Research article Special Issues

Solvability of a nonlinear integro-differential equation with fractional order using the Bernoulli matrix approach

  • Received: 01 November 2022 Revised: 12 December 2022 Accepted: 19 December 2022 Published: 16 January 2023
  • MSC : 26A33, 34A08, 34A12, 37C25, 45G15

  • Under some suitable conditions, we study the existence and uniqueness of a solution to a new modification of a nonlinear fractional integro-differential equation (NFIDEq) in dual Banach space CE (E, [0, T]), which simulates several phenomena in mathematical physics, quantum mechanics, and other domains. The desired conclusions are demonstrated with the use of fixed-point theorems after applying the theory of fractional calculus. The validation of the provided strategy has been done by utilizing the Bernoulli matrix approach (BMA) method as a numerical method. The major motivation for selecting the BMA approach is that it combines Bernoulli polynomial approximation with Caputo fractional derivatives and numerical integral transformation to reduce the NFIDEq to an algebraic system and then derive the numerical solution; additionally, the convergence analysis indicated that the proposed strategy has more precision than other numerical methods. Finally, as a verification of the theoretical work, we apply two examples with numerical results by using [Matlab R2022b], illustrating the comparisons between the exact solutions and numerical solutions, as well as the absolute error in each case is computed.

    Citation: Raniyah E. Alsulaiman, Mohamed A. Abdou, Eslam M. Youssef, Mai Taha. Solvability of a nonlinear integro-differential equation with fractional order using the Bernoulli matrix approach[J]. AIMS Mathematics, 2023, 8(3): 7515-7534. doi: 10.3934/math.2023377

    Related Papers:

  • Under some suitable conditions, we study the existence and uniqueness of a solution to a new modification of a nonlinear fractional integro-differential equation (NFIDEq) in dual Banach space CE (E, [0, T]), which simulates several phenomena in mathematical physics, quantum mechanics, and other domains. The desired conclusions are demonstrated with the use of fixed-point theorems after applying the theory of fractional calculus. The validation of the provided strategy has been done by utilizing the Bernoulli matrix approach (BMA) method as a numerical method. The major motivation for selecting the BMA approach is that it combines Bernoulli polynomial approximation with Caputo fractional derivatives and numerical integral transformation to reduce the NFIDEq to an algebraic system and then derive the numerical solution; additionally, the convergence analysis indicated that the proposed strategy has more precision than other numerical methods. Finally, as a verification of the theoretical work, we apply two examples with numerical results by using [Matlab R2022b], illustrating the comparisons between the exact solutions and numerical solutions, as well as the absolute error in each case is computed.



    加载中


    [1] M. A. Abdou, On a symptotic methods for Fredholm-Volterra integral equation of the second kind in contact problems, J. Comput. Appl. Math., 154 (2003), 431–446. https://doi.org/10.1016/S0377-0427(02)00862-2 doi: 10.1016/S0377-0427(02)00862-2
    [2] M. M. El-Borai, M. M. Abdou, M. Bassem, An analysis of two dimensional integral equations of the second kind, J. Comput. Appl. Math, 223 (2007), 15–39.
    [3] P. Jalili, B. Jalili, A. Shateri, D. D. Ganji, A novel fractional analytical technique for the time-space fractional equations appearing in oil pollution, Int. J. Eng., 35 (2022), 2386–2394. https://doi.org/10.5829/IJE.2022.35.12C.15 doi: 10.5829/IJE.2022.35.12C.15
    [4] B. Jalili, A. Mousavi, P. Jalili, A. Shateri, D. D. Ganji, Thermal analysis of fluid flow with heat generation for different logarithmic surfaces, Int. J. Eng, 35 (2022), 2291–2296. https://doi.org/10.5829/IJE.2022.35.12C.03 doi: 10.5829/IJE.2022.35.12C.03
    [5] B. Jalili, P. Jalili, A. Shateri, D. D. Ganji, Rigid plate submerged in a Newtonian fluid and fractional differential equation problems via Caputo fractional derivative, Partial Differ. Eq. Appl. Math., 6 (2022), 100452. https://doi.org/10.1016/j.padiff.2022.100452 doi: 10.1016/j.padiff.2022.100452
    [6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, North-Holland Math. Stud., 204 (2006), Elsevier Science B.V., Amsterdam.
    [7] K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, Wiley, NewYork, 1993.
    [8] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
    [9] Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014. https://doi.org/10.1142/9069
    [10] Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal.- Real, 11 (2020), 4465–4475. https://doi.org/10.1016/j.nonrwa.2010.05.029 doi: 10.1016/j.nonrwa.2010.05.029
    [11] Y. Zhou, L. Zhang, X. H. Shen, Existence of mild solutions for fractional evolution equations, J. Integral Equ. Appl., 25 (2013), 557–585. https://doi.org/10.1216/JIE-2013-25-4-557 doi: 10.1216/JIE-2013-25-4-557
    [12] C. Tunç, O. Tunç, New results on the qualitative analysis of integro-differential equations with constant time-delay, J. Nonlinear Convex Anal., 23 (2022), 435–448.
    [13] C. Tunç, O. Tunç, On the stability, integrability and boundedness analyses of systems of integro-differential equations with time-delay retardation, RACSAM Rev. R. Acad. A, 115 (2021). https://doi.org/10.1007/s13398-021-01058-8 doi: 10.1007/s13398-021-01058-8
    [14] O. Tunç, C. Tunç, Solution estimates to Caputo proportional fractional derivative delay integro-differential equations, RACSAM Rev. R. Acad. A, 117 (2023), 12. https://doi.org/10.1007/s13398-022-01345-y doi: 10.1007/s13398-022-01345-y
    [15] M. Bohner, O. Tunç, C. Tunç, Qualitative analysis of Caputo fractional integro-differential equations with constant delays, Comput. Appl. Math., 40 (2021), 6. https://doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
    [16] H. B. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
    [17] R. Mittal, R. Nigam, Solution of fractional integro differential equations by Adomian decomposition method, J. Comput. Appl. Math., 227 (2018), 233–243.
    [18] N. S. Davoud, S. Shahmorad, Fractional differential transform method to fractional order integro differential equations with nonlocal boundary condition, J. Comput. Appl. Math., 234 (2020), 1161–1189.
    [19] Y. Yang, S. Kang, V. Vasilev, The Jacobi spectral collocation method for fractional integro-differential equations with non smooth solutions, J. Electron. Res., 28 (2021), 883–891.
    [20] Y. Amer, A. Mahdy, E. S. Youssef, Solving fractional differential equation using Sumudu transform method, J. Comput. Mater., 54 (2018), 161–180.
    [21] D. Baleanu, S. Rezapour, H. Mohammadi, Some existence results on nonlinear fractional differential equations, Phil. Trans. R. Soc. A., 2013, 1–7. https://doi.org/10.1186/1687-2770-2013-112 doi: 10.1186/1687-2770-2013-112
    [22] J. Devi, C. Sreedhar, Generalized monotone iterative method for Caputo fractional integro-differential equation, Eur. J. Pure Appl. Math, 9 (2016), 1–11.
    [23] L. Dong, N. Hoa, H. Vu, Existence and Ulam stability for random fractional integro-differential equation, Afr. Mat., 2020, 1–12.
    [24] M. Benchohra, S. Bouriahi, Existence and stability results for nonlinear boundary value problem for implicit differential equation of fractional order, Moroccan J. Pure Apple. Anal., 1 (2015), 22–37. https://doi.org/10.7603/s40956-015-0002-9 doi: 10.7603/s40956-015-0002-9
    [25] K. H. Hussain, Existence, uniqueness and boundedness of solutions for fractional integro-differential equations, Int. J. Innov. Comput., 17 (2021), 1029–1039.
    [26] M. A. Abdou, G. A. Mosa, F. A. Gawish, On the Behavior solutions of fractional and partial integro differential heat equations, Math. Slovaca, 72 (2022), 397–410. https://doi.org/10.1515/ms-2022-0027 doi: 10.1515/ms-2022-0027
    [27] Z. Odibat, S. Momani, Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model., 32 (2008), 28–39. https://doi.org/10.1016/j.apm.2006.10.025 doi: 10.1016/j.apm.2006.10.025
    [28] T. A. Burton, Volterra integral and differential equations, Elsevier, 2005.
    [29] K. Karthikeyan, J. J. Trujillo, Existence and uniqueness results for fractional integro-differential equations with boundary value conditions, Commun. Nonlinear Sci., 17 (2012), 4037–4043. https://doi.org/10.1016/j.cnsns.2011.11.036 doi: 10.1016/j.cnsns.2011.11.036
    [30] R. S. Palais, A simple proof of the Banach contraction principle, J. Fix. Point Theory A., 2 (2007), 221–223. https://doi.org/10.1007/s11784-007-0041-6 doi: 10.1007/s11784-007-0041-6
    [31] E. Defez, J. Ibáñez, P. Alonso-Jordá, J. M. Alonso, J. Peinado, On Bernoulli matrix polynomials and matrix exponential approximation, J. Comput. Appl. Math., 404 (2022), 113207. https://doi.org/10.1016/j.cam.2020.113207 doi: 10.1016/j.cam.2020.113207
    [32] S. Kumbinarasaiah, G. Manohara, G. Hariharan, Bernoulli wavelets functional matrix technique for a system of nonlinear singular Lane Emden equations, Math. Comput. Simul., 204 (2022), 133–165. https://doi.org/10.1016/j.matcom.2022.07.024 doi: 10.1016/j.matcom.2022.07.024
    [33] E. Tohidi, M. M. Ezadkhah, S. Shateyi, Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials, Abstr. Appl. Anal., 214 (2014), 162896. https://doi.org/10.1155/2014/162896 doi: 10.1155/2014/162896
    [34] H. Hassani, J. A. T. Machado, M. K. Hosseini Asl, M. S. Dahaghin, Numerical solution of nonlinear fractional optimal control problems using generalized Bernoulli polynomials, Optim. Control Appl. Math., 42 (2021), 1045–1063. https://doi.org/10.1002/oca.2715 doi: 10.1002/oca.2715
    [35] R. P. Boas, R. C. Buck, Polynomial expansions of analytic functions, New York, Springer-Verlag, 1964.
    [36] O. R. Samadi, E. Tohidi, The spectral method for solving systems of Volterra integral equations, J. Appl. Math. Comput., 40 (2012), 477–497. https://doi.org/10.1007/s12190-012-0582-8 doi: 10.1007/s12190-012-0582-8
    [37] F. M. Faldino, Facets of non-equilibrium in perturbative quantum field theory: An algebraic approach, Ph.D. Thesis, Department of Mathematics, University of Hamburg, 2018.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(951) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog