Processing math: 100%
Research article Special Issues

A predictive neuro-computing approach for micro-polar nanofluid flow along rotating disk in the presence of magnetic field and partial slip

  • The present study aims to design a Levenberg-Marquardt backpropagation neural network (LMB-NN) integrated numerical computing to investigate the problem of fluid mechanics governing the flow of magnetohydrodynamics micro-polar nanofluid flow over a rotating disk (MHD-MNRD) model along with the partial slip condition. In terms of PDEs, the basic system model MHD-MNRD is transformed into a system of non-linear ODEs by applying the similarity of transformations. For MHD-MNRD scenarios, the comparative dataset of the built LMB-NN procedure is formulated with the technique of Adams numerical by variation of micro-polar parameters, Brownian motion, Lewis number, magnetic parameter, velocity slip parameter and thermophoresis parameter. To compute the approximate solution for MHD-MNRD for various scenarios, validation, testing and training procedures are carried out in accordance to adjust the networks under the backpropagation procedure in terms of the mean square error (MSE). The efficiency of the designed LMB-NN methodology is highlighted by comparative study and performance analysis based on error histograms, MSE analysis, regression and correlation.

    Citation: Muhammad Asif Zahoor Raja, Kottakkaran Sooppy Nisar, Muhammad Shoaib, Ajed Akbar, Hakeem Ullah, Saeed Islam. A predictive neuro-computing approach for micro-polar nanofluid flow along rotating disk in the presence of magnetic field and partial slip[J]. AIMS Mathematics, 2023, 8(5): 12062-12092. doi: 10.3934/math.2023608

    Related Papers:

    [1] Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921
    [2] Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439
    [3] Jin Li . Barycentric rational collocation method for fractional reaction-diffusion equation. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451
    [4] Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017
    [5] Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181
    [6] Qasem M. Tawhari . Mathematical analysis of time-fractional nonlinear Kuramoto-Sivashinsky equation. AIMS Mathematics, 2025, 10(4): 9237-9255. doi: 10.3934/math.2025424
    [7] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [8] Yangfang Deng, Zhifeng Weng . Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229
    [9] M. Mossa Al-Sawalha, Safyan Mukhtar, Albandari W. Alrowaily, Saleh Alshammari, Sherif. M. E. Ismaeel, S. A. El-Tantawy . Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(5): 12357-12374. doi: 10.3934/math.2024604
    [10] Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048
  • The present study aims to design a Levenberg-Marquardt backpropagation neural network (LMB-NN) integrated numerical computing to investigate the problem of fluid mechanics governing the flow of magnetohydrodynamics micro-polar nanofluid flow over a rotating disk (MHD-MNRD) model along with the partial slip condition. In terms of PDEs, the basic system model MHD-MNRD is transformed into a system of non-linear ODEs by applying the similarity of transformations. For MHD-MNRD scenarios, the comparative dataset of the built LMB-NN procedure is formulated with the technique of Adams numerical by variation of micro-polar parameters, Brownian motion, Lewis number, magnetic parameter, velocity slip parameter and thermophoresis parameter. To compute the approximate solution for MHD-MNRD for various scenarios, validation, testing and training procedures are carried out in accordance to adjust the networks under the backpropagation procedure in terms of the mean square error (MSE). The efficiency of the designed LMB-NN methodology is highlighted by comparative study and performance analysis based on error histograms, MSE analysis, regression and correlation.



    The mathematical study of q-calculus has been a subject of top importance for researchers due to its huge applications in unique fields. Few recognized work at the application of q-calculus firstly added through Jackson [4]. Later, q-analysis with geometrical interpretation become diagnosed. Currently, q-calculus has attained the attention researchers due to its massive applications in mathematics and physics. The in-intensity evaluation of q-calculus changed into first of all noted with the aid of Jackson [4,5], wherein he defined q-derivative and q-integral in a totally systematic way. Recently, authors are utilizing the q-integral and q-derivative to study some new sub-families of univalent functions and obtain certain new results, see for example Nadeem et al. [8], Obad et al. [11] and reference therein.

    Assume that fC. Furthermore, f is normalized analytic, if f along f(0)=0,f(0)=1 and characterized as

    f(z)=z+j=2ajzj. (1.1)

    We denote by A, the family of all such functions. Let fA be presented as (1.1). Furthermore,

    fisunivalentξ1ξ2f(ξ1)f(ξ2),  ξ1,ξ2E.

    We present by S the family of all univalent functions. Let ˜pC be analytic. Furthermore, ˜pP, iff R(˜p(z))>0, along ˜p(0)=1 and presented as follows:

    ˜p(z)=1+j=1cjzj. (1.2)

    Broadening the idea of P, the family P(α0), 0α0<1 defined by

    (1α0)p1+α0=p(z)pP(α0),p1P,

    for further details one can see [2].

    Assume that C, K and S signify the common sub-classes of A, which contains convex, close-to-convex and star-like functions in E. Furthermore, by S(α0), we meant the class of starlike functions of order α0, 0α0<1, for details, see [1,2] and references therein. Main motivation behind this research work is to extend the concept of Kurki and Owa [6] into q-calculus.

    The structure of this paper is organized as follows. For convenience, Section 2 give some material which will be used in upcoming sections along side some recent developments in q-calculus. In Section 3, we will introduce our main classes Cq(α0,β0) and Sq(α0,β0). In Section 4, we will discuss our main result which include, inclusion relations, q-limits on real parts and integral invariant properties. At the end, we conclude our work.

    The concept of Hadamard product (convolution) is critical in GFT and it emerged from

    Φ(r2eiθ)=(gf)(r2eiθ)=12π2π0g(rei(θt))f(reit)dt, r<1,

    and

    H(z)=z0ξ1h(ξ)dξ, |ξ|<1

    is integral convolution. Let f be presented as in (1.1), the convolution (fg) is characterize as

    (fg)(ζ)=ζ+j=2ajbjζj,  ζE,

    where

    g(ζ)=ζ+b2ζ2+=ζ+j=2bjζj, (2.1)

    for details, see [2].

    Let h1 and h2 be two functions. Then, h1h2, ϖ analytic such that ϖ(0)=0,  |ϖ(z)|<1, with h1(z)=(h2ϖ)(z). It can be found in [1] that, if h2S, then

    h1(0)=h2(0) and h1(E)h2(E)h1h2,

    for more information, see [7].

    Assume that q(0,1). Furthermore, q-number is characterized as follows:

    [υ]q={1qυ1q,ifυC,j1k=0qk=1+q+q2+...+qj1,ifυ=jN. (2.2)

    Utilizing the q-number defined by (2.2), we define the shifted q-factorial as the following:

    Assume that q(0,1). Furthermore, the shifted q-factorial is denoted and given by

    [j]q!={1ifj=0,jk=1[k]qifjN.

    Let fC. Then, utilizing (2.2), the q-derivative of the function f is denoted and defined in [4] as

    (Dqf)(ζ)={f(ζ)f(qζ)(1q)ζ,ifζ0,f(0),ifζ=0, (2.3)

    provided that f(0) exists.

    That is

    limq1f(ζ)f(qζ)(1q)ζ=limq1(Dqf)(ζ)=f(ζ).

    If fA defined by (1.1), then,

    (Dqf)(ζ)=1+j=2[j]qajζj,ζE. (2.4)

    Also, the q-integral of fC is defined by

    ζ0f(t)dqt=ζ(1q)i=0qif(qiζ), (2.5)

    provided that the series converges, see [5].

    The q-gamma function is defined by the following recurrence relation:

    Γq(ζ+1)=[ζ]qΓq(ζ) and Γq(1)=1.

    In recent years, researcher are utilizing the q-derivative defined by (2.3), in various branches of mathematics very effectively, especially in Geometric Function Theory (GFT). For further developments and discussion about q-derivative defined by (2.3), we can obtain excellent articles produced by famous mathematician like [3,8,9,10,12,13,14] and many more.

    Ismail et al. [3] investigated and study the class Cq as

    Cq={fA:R[Dq(zDqf(z))Dqf(z)]>0,0<q<1,zE}.

    If q1, then Cq=C.

    Later, Ramachandran et al. [12] discussed the class Cq(α0), 0α0<1, given by

    Cq(α0)={fA:R(Dq(zDqf(z))Dqf(z))>α0,0<q<1,zE}.

    For α0=0, Cq(α0)=Cq.

    Now, extending the idea of [13] and by utilizing the q-derivative defined by (2.3), we define the families Cq(α0,β0) and Sq(α0,β0) as follows:

    Definition 2.1. Let fA and α0,β0R such that 0α0<1<β0. Then,

    fCq(α0,β0)α0<R(Dq(zDqf(z))Dqf(z))<β0,zE. (2.6)

    It is obvious that if q1, then Cq(α0,β0)C(α0,β0), see [13]. This means that

    Cq(α0,β0)C(α0,β0)C.

    Definition 2.2. Let α0,β0R such that 0α0<1<β0 and fA defined by (1.1). Then,

    fSq(α0,β0)α0<R(zDqf(z)f(z))<β0,zE. (2.7)

    Or equivalently, we can write

    fCq(α0,β0)zDqfSq(α0,β0),zE. (2.8)

    Remark 2.1. From Definitions 2.1 and 2.2, it follows that fCq(α0,β0) or fSq(α0,β0) iff f fulfills

    1+zD2qf(z)Dqf(z)1(2α01)z1qz,1+zD2qf(z)Dqf(z)1(2β01)z1qz,

    or

    zDqf(z)f(z)1(2α01)z1qz,zDqf(z)f(z)1(2β01)z1qz,

    for all zE.

    We now consider q-analogue of the function p defined by [13] as

    pq(z)=1+β0α0πilog(1qe2πi(1α0β0α0)z1qz). (2.9)

    Firstly, we fined the series form of (2.9).

    Consider

    pq(z)=1+β0α0πilog(1qe2πi(1α0β0α0)z1qz) (2.10)
    =1+β0α0πi[log(1qe2πi(1α0β0α0)z)log(1qz)]. (2.11)

    If we let w=qe2πi(1α0β0α0)z, then,

    log(1qe2πi(1α0β0α0)z)=log(1w)=wj=2wjj.

    This implies that

    log(1qe2πi(1α0β0α0)z)=(qe2πi(1α0β0α0)z)j=2(qe2πi(1α0β0α0)z)jj,

    and

    log(1qz)=qz+j=2(qz)jj.

    Utilizing these, Eq (2.11) can be written as

    pq(z)=1+j=1β0α0jπiqj(1e2nπi(1α0β0α0))zj. (2.12)

    This shows that the pqP.

    Motivated by this work and other aforementioned articles, the aim in this paper is to keep with the research of a few interesting properties of Cq(α0,β0) and Sq(α0,β0).

    Utilizing the meaning of subordination, we can acquire the accompanying Lemma, which sum up the known results in [6].

    Lemma 3.1. Let fA be defined by (1.1), 0α0<1<β0 and 0<q<1. Then,

    fSq(α0,β0)(zDqf(z)f(z))1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),zE. (3.1)

    Proof. Assume that ϝ be characterized as

    ϝ(z)=1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),0α0<1<β0.

    At that point it can without much of a stretch seen that function ϝ ia simple and analytic along ϝ(0)=1 in E. Furthermore, note

    ϝ(z)=1+β0α0πilog(1qe2πi(1α0β0α0)z1qz)=1+β0α0πilog[eπi(1α0β0α0)i(ieπi(1α0β0α0)qieπi(1α0β0α0)z1qz)].

    Therefore,

    ϝ(z)=1+β0α0πi[log(eπi(1α0β0α0))logi]+β0α0πilog[ieπi(1α0β0α0)qieπi(1α0β0α0)z1qz]=1+β0α0πi[πi(1α0β0α0)(πi2)]+β0α0πilog[ieπi(1α0β0α0)qieπi(1α0β0α0)z1qz]=α0+β02+β0α0πilog[ieπi(1α0β0α0)qieπi(1α0β0α0)z1qz].

    A simple calculation leads us to conclude that ϝ maps E onto the domain Ω defined by

    Ω={w:α0<R(w)<β0}. (3.2)

    Therefore, it follows from the definition of subordination that the inequalities (2.7) and (3.1) are equivalent. This proves the assertion of Lemma 3.1.

    Lemma 3.2. Let fA and 0α0<1<β0. Then,

    fCq(α0,β0)(Dq(zDqf(z))Dqf(z))1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),

    and if p presented as in (2.9) has the structure

    pq(z)=1+j=1Bj(q)zj, (3.3)

    then,

    Bj(q)=β0α0jπiqj(1e2jπi(1α0β0α0)),jN. (3.4)

    Proof. Proof directly follows by utilizing (2.8), (2.12) and Lemma 3.1.

    Example 3.1. Let f be defined as

    f(z)=zexp{β0α0πiz01tlog(1qe2πi(1α0β0α0)t1qt)dqt}. (3.5)

    This implies that

    zDqf(z)f(z)=1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),zE.

    According to the proof of Lemma 3.1, it can be observed that f given by (3.5) satisfies (2.7), which means that fSq(α0,β0). Similarly, it can be seen by utilizing Lemma 3.2 that

    f(z)=z0zexp{β0α0πiu01tlog(1qe2πi(1α0β0α0)t1qt)dqt}dqu, (3.6)

    belongs to the class Cq(α0,β0).

    Inclusion relations:

    In this segment, we study some inclusion relations and furthermore acquire some proved results as special cases. For this, we need below mentioned lemma which is the q-analogue of known result in [7].

    Lemma 3.3. Let u,vC, such that u0 and what's more, H such that R[u(z)+v]>0. Assume that P, fulfill

    (z)+zDqp(z)u(z)+v(z)(z)(z),zE.

    Theorem 3.1. For 0α0<1<β0 and 0<q<1,

    Cq(α0,β0)Sq(α0,β0),zE.

    Proof. Let fCq(α0,β0). Consider

    p(z)=zDqf(z)f(z),pP.

    Differentiating q-logarithamically furthermore, after some simplifications, we get

    p(z)+zDqp(z)p(z)=Dq(zDqf(z))Dqf(z)1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),zE.

    Note that by utilizing Lemma 3.3 with u=1 and v=0, we have

    p(z)1+β0α0πilog(1qe2πi(1α0β0α0)z1qz),zE.

    Consequently,

    fSq(α0,β0),zE.

    This completes the proof.

    Note for distinct values of parameters in Theorem 3.1, we obtain some notable results, see [2,6,13].

    Corollary 3.1. For q1, 0α0<1<β0, we have

    C(α0,β0)S(α0,β0),zE.

    Corollary 3.2. For q1, α0=0 and β0>1, we have

    C(β0)S(β1),zE,

    where

    β1=14[(2β01)+4β204β0+9].

    q-limits on real parts:

    In this section, we discuss some q-bounds on real parts for the function f in Cq(α0,β0) and following lemma will be utilize which is the q-analogue of known result of [7].

    Lemma 3.4. Let UC×C and let cC along R(b)>0. Assume that :C2×EC fulfills

    (iρ,σ;z)U, ρ,σR,σ|biρ|2(2R(b)).

    If p(z)=c+c1z+c2z2+... is in P along

    (p(z),zDqp(z);z)UR(p(z))>0,zE.

    Lemma 3.5. Let p(z)=j=1Cjzj and assume that p(E) is a convex domain. Furthermore, let q(z)=j=1Ajzj is analytic and if qp in E. Then,

    |Aj||C1|,j=1,2,.

    Theorem 3.2. Suppose fA, 0α0<1 and

    R(Dq(zDqf(z))Dqf(z))>α0,zE. (3.7)

    Then,

    R(Dqf(z))>12α0,zE. (3.8)

    Proof. Let γ=12α0 and for 0α0<1 implies 12γ<1. Let

    Dqf(z)=(1γ)p(z)+γ,pP.

    Differentiating q-logrithmically, we obtain

    Dq(zDqf(z))Dqf(z)=1+2(1γ)zDqp(z)(1γ)p(z)+γ.

    Let us construct the functional such that

    (r,s;z)=1+2(1γ)s(1γ)rγ,r=p(z),s=zDqp(z).

    Utilizing (3.7), we can write

    {(p(z),zDqp(z);zE)}{wC:R(w)>α0}=Ωα0.

    Now, ρ,δR with δ(1+ρ2)2, we have

    R((iρ,δ))=1+2(1γ)δ(1γ)(iρ)+r.

    This implies that

    R((iρ,δ;z))=R(1+2(1γ)δ(1γ)2ρ2+γ2).

    Utilizing δ(1+ρ2)2, we can write

    R((iρ,δ;z))1γ(1γ)(1+ρ2)(1γ)2ρ2+γ2. (3.9)

    Let

    g(ρ)=1+ρ2(1γ)2ρ2+γ2.

    Then, g(ρ)=g(ρ), which shows that g is even continuous function. Thus,

    Dq(g(ρ))=[2]q(2γ1)ρ[(1γ)2ρ2+γ2][(1γ)2q2ρ2+γ2],

    and Dq(g(0))=0. Also, it can be seen that g is increasing function on (0,). Since 12γ<1, therefore,

    1γ2g(ρ)<1(1γ)2,ρR. (3.10)

    Now by utilizing (3.9) and (3.10), we have

    R((iρ,δ;z))1γ(1γ)g(ρ)21γ=α0.

    This means that R((iρ,δ;z))Ωα0 for all ρ,δR with δ(1+ρ2)2. Thus, by utilizing Lemma 3.4, we conclude that Rp(z)>0, zE.

    Theorem 3.3. Suppose fA be defined by (1.1) and 1<β0<2,

    R(Dq(zDqf(z))Dqf(z))<β0,zE.

    Then,

    R(Dqf(z))>12β0,zE.

    Proof. Continuing as in Theorem 3.2, we have the result.

    Combining Theorems 3.2 and 3.3, we obtain the following result.

    Theorem 3.4. Suppose fA, 0α0<1<β0<2 and

    α0<R(Dq(zDqf(z))Dqf(z))<β0,zE.
    12α0<R{Dqf(z)}<12β0,zE.

    Theorem 3.5. Let fA be defined by (1.1) and α0,β0R such that 0α0<1<β0. If fCq(α0,β0), then,

    |aj|{|B1|[2]q,ifj=2,|B1|[j]q[j1]qj2k=1(1+|B1|[k]q),ifj=3,4,5,,

    where |B1| is given by

    |B1(q)|=2q(β0α0)πsinπ(1α0)β0α0. (3.11)

    Proof. Assume that

    q(z)=(Dq(zDqf(z))Dqf(z)),qP,zE. (3.12)

    Then, by definition of Cq(α0,β0), we obtain

    q(z)pq(z),zE. (3.13)

    Let pq be defined by (3.3) and Bn(q) is given as in (3.4). If

    q(z)=1+j=2Aj(q)zj, (3.14)

    by (3.12), we have

    Dq(zDqf(z))=q(z)Dq(f(z)).

    Note that by utilizing (1.1), (2.4) and (3.14), one can obtain

    1+j=2[j]q[j1]qajzj1=(1+j=1Aj(q)zj)(1+j=2[j]qajzj1).

    Comparing the coefficient of of zj1 on both sides, we have

    [j]q[j1]qaj=Aj1(q)+[j]qaj+j1k=2[k]qakAjk(q)=Aj1(q)+[j]qaq+[2]qa2Aj2(q)+[3]qa3Aj3(q)++[j1]qaj1A1(q). (3.15)

    This implies that by utilizing Lemma 3.5 with (3.13), we can write

    |Aj(q)||B1(q)|, for j=1,2,3, (3.16)

    Now by utilizing (3.16) in (3.15) and after some simplifications, we have

    |aj||B1(q)|[j]q[j1]qj1k=2[k1]q|ak1|,|B1|[j]q[j1]qj2k=1(1+|B1|[k]q).

    Furthermore, for j=2,3,4,

    |a2||B1(q)|[2]q,|a3||B1(q)|[3]q[2]q[1+|B1|],|a4||B1(q)|[4]q[3]q[(1+|B1(q)|)(1+|B1(q)|[2]q)].

    By utilizing mathematical induction for q-calculus, it can be observed that

    |aj||B1(q)|[j]q[j1]qj2k=1(1+|B1(q)|[k]q),

    which is required.

    Remark 3.1. Note that by taking q1 in Theorems 3.2–3.4, we attain remarkable results in ordinary calculus discussed in [6].

    Integral invariant properties:

    In this portion, we show that the family Cq(α0,β0) is invariant under the q-Bernardi integral operator defined and discussed in [9] is given by

    Bq(f(z))=Fc,q(z)=[1+c]qzcz0tc1f(t)dqt,  0<q<1,  cN. (3.17)

    Making use of (1.1) and (2.5), we can write

    Fc,q(z)=Bq(f(z))=[1+c]qzcz(1q)i=0qi(zqi)c1f(zqi)=[1+c]q(1q)i=0qicj=1qijajzj=j=1[1+c]q[j=0(1q)qi(j+c)]ajzj=j=1[1+c]q(1q1qj+c)ajzj.

    Finally, we obtain

    Fc,q(z)=Bq(f(z))=z+j=2([1+c]q[j+c]q)ajzj. (3.18)

    For c=1, we obtain

    F1,q(z)=[2]qzz0f(t)dqt,0<q<1,=z+j=2([2]q[j+1]q)ajzj.

    It is well known [9] that the radius of convergence R of

    j=1([1+c]q[j+c]q)ajzjandj=1([2]q[j+1]q)ajzj

    is q and the function given by

    ϕq(z)=j=1([1+c]q[j+c]q)zj, (3.19)

    belong to the class Cq of q-convex function introduced by [3].

    Theorem 3.6. Let fA. If fCq(α0,β0), then Fc,qCq(α0,β0), where Fc,q is defined by (3.17).

    Proof. Let fCq(α0,β0) and set

    p(z)=Dq(zDqFc,q(z)DqFc,q(z),pP. (3.20)

    q-differentiation of (3.17) yields

    zDqFc,q(z)+cFc,q(z)=[1+c]qf(z).

    Again q-differentiating and utilizing (3.20), we obtain

    [1+c]qDqf(z)=DqFc,q(z)(c+p(z)).

    Now, logarithmic q-differentiation of this yields

    p(z)+zDqp(z)c+p(z)=Dq(zDqf(z))Dqf(z),zE.

    By utilizing the definition of the class Cq(α0,β0), we have

    p(z)+zDqp(z)c+p(z)=Dq(zDqf(z))Dqf(z)pq(z).

    Therefore,

    p(z)+zDqp(z)c+p(z)pq(z),zE.

    Consequently, utilizing Lemma 3.3, we have

    p(z)pq(z),zE.

    The proof is complete.

    Remark 3.2. Letting q1, in Theorem 3.6, we obtain a known result from [13].

    Corollary 3.3. Let fA. If fC(α0,β0), then FcC(α0,β0), where Fc is Bernardi integral operator defined in [1].

    Also, for q1, α0=0 and β0=0, we obtain the well known result proved by [1]. It is well known [9] that for 0α0<1<β0, 0<q<1 and cN, the function (3.19) belong to the class Cq. Utilizing this, we can prove

    fCq(α0,β0),  ϕqCq(fϕq)Cq(α0,β0),fSq(α0,β0),  ϕqCq(fϕq)Sq(α0,β0).

    Remark 3.3. As an example consider the function fCq(α0,β0) defined by (3.6) and ϕqCq given by (3.19), implies (fϕq)Cq(α0,β0).

    In this article, we mainly focused on q-calculus and utilized this is to study new generalized sub-classes Cq(α0,β0) and Sq(α0,β0) of q-convex and q-star-like functions. We discussed and study some fundamental properties, for example, inclusion relation, q-coefficient limits on real part, integral preserving properties. We have utilized traditional strategies alongside convolution and differential subordination to demonstrate main results. This work can be extended in post quantum calculus. The path is open for researchers to investigate more on this discipline and associated regions.

    The work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R52), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    The authors declare that they have no conflicts of interest.



    [1] M. Shoaib, M. A. Z. Raja, M. A. R. Khan, I. Farhat, S. E. Awan, Neuro-computing networks for entropy generation under the influence of MHD and thermal radiation, Surf. Interfaces, 25 (2021), 101243. https://doi.org/10.1016/j.surfin.2021.101243 doi: 10.1016/j.surfin.2021.101243
    [2] H. Ullah, M. Shoaib, A. Akbar, M. A. Z. Raja, S. Islam, K. S. Nisar, Neuro-computing for hall current and MHD effects on the flow of micro-polar nano-fluid between two parallel rotating plates, Arab. J. Sci. Eng., 47 (2022), 16371−16391. https://doi.org/10.1007/s13369-022-06925-z doi: 10.1007/s13369-022-06925-z
    [3] G. Zubair, M. Shoaib, M. I. Khan, I. Naz, A. Althobaiti, M. A. Z. Raja, et al., Intelligent supervised learning for viscous fluid submerged in water based carbon nanotubes with irreversibility concept, Int. Commun. Heat Mass Transf., 130 (2022), 105790. https://doi.org/10.1016/j.icheatmasstransfer.2021.105790 doi: 10.1016/j.icheatmasstransfer.2021.105790
    [4] M. Shoaib, G. Zubair, K. S. Nisar, M. A. Z. Raja, M. I. Khan, R. J. Punith Gowda, et al., Ohmic heating effects and entropy generation for nanofluidic system of ree-eyring fluid: Intelligent computing paradigm, Int. Commun. Heat Mass Transf., 129 (2021), 105683. https://doi.org/10.1016/j.icheatmasstransfer.2021.105683 doi: 10.1016/j.icheatmasstransfer.2021.105683
    [5] M. Shoaib, M. Kausar, K. S. Nisar, M. A. Z. Raja, M. Zeb, A. Morsy, The design of intelligent networks for entropy generation in ree-eyring dissipative fluid flow system along quartic autocatalysis chemical reactions, Int. Commun. Heat Mass Transf., 133 (2022), 105971. https://doi.org/10.1016/j.icheatmasstransfer.2022.105971 doi: 10.1016/j.icheatmasstransfer.2022.105971
    [6] M. Shoaib, M. A. Z. Raja, W. Jamshed, K. S. Nisar, I. Khan, I. Farhat, Intelligent computing levenberg marquardt approach for entropy optimized single-phase comparative study of second grade nanofluidic system, Int. Commun. Heat Mass Transf., 127 (2021), 105544. https://doi.org/10.1016/j.icheatmasstransfer.2021.105544 doi: 10.1016/j.icheatmasstransfer.2021.105544
    [7] M. Shoaib, M. A. Z. Raja, M. T. Sabir, A. H. Bukhari, H. Alrabaiah, Z. Shah, et al., A stochastic numerical analysis based on hybrid nar-rbfs networks nonlinear sitr model for novel covid-19 dynamics, Comput. Meth. Prog. Bio., 202 (2021), 105973. https://doi.org/10.1016/j.cmpb.2021.105973 doi: 10.1016/j.cmpb.2021.105973
    [8] J. L. Aljohani, E. S. Alaidarous, M. A. Z. Raja, M. S. Alhothuali, M. Shoaib, Supervised learning algorithm to study the magnetohydrodynamic flow of a third grade fluid for the analysis of wire coating, Arab. J. Sci. Eng., 47 (2022), 7505−7518. https://doi.org/10.1007/s13369-021-06212-3 doi: 10.1007/s13369-021-06212-3
    [9] A. C. Eringen, Theory of micropolar fluids, In: Technical Report, DTIC Document, 1965.
    [10] A. Ishak, R. Nazar, I. Pop, Flow of a micropolar fluid on a continuous moving surface, Arch. Mech., 58 (2006), 529−541.
    [11] S. Acharya, B. Nayak, S. R. Mishra, Illustration of the reynolds number on micropolar nanofluid flow through a permeable medium due to the interaction of thermal radiation, Wave Random Complex, 2022, 1−18. https://doi.org/10.1080/17455030.2022.2146780 doi: 10.1080/17455030.2022.2146780
    [12] G. K. Ramesh, G. S. Roopa, A. Rauf, S. A. Shehzad, F. M. Abbasi, Time-dependent squeezing flow of casson-micropolar nanofluid with injection/suction and slip effects, Int. Commun. Heat Mass Transf., 126 (2021), 105470. https://doi.org/10.1016/j.icheatmasstransfer.2021.105470 doi: 10.1016/j.icheatmasstransfer.2021.105470
    [13] A. Siddiqui, B. Shankar, Mhd flow and heat transfer of casson nanofluid through a porous media over a stretching sheet, In: Nanofluid Flow in Porous Media, IntechOpen, 2019.
    [14] M. V. Krishna, N. A. Ahamad, A. F. Aljohani, Thermal radiation, chemical reaction, hall and ion slip effects on Mhd oscillatory rotating flow of micro-polar liquid, Alex. Eng. J., 60 (2021), 3467−3484. https://doi.org/10.1016/j.aej.2021.02.013 doi: 10.1016/j.aej.2021.02.013
    [15] C. Perdikis, A. Raptis, Heat transfer of a micropolar fluid by the presence of radiation, Heat Mass Transf., 31 (1996), 381−382. https://doi.org/10.1007/BF02172582 doi: 10.1007/BF02172582
    [16] N. Sandeep, C. Sulochana, Dual solutions for unsteady mixed convection flow of Mhd micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Eng. Sci. Technol., 18 (2015), 738−745. https://doi.org/10.1016/j.jestch.2015.05.006 doi: 10.1016/j.jestch.2015.05.006
    [17] S. Nadeem, Z. Ahmed, S. Saleem, The Effect of variable viscosities on micropolar flow of two nanofluids, Z. Naturforsch. A, 71 (2016), 1121−1129. https://doi.org/10.1515/zna-2015-0491 doi: 10.1515/zna-2015-0491
    [18] A. Ali, N. Amin, I. Pop, The unsteady boundary layer flow past a circular cylinder in micropolar fluids, Int. J. Numer. Method. H., 17 (2007), 692−714.
    [19] S. U. S. Choi, J. A Eastman, Enhancing thermal conductivity of fluids with nanoparticles, 1995.
    [20] M. M. Rashidi, A. K. Abdul Hakeem, N. Vishnu Ganesh, B. Ganga, M. Sheikholeslami, E. Momoniat, Analytical and numerical studies on heat transfer of a nanofluid over a stretching/shrinking sheet with second-order slip flow model, Int. J. Mech. Mater. Eng., 11 (2016), 1−14. https://doi.org/10.1186/s40712-016-0054-2 doi: 10.1186/s40712-016-0054-2
    [21] T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption, Int. J. Therm. Sci., 111 (2017), 274−288. https://doi.org/10.1016/j.ijthermalsci.2016.08.009 doi: 10.1016/j.ijthermalsci.2016.08.009
    [22] R. Dhanai, P. Rana, L. Kumar, Mhd mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno's model, Powder Technol., 288 (2016), 140−150. https://doi.org/10.1016/j.powtec.2015.11.004 doi: 10.1016/j.powtec.2015.11.004
    [23] O. K. Koriko, A. J. Omowaye, N. Sandeep, I. L. Animasaun, Analysis of boundary layer formed on an upper horizontal surface of a paraboloid of revolution within nanofluid flow in the presence of thermophoresis and brownian motion of 29 nm CuO, Int. J. Mech. Sci., 124 (2017), 22−36. https://doi.org/10.1016/j.ijmecsci.2017.02.020 doi: 10.1016/j.ijmecsci.2017.02.020
    [24] R. Mehmood, S. Nadeem, S. Saleem, N. S. Akbar, Flow and heat transfer analysis of jeffery nano fluid impinging obliquely over a stretched plate, J. Taiwan Inst. Chem. E., 74 (2017), 49−58. https://doi.org/10.1016/j.jtice.2017.02.001 doi: 10.1016/j.jtice.2017.02.001
    [25] T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, On magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: A numerical study, Comput. Methods Appl. Mech. Eng., 315 (2017), 467−477. https://doi.org/10.1016/j.cma.2016.11.002 doi: 10.1016/j.cma.2016.11.002
    [26] M. Sheikholeslami, D. D. Ganji, M. M. Rashidi, Magnetic field effect on unsteady nanofluid flow and heat transfer using buongiorno model, J. Magn. Magn. Mater., 416 (2016), 164−173. https://doi.org/10.1016/j.jmmm.2016.05.026 doi: 10.1016/j.jmmm.2016.05.026
    [27] N. Sandeep, R. P. Sharma, M. Ferdows, Enhanced heat transfer in unsteady magnetohydrodynamic nanofluid flow embedded with aluminum alloy nanoparticles, J. Mol. Liq., 234 (2017), 437−443. https://doi.org/10.1016/j.molliq.2017.03.051 doi: 10.1016/j.molliq.2017.03.051
    [28] N. Sandeep, Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluids embedded with graphene nanoparticles, Adv. Powder Technol., 28 (2017), 865−875. https://doi.org/10.1016/j.apt.2016.12.012 doi: 10.1016/j.apt.2016.12.012
    [29] G. Kumaran, N. Sandeep, Thermophoresis and brownian moment effects on parabolic flow of mhd casson and williamson fluids with cross diffusion, J. Mol. Liq., 233 (2017), 262−269. https://doi.org/10.1016/j.molliq.2017.03.031 doi: 10.1016/j.molliq.2017.03.031
    [30] M. Ramzan, M. Bilal, U. Farooq, J. D. Chung, Mixed convective radiative flow of second grade nanofluid with convective boundary conditions: An optimal solution, Results Phys., 6 (2016), 796−804. https://doi.org/10.1016/j.rinp.2016.10.011 doi: 10.1016/j.rinp.2016.10.011
    [31] A. Tassaddiq, I. Khan, K. S. Nisar, Heat transfer analysis in sodium alginate based nanofluid using mos2 nanoparticles: Atangana-Baleanu fractional model, Chaos Solitons Fractals, 130 (2020), 109445. https://doi.org/10.1016/j.chaos.2019.109445 doi: 10.1016/j.chaos.2019.109445
    [32] T. Hussain, S. A. Shehzad, A. Alsaedi, T. Hayat, M. Ramzan, Flow of casson nanofluid with viscous dissipation and convective conditions: A mathematical model, J. Cent. South Univ., 22 (2015), 1132−1140. https://doi.org/10.1007/s11771-015-2625-4 doi: 10.1007/s11771-015-2625-4
    [33] T. Hussain, S. A. Shehzad, T. Hayat, A. Alsaedi, F. Al-Solamy, M. Ramzan, Radiative hydromagnetic flow of jeffrey nanofluid by an exponentially stretching sheet, PLoS One, 9 (2014), e103719. https://doi.org/10.1371/journal.pone.0103719 doi: 10.1371/journal.pone.0103719
    [34] M. Ramzan, Influence of newtonian heating on three dimensional mhd flow of couple stress nanofluid with viscous dissipation and joule heating, PLoS One, 10 (2015), e0124699. https://doi.org/10.1371/journal.pone.0124699 doi: 10.1371/journal.pone.0124699
    [35] M. Ramzan, F. Yousaf, Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with newtonian heating, AIP Adv., 5 (2015), 057132. https://doi.org/10.1063/1.4921312 doi: 10.1063/1.4921312
    [36] Z. Hu, W. Lu, M. D. Thouless, Slip and wear at a corner with coulomb friction and an interfacial strength, Wear, 338 (2015), 242−251.
    [37] Z. Hu, W. Lu, M. D. Thouless, J. R. Barber, Effect of plastic deformation on the evolution of wear and local stress fields in fretting, Int. J. Solids Struct., 82 (2016), 1−8. https://doi.org/10.1016/j.ijsolstr.2015.12.031 doi: 10.1016/j.ijsolstr.2015.12.031
    [38] H. Wang, Z. Hu, W. Lu, M. D. Thouless, The effect of coupled wear and creep during grid-to-rod fretting, Nucl. Eng. Des., 318 (2017), 163−173. https://doi.org/10.1016/j.nucengdes.2017.04.018 doi: 10.1016/j.nucengdes.2017.04.018
    [39] Th. V. Kármán, Über laminare und turbulente reibung, ZAMM‐Z. Angew. Math. Me., 1 (1921), 233−252. https://doi.org/10.1002/zamm.19210010401 doi: 10.1002/zamm.19210010401
    [40] W. G. Cochran, The flow due to a rotating disc, Paper presented at the Mathematical proceedings of the Cambridge philosophical society, 1934. https://doi.org/10.1017/S0305004100012561
    [41] J. A. D. Ackroyd, On the steady flow produced by a rotating disc with either surface suction or injection, J. Eng. Math., 12 (1978), 207−220. https://doi.org/10.1007/BF00036459 doi: 10.1007/BF00036459
    [42] M. N. Bashir, A. Rauf, S. A. Shehzad, M. Ali, T. Mushtaq, Thermophoresis phenomenon in radiative flow about vertical movement of a rotating disk in porous region, Adv. Mech. Eng., 14 (2022), 16878132221115019.
    [43] X. Si, L. Zheng, X. Zhang, X. Si, Homotopy analysis method for the asymmetric laminar flow and heat transfer of viscous fluid between contracting rotating disks, Appl. Math. Model., 36 (2012), 1806−1820. https://doi.org/10.1016/j.apm.2011.09.010 doi: 10.1016/j.apm.2011.09.010
    [44] M. Hussain, M. Rasool, A. Mehmood, Radiative flow of viscous nano-fluid over permeable stretched swirling disk with generalized slip, Sci. Rep., 12 (2022), 11038. https://doi.org/10.1038/s41598-022-15159-w doi: 10.1038/s41598-022-15159-w
    [45] M. Turkyilmazoglu, P. Senel, Heat and mass transfer of the flow due to a rotating rough and porous disk, Int. J. Therm. Sci., 63 (2013), 146−158. https://doi.org/10.1007/s00521-020-05355-y doi: 10.1007/s00521-020-05355-y
    [46] S. Zhou, M. Bilal, M. A. Khan, T. Muhammad, Numerical analysis of thermal radiative maxwell nanofluid flow over-stretching porous rotating disk, Micromachines, 12 (2021), 540. https://doi.org/10.1140/epjp/s13360-020-00910-x doi: 10.1140/epjp/s13360-020-00910-x
    [47] I. Ahmad, M. A. Z. Raja, H. Ramos, M. Bilal, M. Shoaib, Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically, Neural. Comput. Appl., 33 (2021), 5753−5769.
    [48] T. N. Cheema, M. A. Z. Raja, I. Ahmad, S. Naz, H. Ilyas, M. Shoaib, Intelligent computing with levenberg–marquardt artificial neural networks for nonlinear system of covid-19 epidemic model for future generation disease control, Eur. Phys. J. Plus, 135 (2020), 1−35. https://doi.org/10.1016/j.cmpb.2021.105973 doi: 10.1016/j.cmpb.2021.105973
    [49] M. Umar, M. A. Z. Raja, Z. Sabir, A. S. Alwabli, M. Shoaib, A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment, Eur. Phys. J. Plus, 135 (2020), 565. https://doi.org/10.1140/epjp/s13360-020-00557-8 doi: 10.1140/epjp/s13360-020-00557-8
    [50] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A stochastic intelligent computing with neuro-evolution heuristics for nonlinear sitr system of novel covid-19 dynamics, Symmetry, 12 (2020), 1628. https://doi.org/10.1007/s00521-019-04203-y doi: 10.1007/s00521-019-04203-y
    [51] M. Shoaib, M. A. Z. Raja, M. T. Sabir, A. H. Bukhari, H. Alrabaiah, Z. Shah, et al., A stochastic numerical analysis based on hybrid nar-rbfs networks nonlinear sitr model for novel covid-19 dynamics, Comput. Meth. Prog. Bio., 202 (2021), 105973. https://doi.org/10.1016/j.ijhydene.2020.11.097 doi: 10.1016/j.ijhydene.2020.11.097
    [52] I. Ahmad, H. Ilyas, A. Urooj, M. S. Aslam, M. Shoaib, M. A. Z. Raja, Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels, Neural. Comput. Appl., 31 (2019), 9041−9059. https://doi.org/10.1016/j.ijhydene.2021.02.108 doi: 10.1016/j.ijhydene.2021.02.108
    [53] H. Ilyas, I. Ahmad, M. A. Z. Raja, M. B. Tahir, M. Shoaib, A novel design of Gaussian WaveNets for rotational hybrid nanofluidic flow over a stretching sheet involving thermal radiation, Int. Commun. Heat Mass Transf., 123 (2021), 105196. https://doi.org/10.1016/j.icheatmasstransfer.2021.105196 doi: 10.1016/j.icheatmasstransfer.2021.105196
    [54] H. Ilyas, I. Ahmad, M. A. Z. Raja, M. B. Tahir, M. Shoaib, Intelligent computing for the dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection for hydrogen possessions, Int. J. Hydrogen Energ., 46 (2021), 4947−4980. https://doi.org/10.1016/j.ijhydene.2020.11.097 doi: 10.1016/j.ijhydene.2020.11.097
    [55] H. Ilyas, I. Ahmad, M. A. Z. Raja, M. B. Tahir, M. Shoaib, Intelligent networks for crosswise stream nanofluidic model with Cu-H2O over porous stretching medium, Int. J. Hydrogen Energ., 2021. https://doi.org/10.1016/j.ijhydene.2021.02.108 doi: 10.1016/j.ijhydene.2021.02.108
    [56] W. Waseem, M. Sulaiman, S. Islam, P. Kumam, R. Nawaz, M. A. Z. Raja, et al., A Study of Changes in Temperature Profile of Porous Fin Model Using Cuckoo Search Algorithm, Alex. Eng. J., 59 (2020), 11−24. https://doi.org/10.1016/j.aej.2019.12.001 doi: 10.1016/j.aej.2019.12.001
    [57] A. H. Bukhari, M. Sulaiman, M. A. Z. Raja, S. Islam, M. Shoaib, P. Kumam, Design of a Hybrid Nar-Rbfs Neural Network for Nonlinear Dusty Plasma System, Alex. Eng. J., 59 (2020), 3325−3345. https://doi.org/10.1016/j.aej.2020.04.051 doi: 10.1016/j.aej.2020.04.051
    [58] M. M. Almalki, E. S. Alaidarous, D. Maturi, M. A. Z. Raja, M. Shoaib, A Levenberg-Marquardt backpropagation neural network for the numerical treatment of squeezing flow with heat transfer model, IEEE Access, 6 (2020), 227340−227348.
    [59] Z. Shah, M. A. Z. Raja, Y. M. Chu, W. A. Khan, M. Waqas, M. Shoaib, et al., Design of neural network based intelligent computing for neumerical treatment of unsteady 3d flow of Eyring-powell Magneto-nanofluidic model, J. Mater. Res. Technol., 9 (2020), 14372−14387. https://doi.org/10.1016/j.jmrt.2020.09.098 doi: 10.1016/j.jmrt.2020.09.098
    [60] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Design of Neuro-Swarming-based heuristics to solve the third-order nonlinear multi-singular Emden-Fowler equation, Eur. Phys. J. Plus, 135 (2020), 410.
    [61] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Neuro-Swarm intelligent computing to solve the second-order singular functional differential model, Eur. Phys. J. Plus, 135 (2020), 1−19. https://doi.org/10.1140/epjp/s13360-020-00440-6 doi: 10.1140/epjp/s13360-020-00440-6
    [62] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, Integrated intelligent computing with neuro-swarming solver for multi-singular fourth-order nonlinear Emden-Fowler equation, Comput. Appl. Math., 39 (2020), 1−18.
    [63] Z. Sabir, M. A. Z. Raja, M. Shoaib, J. F. Gómez Aguilar, FMNEICS: Fractional meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane-Emden system, Comp. Appl. Math., 39 (2020). https://doi.org/10.1007/s40314-020-01350-0 doi: 10.1007/s40314-020-01350-0
    [64] Z. Sabir, M. Umar, J. L. G. Guirao, M. Shoaib, M. A. Z. Raja, Integrated intelligent computing paradigm for nonlinear multi-singular third-order Emden-fowler equation, Neural. Comput. Appl., 33 (2021), 3417−3436.
    [65] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, A novel design of fractional meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems, Alex. Eng. J., 60 (2021), 2641−2659. https://doi.org/10.1016/j.aej.2021.01.004 doi: 10.1016/j.aej.2021.01.004
    [66] A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib, P. Kumam, Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting, IEEE Access, 8 (2020), 71326−71338.
    [67] M. Ramzan, J. D. Chung, N. Ullah, Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk-A numerical approach, Results Phys., 7 (2017), 3557−3566. https://doi.org/10.1016/j.rinp.2017.09.002 doi: 10.1016/j.rinp.2017.09.002
    [68] M. Shoaib, M. A. Z. Raja, M. A. R. Khan, I. Farhat, S. E. Awan, Neuro-computing networks for entropy generation under the influence of MHD and thermal radiation, Surf. Interfaces, 25 (2021), 101243. https://doi.org/10.1016/j.surfin.2021.101243 doi: 10.1016/j.surfin.2021.101243
    [69] N. Anwar, I. Ahmad, A. K. Kiani, S. Naz, M. Shoaib, M. A. Z. Raja, Intelligent predictive stochastic computing for nonlinear differential delay computer virus model, Wave Random Complex, 2022, https://doi.org/10.1080/17455030.2022.2155327 doi: 10.1080/17455030.2022.2155327
    [70] M. Shoaib, A. Z. Abbasi, M. A. Z. Raja, K. S. Nisar, A design of predictive computational network for the analysis of fractional epidemical predictor-prey model, Chaos Solitons Fractals, 165 (2022), 112812. https://doi.org/10.1016/j.chaos.2022.112812 doi: 10.1016/j.chaos.2022.112812
  • This article has been cited by:

    1. Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1859) PDF downloads(76) Cited by(26)

Figures and Tables

Figures(25)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog