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Abstract: The present study aims to design a Levenberg-Marquardt backpropagation neural network 

(LMB-NN) integrated numerical computing to investigate the problem of fluid mechanics governing 

the flow of magnetohydrodynamics micro-polar nanofluid flow over a rotating disk (MHD-MNRD) 

model along with the partial slip condition. In terms of PDEs, the basic system model MHD-MNRD 

is transformed into a system of non-linear ODEs by applying the similarity of transformations. For 

MHD-MNRD scenarios, the comparative dataset of the built LMB-NN procedure is formulated with 

the technique of Adams numerical by variation of micro-polar parameters, Brownian motion, Lewis 

number, magnetic parameter, velocity slip parameter and thermophoresis parameter. To compute the 

approximate solution for MHD-MNRD for various scenarios, validation, testing and training 

procedures are carried out in accordance to adjust the networks under the backpropagation procedure 

in terms of the mean square error (MSE). The efficiency of the designed LMB-NN methodology is 
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highlighted by comparative study and performance analysis based on error histograms, MSE analysis, 

regression and correlation. 

Keywords: neural network; Levenberg-Marquard backpropagation; Adams method; micro-polar 

nanofluid; magnetohydrodynamics; rotating disk; slip effects 
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Nomenclature: 

LMB         Levenberg-Marquardt Backpropagation 

              Constant Angular Velocity 
, ,r z         Cylindrical Coordinates 

NN            Neural Network 

V              Velocity Vector 

1 2 3
, ,N N N  Micro-Rotation Components 

              Absolut Viscosity 

, , ,k       Material Constant (Viscosity Coefficient) 

B
D              Brownian Diffusion Coefficient 

0
B              Magnetic Field Strength   

T
D              Thermophoretic Diffusion Coefficient 

f
              Fluid Density  

C              Concentration Distribution 

( )
p

c         Heat Capacity of Nanoparticles 

w
T              Temperature at Surface 

w
C              Concentration at Surface 

T
              Ambient Fluid Temperature 

( )
f

c         Heat Capacity of Fluid 

 

, ,u v w       Velocity Components 

M              Magnetic Parameter  

C
              Ambient Fluid Concentration

Pr              Prandtl Number 
               Dimensional Distance 

                Velocity Slip Parameter 

1 6
A A−       Micro-polar Parameters 

Nb            Brownian Motion Parameter 
, ,x y z          Coordinates axis 

Re
r f
C    Skin-friction co-efficient 

Le               Lewis Number 

Nt               Thermophoresis Parameter 

*k               material parameter 

Re

u

r

N
         Local Nusselt number 

Re
r
           Rotational Reynold number 

1 2 3
, ,F F F     Micro-rotation Components 

f                Dimensionless velocities 
                  Concentration Distribution 

                 Temperature Field  

1. Introduction 

Neural networks are widely used in financial operations, trading, enterprise planning, product 

maintenance, and business analytics. Neural networks are also widely used in corporate applications 

such as marketing exploration and forecasting, risk assessment and fraud detection. In input 

multilayer neural networks, backpropagation is a popular learning mechanism. This approach has 

lately been employed by examiners to investigate heat transfer characteristics and also the fluid flow 

of non-Newtonian systems. Using neural networks, Shoaib et al. [1] examined the creation of entropy 

under the influence of magnetohydrodynamic and thermal radiation. Ullah et al. [2] used artificial 

neural networks with a Levenberg-Marquardt backpropagation approach to explore the influence of 

magnetic fields and Hall current on the flow of micropolar nanofluid between two rotating parallel 

plates. By combining the Levenberg-Marquardt with the backpropagated Neural Network, Zubair 
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et al. [3] investigated the flow of silver-based Dihydrogen carbon nano-tubes between two stretchy 

coaxial disks. To examine the smoking model in this study, Shoaib et al. incorporated intelligent 

computing algorithms for entropy analysis in the fluid flow systems [4−6] and the epidemic model [7]. 

Aljohani et al. [8] investigate intelligent numerical computational models by including a Levenberg-

Marquardt backpropagation-based on neural network to examine the magnetohydrodynamics of a 

third-grade fluid flow for wire coating assessment. 

The micro-polar fluid is a liquid crystal or microbes such as blood or polymeric fluid. The 

micro-polar fluid flow is a dynamically oriented crystal particle motion that is easily narrated by 

the law of conservation momentum and mass. The constitutive relationship of fluid has 

characterized the micromotion, couple stress and spin inertia. The micro-polar fluid flow has a 

broader spectrum of features. The flow of micro-polar fluid has attracted the attention of many 

researchers, they developed different models to study the motion of the micro-polar fluids. These 

models and theories discussed micro-polar fluid motion from different aspects, such as Eringen [9] 

suggested a micro-polar fluid model. Ishak et al. [10] studied the flow of the boundary layer on the 

planer surface. Acharya et al. [11] investigate the effect of heat radiation on the Illustration of the 

Reynolds number on micropolar nanofluid flow through a permeable media. Ramesh et al. [12] 

examined the time-dependent squeezing flow of Casson-micropolar nanofluid with injection/suction 

and slip effects. Siddiqui et al. [13] examined Casson nanofluid MHD flow and heat transmission via 

a porous medium over a stretched sheet. Krishna et al. [14] investigated the effects of thermal radiation, 

chemical reaction, Hall, and ion slip on the MHD oscillatory rotational flow of a micro-polar liquid. 

Perdikis et al. [15] investigate the constant flow of a micropolar fluid through an immovable plate in 

the presence of radiation. Sandeep and Sulo-chana [16] explored the dual solution of magneto 

hydrodynamic micro-polar fluid flow and unsteady mixed convection along a stretching/shrink 

sheet in the existence of non-uniform heat source/sink. Nadeem et al. [17] are exploring the 

numerical consequences of Nanofluid micro-polar boundary layer flow. Similarly, Ali et al. [18] 

calculated the numerical consequences of the micro-polar fluid flow for the boundary layer over 

a cylinder. 

Choi [19] introduces the nanofluid concept. Nanofluid has various characteristics and 

applications the researchers have been focusing on to explore the behavior of nanofluid from 

different aspects. Due to viscous behavior, the small size and higher thermal conductivity of 

Nanofluids (Nanometer sized metallic particle colloidal suspension) make them highly effective, 

they are attracting considerable attention due to their varied variety of applications in the field of 

biological science and engineering. Rashidi et al. [20] used the RK4 method to analyze the 

analytical and numerical solution of viscous water-based nanofluid with second-order slip 

condition in combination with the shooting iteration method. Hayat et al. [21] found a solution of 

Oldroyd-B Nano-fluid flow in the existence of heat generation/absorption past a stretched surface. 

Dhanai et al. [22] investigated Nanofluid the flow while identifying numerous Nanofluid flow 

solutions with mixed convection and slip effect. Koriko et al. [23] focused on the boundary layer 

flow of nanofluid in their study by using a horizontal surface. Mehmood et al. [24] applied 

Optimal Homotopy Analysis Method to study the flow of Oblique Jeffery nanofluid in the vicinity 

of a stagnation point. Hayat et al. [25] checked the nanofluid flow slip effects in the existence of 

magnetic field due to a rotating disk. [26] used the differential transformation method to analyze 

the time-dependent nanofluid flow between two parallel plates. Sandeep et al. [27] conducted 
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their study on analyzing the increase or decrease in the rate of heat transfer of unsteady magneto 

hydrodynamics nanofluid flow. Furthered Sandeep study [28] by checking and investigating a 

thin flow of nanofluid under the action of magnetic field consisting of graphene Nanoparticles. 

Many other researchers have already conducted their studies on checking and investigating the 

effects of the flow of Nanofluid particles such as [29−35]. 

The researchers are interested in studying the flow of fluid through a rotating disk due to its 

numerous applications in engineering and aeronautical sciences, such as thermal power generation 

systems, air cleaning machines, medical equipment, gas turbine rotors, crystal growth processes, 

computer storage devices, electronic crystal growth processes, devices, and numerous more [36−38]. 

Von Karman [39] is one of the popular researchers who conducted his research on fluid flow 

through a rotating disc, which has been regarded as pioneer contribution to this area of research. 

He applied the momentum-integral approach to conduct an analytical analysis of the resulting 

problem. Cochran [40] solved the von Karman problem asymptotically. Ackroyd [41] studied 

suction/injection effects and provided a series solution with exponentially decaying coefficients 

in the Von Karman problem. These solutions are based on the coefficients called exponentially 

decaying coefficients. Bashir et al. [42] examined the Thermophoresis phenomena in the radiative 

flow around a rotating disk vertical movement in a porous environment. Asymmetric laminar flow and 

heat transmission of a viscous fluid were investigated between contracting rotating disks [43]. Hussain 

et al. [44] investigated the radiation flow of a viscous nanofluid over a porous stretched rotating disc 

with extended slip. Turkyilmazoglu and Senel [45] investigate flow of viscous liquid and heat/mass 

transfer using a porous disc with rotating frame. Zhou et al. [46] study the numerical analysis of 

thermal radiative Maxwell nanofluid flow over-stretching porous rotating disk. 

Stochastic numerical computing methodologies are produced for the solution of linear and non-

linear differential equations describing various applications occurring in different fields by using the 

power of evolutionary/swarming computing-based optimization techniques associated to neural 

network models. The most recent implementation of stochastic numerical computing solutions 

comprises bio-mathematical model [47−52], Mathematical model for fluid dynamic problems [53−59], 

astrophysics [60−65] and fractional model [66]. The related articles [69,70] can be referred to for 

further details. 

The importance of algorithm-based artificial intelligence (AI) solvers and above cited research 

work inspired the authors to develop the fluidic system MHD-MNRD to implement the soft computing 

paradigm for its heuristic solution and statistical analysis. 

The innovation contributions of the present study for backpropagation networks for 

magnetohydrodynamics micro-polar nanofluid flow over a rotating disk model along with the partial 

slip condition are highlighted as follows. 

⚫ The numerical computation has been designed through the Levenberg-Marquardt 

backpropagation with neural network (LMB-NN) for the comparative study of 

magnetohydrodynamics micro-polar nanofluid flow over a rotating disk (MHD-MNRD) model 

along with the partial slip condition. 

⚫ The governing mathematical model of the magnetohydrodynamics micro-polar nanofluid flow 

over a rotating disk (MHD-MNRD) model represented with nonlinear PDEs is reduced to a 

nonlinear system of ODEs by the competency of similarity adjustments. 

⚫ A reference data of designed networks is constructed effectively for variants of MHD-MNRD 
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demonstrating the scenarios for micro-polar parameters, Brownian motion, Lewis number, 

magnetic parameter, velocity slip parameter and thermophoresis parameter by applying the 

Adams numerical method. 

⚫ The Mathematica software is used to compute the dataset for designed LMB-NN for the 

variation of micro-polar parameters, Brownian motion, Lewis number, magnetic parameter, 

velocity slip parameter and thermophoresis parameter. 

⚫ MATLAB software is used to interpret the solution and the absolute error analysis plots of the 

MHD-MNRD model. 

⚫ The training, testing, and validation based process block structure of LMB-NN exploited to 

calculate the approximate solutions of MHD-MNRD and comparative study validate the 

consistent accuracy.  

⚫ The worthy performance of the designed network was additionally established by a learning 

curve on MSE based fitness, histograms and regression metrics. 

Neural networks are also ideally adapted to helping people solve difficult problems in everyday 

life. They can investigate and simulate difficult and complicated, multidimensional interactions 

between inputs and outputs, simplify complex relationships and draw conclusions from them, as well 

as model high volatility data. Neural networks, therefore, have the potential to enhance decision-

making in fields like: Transportation network logistics optimization, voice and character recognition, 

which are frequently referred to as natural language processing, detection of credit card and Medicare 

fraud, targeted marketing, robotic control systems, disease and medical diagnosis, energy demand and 

Electrical load forecasting, financial predictions for stock prices and chemical compounds 

classification, etc. 

The objective of this work is to developed a new ANN technique to solve the problem “A 

predictive neuro-computing approach for micro-polar nanofluid flow due to a rotating disk in the 

presence of magnetic field and partial slip effect” through stochastic technique (LMB-NN). 

Furthermore, the motivation to set a platform for further studies to take help from this new technique. 

The advantages of this paper are to account for different parameters is the level of accuracy ranging 

from 10-10 to 10-13, the recommended approach is distinguishable from the proposed and reference 

outcomes. Validation, convergence, stability and verification of LMB-NN for solution predictive 

strength of the proposed model are certified in terms of achieved accuracy, regression index 

measurements, and analysis of error histogram illustrations. The numerical n graphical solution is 

shown in the results and discussion section. Besides of this work other advantages of this paper are to 

obtain some statistical data of the model that is Mean square error, gradient, performance, Mu. 

The rest of the analysis is structured as follows: in Section 2, the formulation of the problem of 

the three-dimensional micro-polar Nano-fluid flow system is described, the solution technique is 

outlined in Section 3, along with the results of the suggested LMB-NN on various variants of MHD-

MNRD, while in the last section, the final comments and possible future analysis are discussed. 

2. Problem formulation 

Consider the steady flow of an incompressible and electrically conducting micropolar nanofluid 

due to an infinite rotating disk as shown in Figure 1. The disk is rotating with a constant angular 

velocity  . The consequences of the velocity slip condition are taken into consideration. 
1 2 3
, ,N N N

are sued to micro-rotation components and , ,r z  cylindrical co-ordinates with , ,u v w velocity 

components are to be used. Here neglecting the body forces and body couples. Under the action 
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applied normal to the fluid and magnetic field with strength
0

B , the flow is examined. Under the 

given assumption, equations of the boundary layer problem can be written as follows [16−18]: 

 . 0 ,V =  (1) 

 
( )( 2 ) . ( ) ,

f

dV
k V k V J B

dt
   = + +   − +  + 

 (2) 

0B
0B 0B

u

v

w

z

r





 

Figure 1. Design of 3D flow of micro-polar Nanofluid model. 

 ( ) ( . ) ( ) 2 .
f

dN
j N V k N kN

dt
    = + +   −  +  −  (3) 

These equations can be written in the form of components  

 

( ) ( )
0 ,

r v ru

r z

 
+ =

   (4) 

 
2 2 2

22

02 2 2

( ) 1
,

f f f

Nu u v k u u u u k
u w u

r z r r r r r z z

 


  

    +   
+ − = + − + − − 

      
 (5) 

 
( ) 2 2

231

02 2 2

1
,

f f f

k NNv v uv v v v u k
u w v

r z r r r r r z z r

 


  

+         
+ + = + − + + − −   

        
 (6) 

 
2 2

2

2 2

( ) 1
,

f f

Nw w k w w w k
u w

r z r r r z r r r



 

    +      
+ = + + +   

        
 (7) 
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3 31 1 1 1 2

2

1

( )

2 ,

f f

f f

N NN N N N Nv
u w N

r z r j r r r z j z r z

k v k
N

j z j

   

 

 

    + +     
+ − = + + − −   

          


− −



 (8) 

 
2

2 2 2 2 2

1 12

2
,

f f f

N N N N Nv k v k
u w N N

r z r j r r r z j z j



  

      
+ + = + + − −  

       

 (9) 

 
( )

3 3 3 31 1 1

3

( )

2 ,

f f

f f

N N N NN N N
u w r

r z j z r r z j r r z r

rvk k
N

j z j

   

 

 

      + +     
+ = + + − −    

           


+ −



 (10) 

 

( )

( )

( )

( )

2 2

2 2

2 2

1

,

p

f B

f

p T

B

f

CT T T T T T C T C
u w D

r z r r r z C r r z z

C D T T
D

C T r z











          
+ = + + − +   

          

     
− +          

  (11) 

 
2 2 2 2

2 2 2 2

1 1
,T

B

DC C C C C T T T
u w D

r z r r r z T r r r z


          
+ = + + − + +   

          

 (12) 

In the given flow system, boundary conditions as follow: 

 

1 2 3

1 2 3

, , 0, , , 0, , 0,

0, , , 0, .

w w

u v
u L v r L w T T C C N N N at z

z z

u v C C T T N N N when z
 

  
= =  + = = = = = =  = 

  
= = = = = = = →    (13) 

In the above expression the material constant (viscosity Coefficient) are denoted by , , , k    

and absolute viscosity is indicated by  . Fluid density, fluid heat capacity and Nanoparticles are 

represented by f
 , ( )

f
C  and ( )

p
C , respectively. The thermophoretic diffusion co-efficient and 

the Brownian diffusion co-efficient are indicated by 
T

D and 
B

D , respectively and C  is the 

concentration distribution. Concentration and Temperature at the surface are indicated by 
w

C  and 
w

T , 

and away from surface, the ambient concentration and temperature values are showed by C


and T


 

respectively.   is indicated dimensionless distance from disk and the velocity, and micro-rotation 

components in non-dimensional form are introduced to solve the system of Eqs (4−12) as follow: 
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1 1 2 2 3 3

2
, ( ), ( ), 2 ( ),

2 2
( ) , ( ) , ( ) ,

( ) , ( ) , .
w w f

z v r g u r f w K f
K

N r F N r F N r F
K K

T T C C k
K

T T C C

   

  


   



 

 


= =  =  = −  


  

=  =  =  

− − +

= = = 
− −   (14) 

By using the dimensionless and non- dimensionless quantities, transformed the Eqs (4−12) into the 

following forms [68]: 

 
( ) ( )2 2 2 2

1 2 2
2 2 2 0,f f M f f g A fF F   − + − + + − =

 (15) 

 ( ) 2

1 1
2 2 2 0 ,g fg f g M g A F   + − − + =  (16) 

 ( ) ( )1 2 1 3 1 1 2
2 2 0 ,F A g F A f F fF gF   − + − − − =  (17)  

 ( ) ( )2 2 2 3 2 2 1
2 2 0 ,F A f F A f F fF gF   + − − − − =  (18) 

 ( )3 4 5 3 6 3
0 ,F A F A g F A fF  + + − − =  (19) 

 
( )2

Pr 0,f Nb Nt        + − + =
 (20) 

 Pr 0,
Nt

Le f
Nb

    + + =  (21) 

Using the boundary condition (13), which reduce into 

 

1

2 3

(0) 0, (0) (0), (0) 1 (0), (0) 0,

(0) 0, (0) 1, (0) 1, (0) 0,

f f f g g F

F F

 

 

  = = = + = 


= = = =   (22) 

 
3 2 1

( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0.g f F F F   =  =  =  =  =  =  = (23) 

From above expression, f and g are the components of velocity along x axis and y axis− − , 

respectively, while 
1 2
,F F  and 

3
F  are denoted components of micro-rotation in the directions of ,x y  

and z  respectively. In above transformed equations, the dimensionless parameters are, 
1 6

( )A A−  

the micro-polar parameter, ( )Nb  Brownian motion parameter, ( )M  magnetic parameter, ( )  

velocity slip parameter, ( )Nt  thermophoresis parameter, ( )Le  Lewis number and (Pr)  Prandtl number 

are expressed as follow: 
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( )

( )

( )

( ) ( )

( )

( )

1 2 3 4

2

2 0

5 6

, , , ,

, , ,

, , .

f

f

f

p pw w

Bf f

k jk kK
A A A A

k

jkkK
A A M

C CT T C C
Nb Le Nt

C T K D C K

  

     

 

      

 

 

 




+ = = = =

+  + +



= = = 
 + + + +  


− − = = =


  (24) 

Skin-friction co-efficient and local Nusselt number are the physical dimensionless quantity, which is 

listed as:  

 

* *
Re (1 ) (0), Re (1 ) (0), (0),

Re

u

r g r f

r

N
C k g C k f   = + = + = −

 (25)  

where *
k

k


=  and Re
r

 are indicated the material parameter and rotational Reynold number, 

respectively. 

3. Methodology 

There are two parts of the methodology described here: the first part provides the appropriate 

description for the construction of the LMB-NN dataset, whereas, in Section 2, the implementation 

methodology approved for LMB-NN is described. In the Figure 2, the illustration of the workflow is 

shown in the process block structure. 

The comparative solutions, i.e., the LMB-NN dataset, are de termined using the Mathematica 

programming package in which 'NDSolve' is exploited by using the Adams numerical solver. The 'ND 

Solve' procedure is operated with default parameter settings including the goal of accuracy, tolerances 

and step size for the differential equation to be solved. 

The suggested LMB-NN consists of a combination of the structure of a multi-layer neural network 

and computation with backpropagation by Levenberg-Marquardt. For neural network methodology, 

Figure 3 presents a single neuron model. The proposed LMB-NNs are implemented in the Matlab 

software package via the 'nftool' neural network toolbox routine using appropriate hidden neuron 

settings, training data, validation data, testing data and learning methodology. 
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Figure 2. Suggested design of the LMB-NN technique for the micro-polar Nanofluid model. 
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Figure 3. Construction of a single neuron model. 

4. Numerical analysis with description 

Numerical computations through the designed LMB-NN are provided here for the presented 

fluidic systems based on steady 3-D micro-polar Nano-fluid system as given in the Eqs (15−23). For 

all the six scenarios of system (15–23) model by variation of , , , ,M Nt Nb Le  and all cases

1 2 3 4 5 6
( , , , , , )A A A A A A , designed for 3 cases for different values of 𝑃𝑟 are presented in Table 1 for micro-

polar material constants and all 6 different scenarios of model MHD-MNRD in Table 2. 

Table 1. Micro-polar material constants are the following four cases [67]. 

Case 1
A  

2
A  

3
A  

4
A  

5
A  

6
A  

i  0.4000  0.5000  0.2000  0.1000  1.0000  0.3000  

ii  0.8000  1.000  0.4000  0.2000  1.5000  0.6000  

iii  1.2000  1.5000  0.2000  0.1000  1.0000  0.3000  

iv  1.6000  2.0000  0.8000  0.4000  2.5000  1.2000  

For all 6 scenarios, the reference solutions 
1 2 3

( ), ( ), ( ), ( ), ( ), ( ), ( )f f g F F F        and 

( )  , i.e., the LMB-NN dataset, are deliberated with the Adams method for similar variable η lies in 1 

and 4, with step size 0.02, for all 3 cases of the model MHD-MNRD in Eqs (15–23). The dataset 

generated by the Adams technique in terms of 
1 2 3

( ), ( ), ( ), ( ), ( ), ( ), ( )f f g F F F        and 

( )   which will be incorporated for comparative study as well. 

MHD-MNRD model has received the optimal outcomes through the designed stochastic solver 

LMB-NN which is provided in Eqs (15–23) using the ‘nftool’ procedure with 10 (neurons), 80% of 

training data values, 10% testing and 10% for validation and Levenberg-Marquardt backpropagation 

efficient optimization strength. The neural network structure is showed in Figure 4 and the suggested 

LMB-NN method is recurrent for variation , , , ,M Nb Le Nt  and all cases
1 2 3 4 5 6

( , , , , , )A A A A A A  of all 6 

different scenarios of model MHD-MNRD with numerical values are presented in Table 2. 
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Figure 4. Architecture LMB-NN for MHD-MNRD model. 

Table 2. Narration of 3 different cases of all 6 scenarios for the micro-polar nanofluid model. 

The consequences of the LMB-NN of all 6 scenarios for case 3 of the MHD-MNRD model are 

presented in Figures 5−19. The results for case 3 of all six scenarios ( , , , ,M Nb Nt Le and all cases

1 2 3 4 5 6
( , , , , , )A A A A A A ) in terms of efficiency and transition states are described in Figures 5 and 6, 

respectively. For different scenarios, for the respective case 3, Figures 7−12 showed fitting designs for 

error analysis for the presented mathematical model. The regression analyses are shown in 

Figures 14−19, while the error histograms are illustrated in Figure 13 for 3 different variants of the 

MHD micro-polar nanofluid model. In addition, for validation, training, and testing, backpropagation 

measures, executed epochs, performance and time complexity, in terms of MSE, the convergence 

achieved is described in Tables 3−8 for all six scenarios respectively, for the micro-polar Nano-fluid 

MHD-MNRD model. 

Pr  Scenarios Case 

Interest-based physical quantities for all scenarios 

M      Nb   Nt   Le   
All cases

1 2 3 4 5 6
[ , , , , , ]A A A A A A

 

1.2 1 

1 1.2 0.2 0.5 0.3 1.0 case ( )i   

2 1.4 0.2 0.5 0.3 1.0 case ( )i  

3 1.6 0.2 0.5 0.3 1.0 case ( )i  

0.7 2 

1 1.2 0.6 0.5 0.2 1.0 case ( )i   

2 1.2 0.9 0.5 0.2 1.0 case ( )i  

3 1.2 1.2 0.5 0.2 1.0 case ( )i  

2.0 3 

1 0.2 0.2 0.5 0.3 1.0 case ( )i   

2 0.2 0.2 1.2 0.3 1.0 case ( )i  

3 0.2 0.2 2.0 0.3 1.0 case ( )i  

1.0 4 

1 0.2 0.2 0.5 0.3 2.0 case ( )i   

2 0.2 0.2 0.5 0.6 2.0 case ( )i  

3 0.2 0.2 0.5 0.9 2.0 case ( )i  

2.0 5 

1 0.2 0.2 0.5 0.3 1.0 case ( )i   

2 0.2 0.2 0.5 0.3 1.5 case ( )i  

3 0.2 0.2 0.5 0.3 2.0 case ( )i  

1.2 6 

1 0.5 0.7 0.5 0.3 1.0 case ( , , )i ii iii   

2 0.5 0.7 0.5 0.3 1.0 case ( , , )i ii iii  

3 0.5 0.7 0.5 0.3 1.0 case ( , , )i ii iii  
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In Figures 5a−5f, subfigures are showed the Mean square error (MSE) convergence for best curve, 

test, validation and train are denoted for case 3 of micro-polar Nano-fluid model MHD-MNRD. One 

can see that the best performance of the network is attained at 104, 114, 104, 90, 106 and 119 epochs 

with mean square error (MSE) in the range of 10
10

− , 10
10

− , 10
10

− , 12 11
10 10to

− − , 10
10

−  and 10
10

−  

respectively. Values of Mu and gradient of Levenberg-Marquardt backpropagation are [ 09
10 ,

− 09
10 ,

−  
09

10 ,
− 10

10 ,
− 09

10 ,
− 09

10
− ] and [ 08

9.99 10 ,
−

  08
9.88 10 ,

−


08
9.92 10 ,

−


08
9.97 10 ,

−


08
9.98 10 ,

−
  

08
9.84 10

−
 ] as shown in Figures 6a−6f, respectively. All these graphics illustrated that the LMB-NN 

scheme are convergent, reliable and accurate for every case of the MHD-MNRD model. 

The Adams procedure reference numerical results, compare with LMB-NN performance, for 

case 3 of the MHD-MNRD model is shown in Figures 7−12 along with the step size 0.02, error plots 

with an input between 1 to 4. In the LMB-NN scheme, the maximum error for validation, test and train 

inputs are around 10 10 10 10 10
2 10 , 9 10 , 3 10 , 1 10 , 2 10

− − − − −
      and 10

6 10
−

  for all various cases 

of the MHD-MNRD model. Figures 13−18 of the outcomes of various six variations of the MHD-

MNRD model also use co-relation studies to analysis regression studies. Further, histograms measures 

are used to analyze the error analysis for the input grid and corresponding outputs are indicated in 

Figures 19a−19f for all 6 scenarios 1−6, respectively, of case 3, of the MHD-MNRD model given in 

Eqs (15−23). The average value of the error bin with the zero line error reference are around 
06

1.4 10 ,
−

− 
06

6.3 10 ,
−

− 
06

2.0 10 ,
−

− 
06

1.4 10 ,
−

− 
06

2.0 10
−

−  and 06
1.2 10

−
−  , for respective 6 

scenarios of the MHD-MNRD model. It is shown that correlation R values are around unity for testing, 

training and validation, i.e., scenario of perfect modeling, which certified the LMB-NN methodology 

correctness to solve the MHD-MNRD model.  

In addition, for scenarios 1–6 of the MHD-MNRD model, the corresponding numerical values 

are listed in Tables 3−8, illustrating that performance on MSE for the suggested LMB-NN technique 

is around 10
10 ,

− 10
10 ,

− 10
10 ,

− 13 10
10 10 ,to

− − 10
10

− and 10
10

− for the MHD-MNRD model. All numerical 

consequences are presented in Tables 3−8, indicated the robust efficiency of LMB-NN for solving the 

micro-polar nano-fluid MHD-MNRD model. 

   

(a) MSE results of Scenario 1 for Case 3. (b) MSE results of Scenario 2 for Case 3. 
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(c) MSE results of Scenario 3 for Case 3. (d) MSE results of Scenario 4 for Case 3. 

   

(e) MSE results of Scenario 5 for Case 3. (f) MSE results of Scenario 6 for Case 3. 

Figure 5. MSE results from curves for the designed LMB-NN to solve the micro-polar 

Nanofluid model. 

Table 3. Outcomes of LMB-NN (M variation) Scenario 1 of the micro-polar nanofluid model. 

Case 
Mean Square Error 

Performance Gradient Mu Epoch Time 
Training Validation Testing 

1  
10

1.93064 10
−

  10
1.32432 10

−
  10

2.61514 10
−

  10
1.93 10

−
  08

9.86 10
−

  09
1.00 10

−
  114  0  

2  
10

1.60464 10
−

  10
9.66473 10

−
  10

2.18029 10
−

  10
1.60 10

−
  08

9.84 10
−

  09
1.00 10

−
  117  0  

3  10
1.85902 10

−
  10

2.19749 10
−

  10
2.99637 10

−
  10

1.86 10
−

  08
9.99 10

−
  09

1.00 10
−

  104  0  
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(a) state transition results for Case(C3) of 

Scenario(S1). 

(b) state transition results for Case(C3) of 

Scenario(S2). 

   

(c) state transition results for Case(C3) of 

Scenario(S3). 

(d) state transition results for Case(C3) of 

Scenario(S4). 

   

(e) state transition results for Case(C3) of 

Scenario(S5). 

(f) state transition results for Case(C3) of 

Scenario(S6). 

Figure 6. LMB-NN State Transition Processes to solve the micro-polar nanofluid model. 
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Table 4. Outcomes of LMB-NN ( variation) scenario 2 of micro-polar nanofluid model. 

Case 
Mean Square Error 

Performance Gradient Mu Epoch Time 
 Training Validation Testing 

1  10
1.34647 10

−
  10

1.65803 10
−

  10
1.20209 10

−
  10

1.35 10
−

  08
9.89 10

−
  09

1.00 10
−

  104  2  

2  
10

1.37891 10
−

  10
1.52381 10

−
  10

2.06930 10
−

  10
1.38 10

−
  08

9.91 10
−

  09
1.00 10

−
  109  0  

3  10
1.39787 10

−
  10

9.46314 10
−

  10
1.79667 10

−
  10

1.40 10
−

  08
9.88 10

−
  09

1.00 10
−

  114  0  

 

Figure 7. Comparative analysis of LMB-NN with the reference solution of Scenario 1 for 

Case 3 of the MHD-MNRD model. 

 

Figure 8. Comparative analysis of LMB-NN with the reference solution of Scenario 2 for 

Case 3 of the MHD-MNRD model. 
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Figure 9. Comparative analysis of LMB-NN with the reference solution of Scenario 3 for 

Case 3 of the MHD-MNRD model. 

 

Figure 10. Comparative analysis of LMB-NN with the reference solution of Scenario 4 

for Case 3 of the MHD-MNRD model. 

 

Figure 11. Comparative analysis of LMB-NN with the reference solution of Scenario 5 

for Case 3 of the MHD-MNRD model. 
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Figure 12. Comparative analysis of LMB-NN with the reference solution of Scenario 6 

for Case 3 of the MHD-MNRD model. 

 

Figure 13. Regression diagrams for the consequences of LMB-NN of scenario 1 for case 

3 of the MHD-MNRD model. 

 

Figure 14. Regression diagrams for the consequences of LMB-NN of scenario 2 for case 

3 of the MHD-MNRD model. 
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Figure 15. Regression diagrams for the consequences of LMB-NN of scenario 3 for case3 

of the MHD-MNRD model. 

 

Figure 16. Regression diagrams for the consequences of LMB-NN of scenario 4 for case 

3 of the MHD-MNRD model. 

 

Figure 17. Regression diagrams for the consequences of LMB-NN of scenario 5 for case 

3 of the MHD-MNRD model. 
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Figure 18. Regression diagrams for the consequences of LMB-NN of scenario 6 for case 3 

of the MHD-MNRD model. 

Table 5. Outcomes of LMB-NN (𝑁𝑏 variation), scenario 3 of micro-polar nanofluid model. 

Case 
Mean Square Error  

Performance 
Gradient Mu Epoch Time 

Training Validation Testing 

1  
10

1.76679 10
−

  10
3.68931 10

−
  10

2.31240 10
−

  10
1.77 10

−
  08

9.92 10
−

  09
1.00 10

−
  104  0  

2   
10

1.25961 10
−

  10
1.68339 10

−
  10

2.12847 10
−

  10
1.26 10

−
  08

9.98 10
−

  09
1.00 10

−
  109  0  

3   10
1.47693 10

−
  10

2.55079 10
−

  10
2.03485 10

−
  10

1.48 10
−

  08
9.92 10

−
  09

1.00 10
−

  104  0  

    

(a) Error Histogram for Scenario 1 Case 3. (b) Error Histogram for Scenario 2 Case 3. 

    

(c) Error Histogram of Scenario 4 for Case 3. (d) Error Histogram of Scenario 4 for Case 3. 
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(e) Error Histogram of Scenario 5 for Case 3. (f) Error Histogram of Scenario 6 for Case 3. 

Figure 19. Results of Error Histogram for LMB-NN outcomes of all 6 Scenario for case 3 

of the MHD-MNRD model. 

Table 6. Outcomes of LMB-NN (𝑁𝑡 variation), Scenario 4 of micro-polar nanofluid model. 

Case 
Mean Square Error 

Performance Gradient Mu Epoch Time 
Training Validation Testing 

1  13
1.46898 10

−
  13

1.96332 10
−

  13
1.64259 10

−
  13

1.47 10
−

  08
9.80 10

−
  12

1.00 10
−

  98  0  

2  10
1.55306 10

−
  10

1.66844 10
−

  10
2.07317 10

−
  10

1.55 10
−

  08
9.80 10

−
  09

1.00 10
−

  111  0  

3  12
9.74284 10

−
  11

1.35012 10
−

  11
8.09703 10

−
  12

9.74 10
−

  08
9.97 10

−
  10

1.00 10
−

  90  0  

In addition, the analysis should be presented on the first elements of velocity component, i.e.,

( )f  , the investigation for variation of velocities profile ( )f   and ( )g   , Micro rotation profiles 

1 2 3
( ), ( ), ( )F F F   , temperature profile ( )   and concentration profile ( )   should be extended. 

Consequently, the LMB-NN consequences are determined for ( )g  , ( )  and ( )   for scenarios 1 

to 6 of the MHD-MNRD model and illustrated in Figures 20−25.  

( )f   

 

Inputs   

A 

E 

 

Inputs   

(a) M Variation. (b) Interpretation on AE. 

Figure 20. Suggested LMB-NN and reference numerical outcomes are compared for M  

of the MHD-MNRD model. 
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( )g   

 

Inputs   

A 

E 

 

Inputs   

(a)  Variation. (b) Interpretation on AE. 

Figure 21. Suggested LMB-NN and reference numerical outcomes are compared for   

of MHD-MNRD model. 

( )   

 

Inputs   

A 

E 

 

Inputs   

(a) Nb Variation. (b) Interpretation on AE. 

Figure 22. Suggested LMB-NN and reference numerical outcomes are compared for 

𝑁𝑏 of MHD-MNRD model. 

Table 7. Outcomes of LMB-NN (Le variation) Scenario 5 of micro-polar nanofluid model. 

Case 
Mean Square Error 

Performance Gradient Mu Epoch Time 
Training Validation  Testing 

1  10
1.58685 10

−
  10

1.85791 10
−

  10
2.25529 10

−
  10

1.59 10
−

  08
9.81 10

−
  09

1.00 10
−

  102  0  

2   10
1.09530 10

−
  10

1.35826 10
−

  10
1.36220 10

−
  10

1.10 10
−

  08
9.95 10

−
  09

1.00 10
−

  113  0  

3   10
1.21619 10

−
  10

2.34484 10
−

  10
1.93542 10

−
  10

1.22 10
−

  08
9.98 10

−
  09

1.00 10
−

  106  0  

The outcomes of velocities, temperature and concentration profiles ( ), ( ), ( )f g     and 

( )   for all six scenarios are shown in Figures 20−25, respectively, of MHD-MNRD model. From 
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the Figures 20a, 21a, 22a, 23a, 24a and 25a, it is noted that the velocity profiles impacted by magnetic 

field, both show declining performance. The reduction in velocity is due to Lorentz forces in the 

magnetic field, which act as a resistive force against fluid motion. It is also important to note that 

the velocity field decreases as the slip parameter's value increases. It is observed that the 

temperature increases for increasing values of 𝑁𝑏 while the temperature and Nanoparticle field 

efficiency increases for increasing 𝑁𝑡  thermophoresis parameter values. It is also noted that 

increasing the Le value reduces the Nanoparticle profile and its associated thickness of the 

boundary layer. It can be observed that the low velocity profile is achieved nearest to surface by 

intruding the material parameter 
1 2 3 4 5 6
, , , ,A A A A A and A values for the case(i) as compared to the 

rest of the cases for the different material parameter 
1 2 3 4 5 6
, , , ,A A A A A and A values (described in 

Table 1). 

( )   

 

Inputs   

A 

E 

 

Inputs   

(a) Nt  Variation. (b) Interpretation on AE. 

Figure 23. Suggested LMB-NN and reference numerical outcomes are compared for 𝑁𝑡 

of MHD-MNRD model. 

( )   

 

Inputs   

A 

E 

 

Inputs   

(a) Le Variation. (b) Interpretation on AE. 

Figure 24. Suggested LMB-NN and reference numerical outcomes are compared for Le 

of MHD-MNRD model. 
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Absolute error obtained by the designed solver can be seen via Figures 20b, 21b, 22b, 23b, 24b 

and 25b, for all six scenarios, respectively, of the MHD-MNRD model. It is noted that, for all six 

scenarios, the AE are around 
08 04 07 04 07 04 08 05 07 05

10 10 , 10 10 , 10 10 , 10 10 , 10 10to to to to to
− − − − − − − − − −

 and 
07 04

10 10to
− −  , respectively, of MHD-MNRD model. The numerical and graphical diagrams 

demonstrate that the LMB-NN approach for the MHD-MNRD model solution is reliable, robust and 

convergent. 

All of the characteristics stated above have a wide variety of applications in real-world physics, 

which are briefly covered below. In many fluid flow situations, micro-polar fluids are fluids with 

microstructure. They are classified as polar fluids because they have a non-symmetric stress tensor. 

Physically, micro-polar fluids are fluids composed of stiff, randomly oriented (spherical) particles 

suspended in a viscous medium, with no regard for fluid particle deformation. Magnetohydrodynamics 

is essential in many fields of physics, including solar physics (where we shall examine the 

magnetohydrodynamics of the sun), astrophysics, plasma physics, and so on. The effects of the 

magnetic field on the dynamic conducting fluid are the primary focus of MHD physics. Magnetic 

medication targeting, cancer tumour therapy, magnetic devices for cell separation, magnetic endoscopy, 

and regulating blood flow during surgery are some of the uses of MHD. A dimensionless number that 

is an intrinsic characteristic of a fluid is the Prandtl number. Fluids with low Prandtl numbers are free-

flowing liquids with excellent thermal conductivity, making them ideal for heat transmitting liquids. 

Small Prandtl numbers, 𝑃𝑟 << 1, indicate that thermal diffusivity is dominant. With large levels of 

𝑃𝑟 >> 1, momentum diffusivity dominates the behaviour. For example, the reported value for liquid 

mercury implies that heat conduction is more important than convection, implying that thermal 

diffusivity is dominating. However, in engine oil, convection is more effective than pure conduction 

at transferring energy from a region, therefore momentum diffusivity is dominant. Brownian motion, 

also known as Brownian movement, any of several physical processes in which a quantity undergoes 

continual tiny, random changes. Brownian motion of nanoparticles at the molecular and nanoscale 

levels has been discovered to be a crucial factor influencing the thermal behaviour of nanoparticle-

fluid suspensions ("nanofluids"). We developed a theoretical model that accounts for dynamic 

nanoparticles' basic involvement in nanofluids. Brownian motion causes particles in a fluid to be 

constantly in motion. This inhibits particles from resting, resulting in colloidal solution stability. With 

the assistance of this motion, a genuine solution may be recognised from a colloid. Thermophoresis is 

the transport force that happens when a temperature gradient exists. This force moves gas-borne 

particles with diameters smaller than 10 m towards the lower temperature area. Thermophoresis is 

important in high temperature zones, such as a boiler's radiant portion. The thermophoretic force is 

useful in a variety of situations. Because various particle types travel independently under the force of 

the temperature gradient, the particle types can be separated by that force after they've been mixed 

together, or prevented from combining if they're already separated, which is the foundation for 

applications. Because the greater temperature makes the transition structure necessary for atomic leaps 

more possible, impurity ions may travel from the cold side of a semiconductor wafer to the hot side. 

Depending on the materials used, the diffusive flow can occur in either direction (up or down the 

temperature gradient). Commercial precipitators have employed thermophoretic force for purposes 

comparable to electrostatic precipitators. It is used in vacuum deposition procedures to manufacture 

optical fibre. It has the potential to be useful as a transport mechanism in fouling. Thermophoresis has 

also been proven to offer potential in helping drug development by permitting the identification of 
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aptamer binding by comparing the target molecule's bound vs unbound motion. This approach is 

referred to as microscale thermophoresis. Furthermore, thermophoresis has been shown to be a flexible 

approach for controlling single biological macromolecules such as genomic-length DNA and HIV 

virus in micro- and Nano-channels by light-induced local heating. In field flow fractionation, one of 

the ways used to separate distinct polymer particles is thermophoresis. The Lewis number is used to 

describe fluid flows with simultaneous heat and mass transfer. The Lewis number compares the 

thickness of the thermal boundary layer to the concentration boundary layer. It is used to describe fluid 

flows with simultaneous heat and mass transfer. As a result, the Lewis number is a measure of the 

relative thicknesses of the thermal and concentration boundary layers. The Prandtl and Schmidt 

numbers can also be used to express the Lewis number. Slip velocity is defined as the mean velocity 

of near-wall particles (often within a layer thickness of one mean free path), with a greater proportion 

of specular reflections resulting in a higher slip velocity. It has been observed that when the velocity 

slip parameter grows, the velocity profile decreases, as does skin friction and heat transfer, but mass 

transfer increases. Heat and mass transport rates decrease as the thermal slip parameter is increased. 

The velocity of cutting that falls down because to gravitation is known as slip velocity. The influence 

of mud flow upward direction and mud characteristics must be larger than cutting slip velocity in order 

to efficiently clean the hole. 

( )f   

 

Inputs   

A 

E 

 

Inputs   

(a) Variation of all cases. (b) Interpretation on AE. 

Figure 25. Suggested LMB-NN compare with reference numerical outcomes for scenario 

6 of MHD-MNRD model. 

Table 8. Outcomes of LMB-NN (
1 6

( )A A− variation) for Scenario 6 of micro-polar nanofluid model. 

Case 
Mean Square Error 

Performance Gradient Mu Epoch Time 
Training Validation Testing 

1  10
1.24255 10

−
  10

1.60476 10
−

  10
3.11662 10

−
  10

1.24 10
−

  08
9.99 10

−
  09

1.00 10
−

  108  0  

2   10
1.40484 10

−
  10

6.83825 10
−

  10
1.70922 10

−
  10

1.40 10
−

  08
9.83 10

−
  08

1.00 10
−

  108  0  

3   10
1.45462 10

−
  10

2.46460 10
−

  10
1.83380 10

−
  10

1.45 10
−

  08
9.84 10

−
  08

1.00 10
−

  119  0  
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5. Conclusions 

A stochastic numerical computation through designed solvers LMB-NN is implemented for the 

solution of the presented fluidic system based on magnetohydrodynamics micro-polar Nano-fluid by 

using. PDEs of the mathematical system are shifted to corresponding ODEs representing the dynamics 

of the problem under consideration by using the capability of suitable equivalence replacements of the 

suggested system model MHD-MNRD.  

The formation of data set for the designed computational networks LMB-NN approach is carried 

out by using the Adams numerical method with the aid of Mathematica for variations of the MHD-

MNRD system based on numerous parameters of interest in terms of micro-polar parameters, velocity 

slip parameter, magnetic parameter, Brownian motion, Lewis number, thermophoresis parameters and 

Prandtl number. To adapt the designed LMB-NN with 10 unseen neuron numbers, 80%, 10% and 10% of 

reference data are used as testing, validation and training. The LMB-NN scheme accuracy is certified by 

both suggested and reference results with 13 10
10 10to

− − level matching. Furthermore, the accuracy is 

also explained via numerical and graphical descriptions of convergence plots on the MSE index, 

regression analysis and error histograms. 

Future work direction: The authors intend to implement the following local search 

algorithms [68−70] for the presented fluid flow system based on magnetohydrodynamics micro-polar 

nanofluid flow over a rotating disk model along with the partial slip condition. 
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