unfold (4.35) and pass to the limit as ϵ goes to zero.

    DTFsTϵ(vϵ)(Tϵ(Aϵ(ψtt)b)+Tϵ(ψtt(1b)))dydxdtDTFsvψttdydxdt, (4.36)

    where, we have used (4.1) and (4.34). For the second term on the R.H.S, we have

    DTFsTϵ(Aϵ)Tϵ(vϵ)(ϵ1[Aϵ(ψ)Tϵ(ψ)]Tϵ(yb)+Tϵ(xψ(1b)))dydxdtDTFsA(xv+yˆv)(xψy((yxψ)b))dydxdt, (4.37)

    where we have used (3.5), (4.5) and (4.9). As for the nonlinear term, we have

    DTFsTϵ(βϵ(vϵ,vϵ))(Aϵ(ψ)Tϵ(b)+Tϵ(ψ(1b)))dydxdtDTFsβ(t,y,v,v+yˆv)ψdydxdt, (4.38)

    where we have used (4.19) and (4.34). The limit for the boundary term is given by

    γ|Fu|DTFuTϵ(vϵ)(AϵTϵ((ψt)b)+Tϵ(ψt(1b)))dydxdtγ|Fu|DTFuvψtdydxdt. (4.39)

    We also have

    T0Dϵf(Aϵ(ψ)b+ψ(1b))dxdtDTFsfψdydxdt. (4.40)

    Combining all the above convergences namely, (4.32), (4.36)–(4.40), we obtain the following system

    DTFs2vt2ψdydxdt+DTFsA(xv+yˆv)(xψ+y(Ψ(yxψ)b))dydxdt+DTFsβ(t,y,v,v+yˆv)ψdydxdt+γ|Fu|DTFu(vt)ψdydxdt=DTFsfψdydxdt. (4.41)

    This corresponds to (4.10), when putting

    ˆψ(t,x,y)=Ψ(t,x,y)(yxψ(t,x))b(y)yΨ(t,x,y)(yxψ(t,x))b(y)dy.

    Part (e) of assumption (H3) and estimate (2.2), gives the uniqueness of (v,ˆv)W(DT;Yx). This gives the convergence of the whole sequence instead of sub-sequence. Following [2,6,10], we state that problem (4.32) has the following unique solution

    ˆv=χ(x,y)xv(t,x), (4.42)

    such that χ(x,y), is the corrector of the first-order that uniquely solve the following:

    divA(x,y)y(χ(x,y)y)=0 in Y,MY(χ)=0,χ(x,y)y is independent of y on Fu. (4.43)

    By substituting (4.42) into (4.41), we arrive at

    DTFs2vt2ψdydxdt+DTFsA0xvxψdydxdt+DTFsβ(v,v)ψdydxdt+γ|Fu|DTFu(vt)ψdydxdt=DTFsfψdydxdt, (4.44)

    where A0 is coercive and elliptic matrix given by

    A0(x)=YA(x,y)y(χ(x,y)y)y(χ(x,y)y)dy,

    with this in hand one can easily obtain the strong formulation of (4.44) as the following nonlinear damped wave equation

    |Fs|2vt2+γvtdiv(A0v)+˜β(v,v)=|Fs|f, (4.45)

    where

    ˜β(v,v)=Fsβ(v,v)dy.

    The initial conditions v(x,0)=vt(x,0)=0 are obtained in the standard way.

    Nonlinear hyperbolic problem with special oscillated coefficients and non-local boundary conditions involving the solution's time derivative in perforated domain was considered in this paper. To obtain homogenization results, we used the unfolding periodic operator. The following are the paper's main challenges:

    ● The non-linearity presented on the function βϵ(vϵ,vϵ), which was introduced in [8] for studying existence and uniqueness for nonlinear hyperbolic problem and in [25] when dealing with homogenization of nonlinear hyperbolic problem with Dirichlet condition in a fixed domain. In this paper we used the concept unfolding operator to pass to the limit in this function in Lemma 4.2.

    ● In order to address the non-local boundary condition γvϵt=1ϵnΓϵηvϵνϵAϵdσx, which prevents the use of unfolding techniques in the conventional sense, we followed the settings in [10] and [2].

    With theses, we obtained a damped nonlinear hyperbolic problem in fixed domain.

    The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number R-2023-223.

    The author declares that he has no conflict of interest.



    [1] D. Andreucci, R. Gianni, Global existence and blow up in a parabolic problem with nonlocal dynamical boundary conditions, Adv. Differential Equ., 1 (1996), 729–752. http://dx.doi.org/10.57262/ade/1366896017 doi: 10.57262/ade/1366896017
    [2] M. Amar, D. Andreucci, R. Gianni, C. Timofte, Homogenization of a heat conduction problem with a total flux boundary condition, In: Proceedings of XXIV AIMETA conference 2019, 2020 (2020), 1475–1487. http://dx.doi.org/10.1007/978-3-030-41057-5_119
    [3] M. Amar, D. Andreucci, R. Gianni, C. Timofte, Homogenization results for a class of parabolic equations with a non-local interface condition via time-periodic unfolding, Nonlinear Differ. Equ. Appl., 26 (2019), 52. http://dx.doi.org/10.1007/s00030-019-0592-4 doi: 10.1007/s00030-019-0592-4
    [4] M. Amar, D. Andreucci, D. Bellaveglia, Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Anal. Theor., 153 (2017), 56–77. http://dx.doi.org/10.1016/j.na.2016.05.018 doi: 10.1016/j.na.2016.05.018
    [5] M. Amar, D. Andreucci, D. Bellaveglia, The time-periodic unfolding operator and applications to parabolic homogenization, Rend. Lincei Mat. Appl., 28 (2017), 663–700. http://dx.doi.org/10.4171/RLM/781 doi: 10.4171/RLM/781
    [6] M. Amar, D. Andreucci, R. Gianni, C. Timofte, Well-posedness of two pseudo-parabolic problems for electrical conduction in heterogeneous media, J. Math. Anal. Appl., 493 (2021), 124533. http://dx.doi.org/10.1016/j.jmaa.2020.124533 doi: 10.1016/j.jmaa.2020.124533
    [7] M. Bellieud, Torsion effects in elastic composites with high contrast, SIAM J. Math. Anal., 41 (2010), 2514–2553. http://dx.doi.org/10.1137/07069362X doi: 10.1137/07069362X
    [8] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano, Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients, Electron. J. Differ. Eq., 1998 (1998), 1–21.
    [9] D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization, Comptes Rendus Math., 335 (2002), 99–104. http://dx.doi.org/10.1016/S1631-073X(02)02429-9 doi: 10.1016/S1631-073X(02)02429-9
    [10] D. Cioranescu, A. Damlamian, T. Li, Periodic homogenization for inner boundary conditions with equi-valued surfaces: the unfolding approach, Chin. Ann. Math. Ser. B, 34 (2013), 213–236. http://dx.doi.org/10.1007/s11401-013-0765-0 doi: 10.1007/s11401-013-0765-0
    [11] D. Cioranescu, P. Donato, An introduction to homogenization, New York: Oxford University Press, 1999.
    [12] D. Cioranescu, P. Donato, R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions, Asymptot. Anal., 53 (2007), 209–235.
    [13] P. Donato, Z. Yang, The periodic unfolding method for the wave equation in domains with holes, Adv. Math. Sci. Appl., 22 (2012), 521–551.
    [14] A. C. Esposito, C. D'Apice, A. Gaudiello, A homogenization problem in a perforated domain with both Dirichlet and Neumann conditions on the boundary of the holes, Asymptot. Anal., 31 (2002), 297–316.
    [15] H. Ebadi-Dehaghani, M. Nazempour, Thermal conductivity of nanoparticles filled polymers, Smart Nanopart. Technol., 23 (2012), 519–540. http://dx.doi.org/10.5772/33842 doi: 10.5772/33842
    [16] F. Gaveau, Homogˊenˊeisation et correcteurs pour quelques problˊemes hyperboliques, Université Pierre et Marie Curie, Paris.
    [17] F. Li, Existence and uniqueness of bounded weak solution for non-linear parabolic boundary value problem with equivalued surface, Math. Method. Appl. Sci., 27 (2004), 1115–1124. http://dx.doi.org/10.1002/mma.437 doi: 10.1002/mma.437
    [18] T. Li, A class of non-local boundary value problems for partial differential equations and its applications in numerical analysis, J. Comput. Appl. Math., 28 (1989), 49–62. http://dx.doi.org/10.1016/0377-0427(89)90320-8 doi: 10.1016/0377-0427(89)90320-8
    [19] T. Li, S. Zheng, Y. Tan, W. Shen, Boundary value problems with equivalued surfaces and resistivity well-logging, Boca Raton: CRC Press, 1998.
    [20] M. Mohammed, Homogenization and correctors for linear stochastic equations via the periodic unfolding methods, Stoch. Dynam., 19 (2019), 1950040. http://dx.doi.org/10.1142/S0219493719500400 doi: 10.1142/S0219493719500400
    [21] M. Mohammed, M. Sango, Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains, Asymptot. Anal., 97 (2016), 301–327. http://dx.doi.org/10.3233/ASY-151355 doi: 10.3233/ASY-151355
    [22] M. Mohammed, M. Sango, Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing, Netw. Heterog. Media, 14 (2019), 341–369. http://dx.doi.org/10.3934/nhm.2019014 doi: 10.3934/nhm.2019014
    [23] G. Nguetseng, Deterministic homogenization of a semilinear elliptic partial differential equation of order 2 m, Math. Rep., 8 (2006), 167.
    [24] K. M. F. Shahil, A. A. Balandin, Graphene-multilayer nanocomposites as highly efficient thermal interface materials, Nano Lett., 12 (2012), 861–867. http://dx.doi.org/10.1021/nl203906r doi: 10.1021/nl203906r
    [25] J. L. Woukeng, D. Dongo, Multiscale homogenization of nonlinear hyperbolic equations with several time scales, Acta Math. Sci., 31 (2011), 843–856. http://dx.doi.org/10.1016/S0252-9602(11)60281-6 doi: 10.1016/S0252-9602(11)60281-6
    [26] L. Zhang, H. Deng, Q. Fu, Recent progress on thermal conductive and electrical insulating polymer composites, Compos. Commun., 8 (2018), 74–82. http://dx.doi.org/10.1016/j.coco.2017.11.004 doi: 10.1016/j.coco.2017.11.004
  • This article has been cited by:

    1. Hakima Bessaih, Mogtaba Mohammed, Ismail M. Tayel, Homogenization and corrector results for a stochastic coupled thermoelastic model, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024168
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1294) PDF downloads(35) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog