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Abstract: The present study aims to design a Levenberg-Marquardt backpropagation neural network
(LMB-NN) integrated numerical computing to investigate the problem of fluid mechanics governing
the flow of magnetohydrodynamics micro-polar nanofluid flow over a rotating disk (MHD-MNRD)
model along with the partial slip condition. In terms of PDEs, the basic system model MHD-MNRD
is transformed into a system of non-linear ODEs by applying the similarity of transformations. For
MHD-MNRD scenarios, the comparative dataset of the built LMB-NN procedure is formulated with
the technique of Adams numerical by variation of micro-polar parameters, Brownian motion, Lewis
number, magnetic parameter, velocity slip parameter and thermophoresis parameter. To compute the
approximate solution for MHD-MNRD for various scenarios, validation, testing and training
procedures are carried out in accordance to adjust the networks under the backpropagation procedure
in terms of the mean square error (MSE). The efficiency of the designed LMB-NN methodology is
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highlighted by comparative study and performance analysis based on error histograms, MSE analysis,

regression and correlation.

Keywords: neural network; Levenberg-Marquard backpropagation; Adams method; micro-polar
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Nomenclature:
LMB Levenberg-Marquardt Backpropagation u,v,w  Velocity Components
Q Constant Angular Velocity M Magnetic Parameter
r.o.z Cylindrical Coordinates C. Ambient Fluid Concentration
NN Neural Network Pr Prandtl Number
\/ Velocity Vector n Dimensional Distance
N,.N,, N, Micro-Rotation Components S Velocity Slip Parameter
u Absolut Viscosity A — A, Micro-polar Parameters
k,a, 8,7 Material Constant (Viscosity Coefficient) | Nb Brownian Motion Parameter
D, Brownian Diffusion Coefficient X,¥,2 Coordinates axis
B, Magnetic Field Strength JRe,C, Skin-friction co-efficient
D, Thermophoretic Diffusion Coefficient Le Lewis Number
Pi Fluid Density Nt Thermophoresis Parameter
C Concentration Distribution kT\l material parameter
(pc)p Heat Capacity of Nanoparticles - Local Nusselt number
Re
Temperature at Surface ' .
T P ) Re Rotational Reynold number
c Concentration at Surface ' . .
" F, F, F, Micro-rotation Components
T Ambient Fluid Temperature £ o .
: . Dimensionless velocities
(pc) Heat Capacity of Fluid ) R
f 4 Concentration Distribution
0 Temperature Field

1. Introduction

Neural networks are widely used in financial operations, trading, enterprise planning, product
maintenance, and business analytics. Neural networks are also widely used in corporate applications
such as marketing exploration and forecasting, risk assessment and fraud detection. In input
multilayer neural networks, backpropagation is a popular learning mechanism. This approach has
lately been employed by examiners to investigate heat transfer characteristics and also the fluid flow
of non-Newtonian systems. Using neural networks, Shoaib et al. [1] examined the creation of entropy
under the influence of magnetohydrodynamic and thermal radiation. Ullah et al. [2] used artificial
neural networks with a Levenberg-Marquardt backpropagation approach to explore the influence of
magnetic fields and Hall current on the flow of micropolar nanofluid between two rotating parallel
plates. By combining the Levenberg-Marquardt with the backpropagated Neural Network, Zubair
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et al. [3] investigated the flow of silver-based Dihydrogen carbon nano-tubes between two stretchy
coaxial disks. To examine the smoking model in this study, Shoaib et al. incorporated intelligent
computing algorithms for entropy analysis in the fluid flow systems [4—6] and the epidemic model [7].
Aljohani et al. [8] investigate intelligent numerical computational models by including a Levenberg-
Marquardt backpropagation-based on neural network to examine the magnetohydrodynamics of a
third-grade fluid flow for wire coating assessment.

The micro-polar fluid is a liquid crystal or microbes such as blood or polymeric fluid. The
micro-polar fluid flow is a dynamically oriented crystal particle motion that is easily narrated by
the law of conservation momentum and mass. The constitutive relationship of fluid has
characterized the micromotion, couple stress and spin inertia. The micro-polar fluid flow has a
broader spectrum of features. The flow of micro-polar fluid has attracted the attention of many
researchers, they developed different models to study the motion of the micro-polar fluids. These
models and theories discussed micro-polar fluid motion from different aspects, such as Eringen [9]
suggested a micro-polar fluid model. Ishak et al. [10] studied the flow of the boundary layer on the
planer surface. Acharya et al. [11] investigate the effect of heat radiation on the Illustration of the
Reynolds number on micropolar nanofluid flow through a permeable media. Ramesh et al. [12]
examined the time-dependent squeezing flow of Casson-micropolar nanofluid with injection/suction
and slip effects. Siddiqui et al. [13] examined Casson nanofluid MHD flow and heat transmission via
a porous medium over a stretched sheet. Krishna et al. [14] investigated the effects of thermal radiation,
chemical reaction, Hall, and ion slip on the MHD oscillatory rotational flow of a micro-polar liquid.
Perdikis et al. [15] investigate the constant flow of a micropolar fluid through an immovable plate in
the presence of radiation. Sandeep and Sulo-chana [16] explored the dual solution of magneto
hydrodynamic micro-polar fluid flow and unsteady mixed convection along a stretching/shrink
sheet in the existence of non-uniform heat source/sink. Nadeem et al. [17] are exploring the
numerical consequences of Nanofluid micro-polar boundary layer flow. Similarly, Ali et al. [18]
calculated the numerical consequences of the micro-polar fluid flow for the boundary layer over
a cylinder.

Choi [19] introduces the nanofluid concept. Nanofluid has various characteristics and
applications the researchers have been focusing on to explore the behavior of nanofluid from
different aspects. Due to viscous behavior, the small size and higher thermal conductivity of
Nanofluids (Nanometer sized metallic particle colloidal suspension) make them highly effective,
they are attracting considerable attention due to their varied variety of applications in the field of
biological science and engineering. Rashidi et al. [20] used the RK4 method to analyze the
analytical and numerical solution of viscous water-based nanofluid with second-order slip
condition in combination with the shooting iteration method. Hayat et al. [21] found a solution of
Oldroyd-B Nano-fluid flow in the existence of heat generation/absorption past a stretched surface.
Dhanai et al. [22] investigated Nanofluid the flow while identifying numerous Nanofluid flow
solutions with mixed convection and slip effect. Koriko et al. [23] focused on the boundary layer
flow of nanofluid in their study by using a horizontal surface. Mehmood et al. [24] applied
Optimal Homotopy Analysis Method to study the flow of Oblique Jeffery nanofluid in the vicinity
of a stagnation point. Hayat et al. [25] checked the nanofluid flow slip effects in the existence of
magnetic field due to a rotating disk. [26] used the differential transformation method to analyze
the time-dependent nanofluid flow between two parallel plates. Sandeep et al. [27] conducted
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their study on analyzing the increase or decrease in the rate of heat transfer of unsteady magneto
hydrodynamics nanofluid flow. Furthered Sandeep study [28] by checking and investigating a
thin flow of nanofluid under the action of magnetic field consisting of graphene Nanoparticles.
Many other researchers have already conducted their studies on checking and investigating the
effects of the flow of Nanofluid particles such as [29—-35].

The researchers are interested in studying the flow of fluid through a rotating disk due to its
numerous applications in engineering and aeronautical sciences, such as thermal power generation
systems, air cleaning machines, medical equipment, gas turbine rotors, crystal growth processes,
computer storage devices, electronic crystal growth processes, devices, and numerous more [36—38].
Von Karman [39] is one of the popular researchers who conducted his research on fluid flow
through a rotating disc, which has been regarded as pioneer contribution to this area of research.
He applied the momentum-integral approach to conduct an analytical analysis of the resulting
problem. Cochran [40] solved the von Karman problem asymptotically. Ackroyd [41] studied
suction/injection effects and provided a series solution with exponentially decaying coefficients
in the Von Karman problem. These solutions are based on the coefficients called exponentially
decaying coefficients. Bashir et al. [42] examined the Thermophoresis phenomena in the radiative
flow around a rotating disk vertical movement in a porous environment. Asymmetric laminar flow and
heat transmission of a viscous fluid were investigated between contracting rotating disks [43]. Hussain
et al. [44] investigated the radiation flow of a viscous nanofluid over a porous stretched rotating disc
with extended slip. Turkyilmazoglu and Senel [45] investigate flow of viscous liquid and heat/mass
transfer using a porous disc with rotating frame. Zhou et al. [46] study the numerical analysis of
thermal radiative Maxwell nanofluid flow over-stretching porous rotating disk.

Stochastic numerical computing methodologies are produced for the solution of linear and non-
linear differential equations describing various applications occurring in different fields by using the
power of evolutionary/swarming computing-based optimization techniques associated to neural
network models. The most recent implementation of stochastic numerical computing solutions
comprises bio-mathematical model [47—52], Mathematical model for fluid dynamic problems [53—59],
astrophysics [60—65] and fractional model [66]. The related articles [69,70] can be referred to for
further details.

The importance of algorithm-based artificial intelligence (Al) solvers and above cited research
work inspired the authors to develop the fluidic system MHD-MNRD to implement the soft computing
paradigm for its heuristic solution and statistical analysis.

The innovation contributions of the present study for backpropagation networks for
magnetohydrodynamics micro-polar nanofluid flow over a rotating disk model along with the partial
slip condition are highlighted as follows.

e The numerical computation has been designed through the Levenberg-Marquardt
backpropagation with neural network (LMB-NN) for the comparative study of
magnetohydrodynamics micro-polar nanofluid flow over a rotating disk (MHD-MNRD) model
along with the partial slip condition.

e The governing mathematical model of the magnetohydrodynamics micro-polar nanofluid flow
over a rotating disk (MHD-MNRD) model represented with nonlinear PDEs is reduced to a
nonlinear system of ODEs by the competency of similarity adjustments.

e A reference data of designed networks is constructed effectively for variants of MHD-MNRD
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demonstrating the scenarios for micro-polar parameters, Brownian motion, Lewis number,
magnetic parameter, velocity slip parameter and thermophoresis parameter by applying the
Adams numerical method.

e The Mathematica software is used to compute the dataset for designed LMB-NN for the
variation of micro-polar parameters, Brownian motion, Lewis number, magnetic parameter,
velocity slip parameter and thermophoresis parameter.

e MATLAB software is used to interpret the solution and the absolute error analysis plots of the
MHD-MNRD model.

e The training, testing, and validation based process block structure of LMB-NN exploited to
calculate the approximate solutions of MHD-MNRD and comparative study validate the
consistent accuracy.

e The worthy performance of the designed network was additionally established by a learning
curve on MSE based fitness, histograms and regression metrics.

Neural networks are also ideally adapted to helping people solve difficult problems in everyday
life. They can investigate and simulate difficult and complicated, multidimensional interactions
between inputs and outputs, simplify complex relationships and draw conclusions from them, as well
as model high volatility data. Neural networks, therefore, have the potential to enhance decision-
making in fields like: Transportation network logistics optimization, voice and character recognition,
which are frequently referred to as natural language processing, detection of credit card and Medicare
fraud, targeted marketing, robotic control systems, disease and medical diagnosis, energy demand and
Electrical load forecasting, financial predictions for stock prices and chemical compounds
classification, etc.

The objective of this work is to developed a new ANN technique to solve the problem “A
predictive neuro-computing approach for micro-polar nanofluid flow due to a rotating disk in the
presence of magnetic field and partial slip effect” through stochastic technique (LMB-NN).
Furthermore, the motivation to set a platform for further studies to take help from this new technique.
The advantages of this paper are to account for different parameters is the level of accuracy ranging
from 10° to 1013, the recommended approach is distinguishable from the proposed and reference
outcomes. Validation, convergence, stability and verification of LMB-NN for solution predictive
strength of the proposed model are certified in terms of achieved accuracy, regression index
measurements, and analysis of error histogram illustrations. The numerical n graphical solution is
shown in the results and discussion section. Besides of this work other advantages of this paper are to
obtain some statistical data of the model that is Mean square error, gradient, performance, Mu.

The rest of the analysis is structured as follows: in Section 2, the formulation of the problem of
the three-dimensional micro-polar Nano-fluid flow system is described, the solution technique is
outlined in Section 3, along with the results of the suggested LMB-NN on various variants of MHD-
MNRD, while in the last section, the final comments and possible future analysis are discussed.

2. Problem formulation

Consider the steady flow of an incompressible and electrically conducting micropolar nanofluid
due to an infinite rotating disk as shown in Figure 1. The disk is rotating with a constant angular
velocity Q . The consequences of the velocity slip condition are taken into consideration. N, N,, N,
are sued to micro-rotation components and r, ¢, z cylindrical co-ordinates with u, v, w velocity

components are to be used. Here neglecting the body forces and body couples. Under the action
AIMS Mathematics Volume 8, Issue 5, 12062—12092.
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applied normal to the fluid and magnetic field with strength g_, the flow is examined. Under the
given assumption, equations of the boundary layer problem can be written as follows [16—18]:

V.V =0, (1)

o (jj—\::(i+2y+k)V(V.V)—(k+,u)V><V><V+J><B,

)
\_ T=1 I=:1 I:1 Y.
Figure 1. Design of 3D flow of micro-polar Nanofluid model.
. dN
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In the given flow system, boundary conditions as follow:
u:La—u, v=rQ+La—V, w=0, T=T,, C=C,,N,=N,=0,N,=Q, at z=0,l
0z oz
U=v=0,C=C,, T=T,, N,=N, =N, =0, when z — oo, | (13)

In the above expression the material constant (viscosity Coefficient) are denoted by «, 2,7,k
and absolute viscosity is indicated by z . Fluid density, fluid heat capacity and Nanoparticles are

represented by p;, (pC), and ( pC)p, respectively. The thermophoretic diffusion co-efficient and

the Brownian diffusion co-efficient are indicated by p_ and p, , respectively and C is the
concentration distribution. Concentration and Temperature at the surface are indicated by ¢, and 1,
and away from surface, the ambient concentration and temperature values are showed by ¢_and t_
respectively.n is indicated dimensionless distance from disk and the velocity, and micro-rotation
components in non-dimensional form are introduced to solve the system of Eqs (4—12) as follow:
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7= /z?gz,v:ng(U), u=rof'(n), w=-20K f (),

’ZQ /ZQ
N, =rQ ?Fl(ﬂ), N, =rQ ?Fz(n)’ N3=I"QF3(7]),

T-T c-C H+K
0 = - y 9 = = ’ K: .
) =2— 0) c.-c. S

w 0

(14)

By using the dimensionless and non- dimensionless quantities, transformed the Eqs (4—12) into the
following forms [68]:

2f"—(2f2+M?) f'— 2+ 9% +2A (fF,—F}) =0,

(15)
29"+2(fg'- fg)-M?g+2AF'=0, (16)
2F"- A, (9'+2F)-A(f'F - fR'-gF,)=0, 17)
2F+ A, (f"-2F,)-A(f'F,— fF,—gF)=0, (18)
F+AF' +A(9-F)-AfF=0, (19)
" r_ 1 12 —
6" +Pr(f6'—Nbo'p' + Nt6"” ) =0, (20)
Nt
"+PrLefo'+—0"=0, 21
¢"+PrlLe +Nb (21)
Using the boundary condition (13), which reduce into

f(0)=0, f'(0)=5f"(0), g(0)=1+65g'(0), F1(0)=O,}

F,(0)=0, F,(0)=1, 6(0)=1, ¢(0)=0, 22)

g() =0, f'(0)=0, F(0)=0, F,(0)=0, F(x)=0, 6(x)=0, ¢(x)=0. (23)

From above expression, f and g are the components of velocity along x — axis and y — axis,
respectively, while r, F, and g, are denoted components of micro-rotation in the directions of X, y
and ; respectively. In above transformed equations, the dimensionless parameters are, (a — A,)
the micro-polar parameter, (Nb) Brownian motion parameter, (M) magnetic parameter, (&)
velocity slip parameter, (Nt) thermophoresis parameter, (Le) Lewis number and (pr) Prandtl number
are expressed as follow:

AIMS Mathematics Volume 8, Issue 5, 12062—12092.
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K, KK, ke atp
Cou+k’ A2_7'Q’ A= /4 ,A4_a+ﬂ+7’
kK _ Py ik 2_%02

A= Q(a+,8+7/) Aﬁ_a+ﬂ+7,M _pr’
Nb = ('O ) ( ), L :i’ Nt:(pC)P (CW_Cw).
(pC), T,K D, (pC), K

(24)

Skin-friction co-efficient and local Nusselt number are the physical dimensionless quantity, which is
listed as:

. . N
JReng =(1+k )g'(0), «/RerCf =1+k)f"(0), = —-¢'(0),
vRe, (25)

where x— X and Re, are indicated the material parameter and rotational Reynold number,

u
respectively.

3. Methodology

There are two parts of the methodology described here: the first part provides the appropriate
description for the construction of the LMB-NN dataset, whereas, in Section 2, the implementation
methodology approved for LMB-NN is described. In the Figure 2, the illustration of the workflow is
shown in the process block structure.

The comparative solutions, i.e., the LMB-NN dataset, are de termined using the Mathematica
programming package in which 'NDSolve' is exploited by using the Adams numerical solver. The 'ND
Solve' procedure is operated with default parameter settings including the goal of accuracy, tolerances
and step size for the differential equation to be solved.

The suggested LMB-NN consists of a combination of the structure of a multi-layer neural network
and computation with backpropagation by Levenberg-Marquardt. For neural network methodology,
Figure 3 presents a single neuron model. The proposed LMB-NNs are implemented in the Matlab
software package via the 'nftool' neural network toolbox routine using appropriate hidden neuron
settings, training data, validation data, testing data and learning methodology.

AIMS Mathematics Volume 8, Issue 5, 12062—12092.
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The steady 3-D micropolar nano-fluid flow due to rotating disk
2f"—(2f7+M?)f'— 2 +9°+2A (fF,-F,) =0,
29"+2(fg'-f)-M?g+2AF'=0,
2F1"—A2(g'+2F1)—A3)(f’F1— fFl'—gF2)=0
2F)+ Az(f"—ZFZ)—A3(f'F2 = sz’—gFl)
F'+ AAF’+A5(g —F3)—A6fF3'=O,

0" +Pr( fo'—Nbo'y'+ Nto”*) =0,

¢"+PrlLe f0’+&0”=0,
Nb
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Figure 2. Suggested design of the LMB-NN technique for the micro-polar Nanofluid model.
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Figure 3. Construction of a single neuron model.
4. Numerical analysis with description

Numerical computations through the designed LMB-NN are provided here for the presented

fluidic systems based on steady 3-D micro-polar Nano-fluid system as given in the Eqs (15—23). For
all the six scenarios of system (15-23) model by variation of M,s,Nt,Nb,Le and all cases

(A. A A, A, A, A,) designed for 3 cases for different values of Pr are presented in Table 1 for micro-
polar material constants and all 6 different scenarios of model MHD-MNRD in Table 2.

Table 1. Micro-polar material constants are the following four cases [67].

Case A A, A A, As As

[ 0.4000 0.5000 0.2000 0.1000 1.0000 0.3000
i 0.8000 1.000 0.4000 0.2000 1.5000 0.6000
ii 1.2000 1.5000 0.2000 0.1000 1.0000 0.3000
iv 1.6000 2.0000 0.8000 0.4000 2.5000 1.2000

For all 6 scenarios, the reference solutions ¢ (;;), '), g(7). F.(2). F,G2). F.(7). 0@G) and
é(n), i.e., the LMB-NN dataset, are deliberated with the Adams method for similar variable # lies in 1
and 4, with step size 0.02, for all 3 cases of the model MHD-MNRD in Egs (15-23). The dataset
generated by the Adams technique in terms of ), '), 9(). F@). F@). F@), o@) and
#(n) which will be incorporated for comparative study as well.

MHD-MNRD model has received the optimal outcomes through the designed stochastic solver
LMB-NN which is provided in Egs (15-23) using the ‘nftool’ procedure with 10 (neurons), 80% of
training data values, 10% testing and 10% for validation and Levenberg-Marquardt backpropagation

efficient optimization strength. The neural network structure is showed in Figure 4 and the suggested
LMB-NN method is recurrent for variationm, Nb, s, Le, Nt and all cases (a, A,, A, A,, A, A;) Of all 6

different scenarios of model MHD-MNRD with numerical values are presented in Table 2.

AIMS Mathematics Volume 8, Issue 5, 12062—12092.
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Figure 4. Architecture LMB-NN for MHD-MNRD model.
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Table 2. Narration of 3 different cases of all 6 scenarios for the micro-polar nanofluid model.

Interest-based physical quantities for all scenarios

Pr  Scenarios Case M 5 Nb Nt Le All cases
LA A A As. A Add
1 1.2 0.2 0.5 0.3 1.0 case (i)
1.2 1 2 14 0.2 0.5 0.3 1.0 case (i)
3 1.6 0.2 0.5 0.3 1.0 case (i)
1 1.2 0.6 0.5 0.2 1.0 case (i)
07 2 2 1.2 0.9 0.5 0.2 1.0 case (i)
3 1.2 1.2 0.5 0.2 1.0 case (i)
1 0.2 0.2 0.5 0.3 1.0 case (i)
20 3 2 0.2 0.2 1.2 0.3 1.0 case (i)
3 0.2 0.2 2.0 0.3 1.0 case (i)
1 0.2 0.2 0.5 0.3 2.0 case (i)
1.0 4 2 0.2 0.2 0.5 0.6 2.0 case (i)
3 0.2 0.2 0.5 0.9 2.0 case (i)
1 0.2 0.2 0.5 0.3 1.0 case (i)
20 5 2 0.2 0.2 0.5 0.3 15 case (i)
3 0.2 0.2 0.5 0.3 2.0 case (i)
1 0.5 0.7 0.5 0.3 1.0 case (i, ii, iii)
1.2 6 2 0.5 0.7 0.5 0.3 1.0 case (i, ii, iii)
3 0.5 0.7 0.5 0.3 1.0 case (i, ii, iii)

The consequences of the LMB-NN of all 6 scenarios for case 3 of the MHD-MNRD model are
presented in Figures 5—19. The results for case 3 of all six scenarios (M, &, Nb, Nt, Le and all cases

(AL A, A, A, A, A)) In terms of efficiency and transition states are described in Figures 5 and 6,

respectively. For different scenarios, for the respective case 3, Figures 7—12 showed fitting designs for
error analysis for the presented mathematical model. The regression analyses are shown in
Figures 14-19, while the error histograms are illustrated in Figure 13 for 3 different variants of the
MHD micro-polar nanofluid model. In addition, for validation, training, and testing, backpropagation
measures, executed epochs, performance and time complexity, in terms of MSE, the convergence
achieved is described in Tables 3—8 for all six scenarios respectively, for the micro-polar Nano-fluid
MHD-MNRD model.

AIMS Mathematics
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In Figures 5a—5f, subfigures are showed the Mean square error (MSE) convergence for best curve,
test, validation and train are denoted for case 3 of micro-polar Nano-fluid model MHD-MNRD. One
can see that the best performance of the network is attained at 104, 114, 104, 90, 106 and 119 epochs
with mean square error (MSE) in the range of 107 *°,107°,10 %, 10*2to 10**, 10 * and 107*°
respectively. Values of Mu and gradient of Levenberg-Marquardt backpropagation are [10°, 10-°,
10°,10%°,10,10°% ] and [ 999x10,  9.88x10%, 9.92x10 %, 9.97x10 %, 9.98x10 %,
9.84 x10°® ] as shown in Figures 6a—6f, respectively. All these graphics illustrated that the LMB-NN
scheme are convergent, reliable and accurate for every case of the MHD-MNRD model.

The Adams procedure reference numerical results, compare with LMB-NN performance, for
case 3 of the MHD-MNRD model is shown in Figures 7—12 along with the step size 0.02, error plots
with an input between 1 to 4. In the LMB-NN scheme, the maximum error for validation, test and train
inputs are around 2x<107°, 9x107%°, 3x10%°, 1x10°, 2x10* and 6x10*° forall various cases
of the MHD-MNRD model. Figures 13—18 of the outcomes of various six variations of the MHD-
MNRD model also use co-relation studies to analysis regression studies. Further, histograms measures
are used to analyze the error analysis for the input grid and corresponding outputs are indicated in
Figures 19a—19f for all 6 scenarios 16, respectively, of case 3, of the MHD-MNRD model given in
Egs (15-23). The average value of the error bin with the zero line error reference are around
—1.4x10™%, —6.3x10™°°, —2.0x10™%, —1.4x10™°, —2.0x10™* and -1.2x10% , for respective 6
scenarios of the MHD-MNRD model. It is shown that correlation R values are around unity for testing,
training and validation, i.e., scenario of perfect modeling, which certified the LMB-NN methodology
correctness to solve the MHD-MNRD model.

In addition, for scenarios 1-6 of the MHD-MNRD maodel, the corresponding numerical values
are listed in Tables 3-8, illustrating that performance on MSE for the suggested LMB-NN technique
isaround 107, 107, 107, 10 to 10~*°, 10 *° and 10 *° for the MHD-MNRD model. All numerical
consequences are presented in Tables 3—8, indicated the robust efficiency of LMB-NN for solving the
micro-polar nano-fluid MHD-MNRD model.
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(2) MSE results of Scenario 1 for Case 3. (b) MSE results of Scenario 2 for Case 3.
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Figure 5. MSE results from curves for the designed LMB-NN to solve the micro-polar
Nanofluid model.

Table 3. Outcomes of LMB-NN (M variation) Scenario 1 of the micro-polar nanofluid model.

Mean Square Error

Case . . ] Performance  Gradient Mu Epoch Time
Training Validation Testing

1 1.93064x107"° 1.32432x10° 2.61514x10° 1.93x107°  9.86x10® 1.00x10% 114 0

2 1.60464x107° 9.66473x107° 2.18029x107° 1.60x10 *° 9.84x10°%® 1.00x10®° 117 0

3 1.85902x107° 2.19749x107° 2.99637x10° 1.86x107°  9.99x10® 1.00x10*® 104 0
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Figure 6. LMB-NN State Transition Processes to solve the micro-polar nanofluid model.
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Table 4. Outcomes of LMB-NN (& variation) scenario 2 of micro-polar nanofluid model.

Mean Square Error

Case L. . . Performance Gradient Mu Epoch Time
Training Validation Testing

1 1.34647x107° 1.65803x107° 1.20209x107° 1.35x107° 9.89x10™® 1.00x10™*° 104 2

2 1.37891x107° 1.52381x10° 2.06930x107° 1.38x107° 9.91x10%® 1.00x107% 109 0

3 1.39787x10° 9.46314x107° 1.79667x107° 1.40x107° 9.88x10™® 1.00x10™*° 114 0

AIMS Mathematics
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Figure 7. Comparative analysis of LMB-NN with the reference solution of Scenario 1 for

Case 3 of the MHD-MNRD model.
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Case 3 of the MHD-MNRD model.
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Figure 12. Comparative analysis of LMB-NN with the reference solution of Scenario 6
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Figure 13. Regression diagrams for the consequences of LMB-NN of scenario 1 for case
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Figure 15. Regression diagrams for the consequences of LMB-NN of scenario 3 for case3
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Figure 16. Regression diagrams for the consequences of LMB-NN of scenario 4 for case
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Figure 18. Regression diagrams for the consequences of LMB-NN of scenario 6 for case 3
of the MHD-MNRD model.

Table 5. Outcomes of LMB-NN (Nb variation), scenario 3 of micro-polar nanofluid model.

Mean Square Error

Case . o . Gradient Mu Epoch Time
Training Validation Testing Performance P !

1 1.76679x107* 3.68931x107*° 2.31240x107® 1.77x10™° 9.92x10° 1.00x10%° 104 0
7 1.25961x107° 1.68339x107° 2.12847x10*° 1.26x10° 9.98x10% 1.00x10™*° 109 0
3 1.47693x107° 2.55079x107° 2.03485x107° 1.48x107° 9.92x10™% 1.00x10™° 104 0
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(a) Error Histogram for Scenario 1 Case 3. (b) Error Histogram for Scenario 2 Case 3.
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(c) Error Histogram of Scenario 4 for Case 3.  (d) Error Histogram of Scenario 4 for Case 3.
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(e) Error Histogram of Scenario 5 for Case 3. (f) Error Histogram of Scenario 6 for Case 3.

Figure 19. Results of Error Histogram for LMB-NN outcomes of all 6 Scenario for case 3
of the MHD-MNRD maodel.

Table 6. Outcomes of LMB-NN (Nt variation), Scenario 4 of micro-polar nanofluid model.

Mean Square Error ) )
. L . Performance Gradient ~ Mu Epoch Time
Training Validation Testing

Case

1 1.46898x10™° 1.96332x10™" 1.64259x10™% 1.47x10™ 9.80x10™® 1.00x107*? 08 0
2 1.55306x107"° 1.66844x107° 2.07317x107° 155x107° 9.80x10™*® 1.00x107*
3 9.74284 %1072 1.35012x10"*" 8.09703x10™ 9.74x1072 9.97x10°® 1.00x107*° 90 0

In addition, the analysis should be presented on the first elements of velocity component, i.e.,
f (r7), the investigation for variation of velocities profile f'(») and g () , Micro rotation profiles

F.(7). F, (), F,(77) » temperature profile o(;;) and concentration profile 4(;;) should be extended.
Consequently, the LMB-NN consequences are determined for g(7), @(;) and ¢(n) for scenarios 1
to 6 of the MHD-MNRD model and illustrated in Figures 20—25.
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Figure 20. Suggested LMB-NN and reference numerical outcomes are compared for M
of the MHD-MNRD maodel.
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Figure 21. Suggested LMB-NN and reference numerical outcomes are compared for &
of MHD-MNRD model.
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Figure 22. Suggested LMB-NN and reference numerical outcomes are compared for
Nb of MHD-MNRD model.

Table 7. Outcomes of LMB-NN (Le variation) Scenario 5 of micro-polar nanofluid model.

Mean Square Error
Training Validation Testing

Case Performance Gradient  Mu Epoch Time

1 1.58685x107° 1.85791x107"° 2.25529x107° 1.59x107* 9.81x10™® 1.00x10™* 102 0
2 1.09530x107"° 1.35826x107"° 1.36220x10"° 1.10x107° 9.95x10™% 1.00x10™® 113 0
3 1.21619x107° 2.34484x107° 1.93542x107"° 1.22x107® 9.98x10™°® 1.00x10™*° 106 0

The outcomes of velocities, temperature and concentration profiles f'(r), g(z), €(;) and
#(n) for all six scenarios are shown in Figures 20—25, respectively, of MHD-MNRD model. From
AIMS Mathematics Volume 8, Issue 5, 12062—12092.



12084

the Figures 20a, 21a, 22a, 23a, 24a and 25a, it is noted that the velocity profiles impacted by magnetic
field, both show declining performance. The reduction in velocity is due to Lorentz forces in the
magnetic field, which act as a resistive force against fluid motion. It is also important to note that
the velocity field decreases as the slip parameter's value increases. It is observed that the
temperature increases for increasing values of Nb while the temperature and Nanoparticle field
efficiency increases for increasing Nt thermophoresis parameter values. It is also noted that
increasing the Le value reduces the Nanoparticle profile and its associated thickness of the
boundary layer. It can be observed that the low velocity profile is achieved nearest to surface by
intruding the material parameter a, A, A, A,, A and A, Values for the case(i) as compared to the
rest of the cases for the different material parameter Ao A, A, A, A and A Values (described in

Table 1).
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(a) Nt Variation. (b) Interpretation on AE.

Figure 23. Suggested LMB-NN and reference numerical outcomes are compared for Nt
of MHD-MNRD model.

- Proposed: Le=1.0

— = Proposed: Le=1.5

— Proposed: Le=2.0
* Numerical

#(n) o4

s Lp = 1.0
; -- Le=15 ‘
10° — Le=20

0 05 1 15 2 25 3 35 4

Inputs 7 Inputs 7
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Figure 24. Suggested LMB-NN and reference numerical outcomes are compared for Le
of MHD-MNRD model.
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Absolute error obtained by the designed solver can be seen via Figures 20b, 21b, 22b, 23b, 24b
and 25b, for all six scenarios, respectively, of the MHD-MNRD model. It is noted that, for all six
scenarios, the AE are around 10t010™, 107 to10™*, 107 t010™™, 10"* t010™*, 10" t010™* gnqd
10 to10° , respectively, of MHD-MNRD model. The numerical and graphical diagrams
demonstrate that the LMB-NN approach for the MHD-MNRD model solution is reliable, robust and
convergent.

All of the characteristics stated above have a wide variety of applications in real-world physics,
which are briefly covered below. In many fluid flow situations, micro-polar fluids are fluids with
microstructure. They are classified as polar fluids because they have a non-symmetric stress tensor.
Physically, micro-polar fluids are fluids composed of stiff, randomly oriented (spherical) particles
suspended in a viscous medium, with no regard for fluid particle deformation. Magnetohydrodynamics
is essential in many fields of physics, including solar physics (where we shall examine the
magnetohydrodynamics of the sun), astrophysics, plasma physics, and so on. The effects of the
magnetic field on the dynamic conducting fluid are the primary focus of MHD physics. Magnetic
medication targeting, cancer tumour therapy, magnetic devices for cell separation, magnetic endoscopy,
and regulating blood flow during surgery are some of the uses of MHD. A dimensionless number that
is an intrinsic characteristic of a fluid is the Prandtl number. Fluids with low Prandtl numbers are free-
flowing liquids with excellent thermal conductivity, making them ideal for heat transmitting liquids.
Small Prandtl numbers, Pr << 1, indicate that thermal diffusivity is dominant. With large levels of
Pr >> 1, momentum diffusivity dominates the behaviour. For example, the reported value for liquid
mercury implies that heat conduction is more important than convection, implying that thermal
diffusivity is dominating. However, in engine oil, convection is more effective than pure conduction
at transferring energy from a region, therefore momentum diffusivity is dominant. Brownian motion,
also known as Brownian movement, any of several physical processes in which a quantity undergoes
continual tiny, random changes. Brownian motion of nanoparticles at the molecular and nanoscale
levels has been discovered to be a crucial factor influencing the thermal behaviour of nanoparticle-
fluid suspensions ("nanofluids”). We developed a theoretical model that accounts for dynamic
nanoparticles' basic involvement in nanofluids. Brownian motion causes particles in a fluid to be
constantly in motion. This inhibits particles from resting, resulting in colloidal solution stability. With
the assistance of this motion, a genuine solution may be recognised from a colloid. Thermophoresis is
the transport force that happens when a temperature gradient exists. This force moves gas-borne
particles with diameters smaller than 10 m towards the lower temperature area. Thermophoresis is
important in high temperature zones, such as a boiler's radiant portion. The thermophoretic force is
useful in a variety of situations. Because various particle types travel independently under the force of
the temperature gradient, the particle types can be separated by that force after they've been mixed
together, or prevented from combining if they're already separated, which is the foundation for
applications. Because the greater temperature makes the transition structure necessary for atomic leaps
more possible, impurity ions may travel from the cold side of a semiconductor wafer to the hot side.
Depending on the materials used, the diffusive flow can occur in either direction (up or down the
temperature gradient). Commercial precipitators have employed thermophoretic force for purposes
comparable to electrostatic precipitators. It is used in vacuum deposition procedures to manufacture
optical fibre. It has the potential to be useful as a transport mechanism in fouling. Thermophoresis has
also been proven to offer potential in helping drug development by permitting the identification of

AIMS Mathematics Volume 8, Issue 5, 12062—12092.



12086

aptamer binding by comparing the target molecule's bound vs unbound motion. This approach is
referred to as microscale thermophoresis. Furthermore, thermophoresis has been shown to be a flexible
approach for controlling single biological macromolecules such as genomic-length DNA and HIV
virus in micro- and Nano-channels by light-induced local heating. In field flow fractionation, one of
the ways used to separate distinct polymer particles is thermophoresis. The Lewis number is used to
describe fluid flows with simultaneous heat and mass transfer. The Lewis number compares the
thickness of the thermal boundary layer to the concentration boundary layer. It is used to describe fluid
flows with simultaneous heat and mass transfer. As a result, the Lewis number is a measure of the
relative thicknesses of the thermal and concentration boundary layers. The Prandtl and Schmidt
numbers can also be used to express the Lewis number. Slip velocity is defined as the mean velocity
of near-wall particles (often within a layer thickness of one mean free path), with a greater proportion
of specular reflections resulting in a higher slip velocity. It has been observed that when the velocity
slip parameter grows, the velocity profile decreases, as does skin friction and heat transfer, but mass
transfer increases. Heat and mass transport rates decrease as the thermal slip parameter is increased.
The velocity of cutting that falls down because to gravitation is known as slip velocity. The influence
of mud flow upward direction and mud characteristics must be larger than cutting slip velocity in order
to efficiently clean the hole.
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Figure 25. Suggested LMB-NN compare with reference numerical outcomes for scenario
6 of MHD-MNRD model.

Table 8. Outcomes of LMB-NN ((a — A,) variation) for Scenario 6 of micro-polar nanofluid model.

Mean Square Error

Case - o ] Performance Gradient  Mu Epoch Time
Training Validation Testing

1 1.24255x107"° 1.60476x107"° 3.11662x107"° 1.24x107"° 9.99x10® 1.00x10™* 108 0

2 1.40484x107"° 6.83825x107"° 1.70922x107"° 1.40x107"° 9.83x10® 1.00x10%® 108 0

3 1.45462x107"° 2.46460x107"° 1.83380x107"° 1.45x10™"° 9.84x10™® 1.00x10™® 119 0
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5. Conclusions

A stochastic numerical computation through designed solvers LMB-NN is implemented for the
solution of the presented fluidic system based on magnetohydrodynamics micro-polar Nano-fluid by
using. PDEs of the mathematical system are shifted to corresponding ODES representing the dynamics
of the problem under consideration by using the capability of suitable equivalence replacements of the
suggested system model MHD-MNRD.

The formation of data set for the designed computational networks LMB-NN approach is carried
out by using the Adams numerical method with the aid of Mathematica for variations of the MHD-
MNRD system based on numerous parameters of interest in terms of micro-polar parameters, velocity
slip parameter, magnetic parameter, Brownian motion, Lewis number, thermophoresis parameters and
Prandtl number. To adapt the designed LMB-NN with 10 unseen neuron numbers, 80%, 10% and 10% of
reference data are used as testing, validation and training. The LMB-NN scheme accuracy is certified by
both suggested and reference results with 102 to 10 level matching. Furthermore, the accuracy is
also explained via numerical and graphical descriptions of convergence plots on the MSE index,
regression analysis and error histograms.

Future work direction: The authors intend to implement the following local search
algorithms [68—70] for the presented fluid flow system based on magnetohydrodynamics micro-polar
nanofluid flow over a rotating disk model along with the partial slip condition.
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