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Abstract: Under some suitable conditions, we study the existence and uniqueness of a solution 
to a new modification of a nonlinear fractional integro-differential equation (NFIDEq) in dual 
Banach space CE (E, [0, T]), which simulates several phenomena in mathematical physics, 
quantum mechanics, and other domains. The desired conclusions are demonstrated with the use 
of fixed-point theorems after applying the theory of fractional calculus. The validation of the 
provided strategy has been done by utilizing the Bernoulli matrix approach (BMA) method as a 
numerical method. The major motivation for selecting the BMA approach is that it combines 
Bernoulli polynomial approximation with Caputo fractional derivatives and numerical integral 
transformation to reduce the NFIDEq to an algebraic system and then derive the numerical 
solution; additionally, the convergence analysis indicated that the proposed strategy has more 
precision than other numerical methods. Finally, as a verification of the theoretical work, we 
apply two examples with numerical results by using [Matlab R2022b], illustrating the 
comparisons between the exact solutions and numerical solutions, as well as the absolute error in 
each case is computed. 
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1. Introduction 

Fractional calculus is a study of the fractional order of integral and derivative operators. Several 
experts define the fractional integral and derivative as excellent for modelling the memory and 
heredity features of diverse substances or systems and other real world challenges. The use of 
fractional differentiation for the mathematical modelling of real world physical models has been 
extended in recent years, e.g., the modelling of national disasters, the fluid dynamic traffic model with 
fractional derivatives, the measurement of viscoelastic material properties, oil pollution, etc. In recent 
years, scientists have drawn the attention of many applications related to integro-differential equations by 
improving their results in modelling real-world problems, as seen in Abdou et al. [1,2], Jalili et al. [3–5], 
Kilbas et al. [6], Miller and Ross [7], Podulbny [8], Zhou et al. [8–10], and Trujillo [11]. Additionally, in 
recent years, qualitative evaluations of fractional calculus have drawn the interest of several scientists, for 
example, Tunç et al. [12–14], Bohner et al. [15], and Haibu et al. [16]. Moreover, there are only a few 
techniques for the approximate solution of fractional integro-differential equations. Some of these methods 
are: the Adomian decomposition method (ADM), illustrated by Mittal et al. [17], the fractional 
differential transform method (FDTM), shown by Davoud et al. [18], the collocation method by Yang 
et al. [19], and the Sumudo transform method (STM), illustrated by Amer et al. [20]. 

Furthermore, in the previous years, numerous authors examined the existence of solutions of 
abstract fractional integro-differential equations.  

Recently, Baleanu et al. [21] studied the FPDE 

( ) ( , ( )), [0, ], 0 1,c vD x t f t x t t J T v            (1.1) 

1 2 1 2(0) ( ), (0) ( ), ( ) ( ),0 ,0 1.x x T x x x T x T               

Using fixed-point methods, explored the existence and uniqueness of a solution for the nonlinear 
fractional boundary value problem raised by Devi and Sreedhar [22] utilised the monotonic iterative 
technique to the Caputo fractional integro-differential equation of the type 

( ) ( , ( ), ( )), [0, ], 0 1,c v vD x t f t x t I x t t J T v       0(0) .x x     (1.2) 

Dong et al. [23] showed the existence and uniqueness of solutions via Banach and Schauder fixed 
point techniques for the issue presented by

 

0
0

( ) ( , ( )) ( , , ( )) , [0, ], 0 1,
t

c vD x t f t x t G t s x s ds t J T v         (0) .x      (1.3) 

Benchohra et al. [24] examined existence and stability of solutions for a class of boundary value issue for 
implicit Caputo fractional differential equations of the type 

( ) ( , ( ), ( )) , [0, ], 0, 0 1,c v c vD x t f t x t D x t t J T T v      0(0) ( ) .x g x x      (1.4) 

Hussain [25] developed some additional requirements for the existence and uniqueness of solutions for a 
Caputo fractional Volterra integro-differential equations with nonlocal conditions of the type  
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0 0

( ) , ( ), ( , ) ( ) , ( , ) ( ) , [0, ], 0, 0 1,
t T

c vD x t f t x t k t s x s ds h t s x s ds t J T T v
 

      
 

      (1.5) 

0(0) ( ) .x g x x   

Moreover, Abdou et al. [26] employed the semi-group technique to investigate the existence and 
uniqueness of solutions for fractional and partial integro differential equations of heat type in Banach 
space E provided by  

2

2
0

( , ) ( , )
( , ) ( , ) ( , ), [0, ], 0, 0 1,

tu x t u x t
k x y u x y dy h x t t J T x

t x



  
       

    

2

02
0

( , ) ( , )
( , ) ( , ) ( , ), ( ,0) ( ).

tu x t u x t
k x y u x y dy h x t u x u x

t x

 
   

      (1.6) 

Motivated by the references [21–26, 31–32] and as a generalized case of the previous Eqs (1.1)–(1.6), 
we explore the following nonlinear fractional integro-differential equation NFIDEq   

0

( , ) , , ( , ), ( , , , ( , )) ,
t

t x

t

D u x t f x t D u x t g x t s u x s ds 
 

   
 

      (1.7) 

with initial condition  

( ,0) (0, ) , 0,1,..., 1,m m
mu x u t u m n     

where x  [a,b], t  I = [0,T], tD  and xD   be standard Caputo fractional derivatives with orders 

,  respectively such that 1n n     , n 𝑁 and ( , ) ( [0, ]),Eu x t C E T   where CE (E  

[0,T]) be a dual Banach space, the functions f ( x ,t ),  g(x,t)  are continuous functions identified as  

𝑓, 𝑔 : a,b   I   𝑅 𝐼   𝑅 𝐼  
  
⎯  𝑅  I. 

Using the previous information, Eq (1.7) can be considered a new modification. The goal of this article 
is to provide novel results related to the existence and uniqueness solution of NFIDEq and also give a 
numerical solution using the approach of the Bernoulli matrix. The results will be helpful to 
researchers working on fractional calculus, especially the solvability study of NFIDEq, and they 
provide some new improvements on the topic. 

The outline of this article is organized as follows: essential topics are discussed in Section 2. In 
Section 3, we formulate the sufficient conditions for the existence and uniqueness of a solution to Eq (1.7). 
The Bernoulli matrix approach BMA method is used in Section 4 to obtain the numerical solution 
of Eq (1.7), and the convergence analysis is also proven. Afterward, in Section 5, we explain 
numerical examples related to what we introduced in Section 4 to demonstrate the preciseness of the 
method and also compute the absolute error of the case. Finally, in Section 6, a conclusion is given. 
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2. Basic concepts 

Definition 2.1. (Odibat et al. [27]). Riemann-Liouville fractional integral and derivative operator of 
order 𝛼 ∈ 𝐶 𝑜𝑟 𝑅  is respectively defined by: 

 
x

a 1-
a

1 f(s)
I  f  (x)     ds

 ( ) (x - s)


 
  , ;x a  

and  

 
xn

a 1
a

1 d f(s)
D f  (x)       ds

 (n - ) (x - s)n ndx


  
  =  

n
n-
an

d
 I   f (x).

dx

      (2.1) 

Where [ ( ) 1], ( )n R R   indicates the integer part of  , while Caputo fractional derivative of 

order 𝛼 ∈ 𝑁 𝑜𝑟 𝑅  is defined by  

 
x

1 (n)
a

a

1
D   y  (x)      (x - s)   y  (s) ds

 (n - )
n 


 

 
  , 

or  

 
(k)n-1

k
a

k 0

y  (a)
D   y  (x) D  y (t) -    (t - a)  (x)

k !
 




  
   

  
 .     (2.2) 

Proposition 2.1. (Burton et al. [28]). Let ( ), ( ) 0R R   , [ , ]x a b  and ( ) [ , ],f x C a b  then we 

have 

(i)    a a aI   I   f (x)  I   f  (x),   
    

(ii)    a a aD   I   f (x)  I   f  (x),   
    for ( ) ( ),R R   

(iii)  a aD   I   f (x)  f(x), 
    

(iv)    
(n-k)n

-kn-
a a

k 1

f  (a)
I   D   f (x)  f(x) -    (x - a) .

  - k  1
  

 



   

Lemma 2.1. (Burton et al. [28]). Let 1n n     , for [ , ]x a b , if we have Ey  C  [a , b]  and

 a ED  y  (x)  C  [a , b]
  , then  a ED   y (x)  C  [a , b].

   

Lemma 2.2. (Karthikeyan et al. [29]). Let 0n N , the space [ , ]nC a b  is composed of continuous 

functions, which are represented in the form 
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x ( )n-1
n-1 n k

0a

1 (a)
f(x) =  (x - t)  f (t) dt    (x - a) .

(n - 1) ! k !

k

k

f



        (2.3) 

Definition 2.2. (Boas et al. [35]). Bernoulli polynomials of order m can be stated as  

0

( )  
m

i
m m r

i

m
B x B x

i 


 
  

 
 , [0,1].x                        (2.4) 

Where (0), 0,1,2,...i iB B i m  , are Bernoulli numbers. 

Proposition 2.2. (Boas et al. [35]). The standard Bernoulli polynomials are commonly identified by 
the following relation 

1

0

( )
( ),   1.

B (x)=1.

m
m

d B x
mB x m

dx 
   



 (2.5) 

Proposition 2.3. (Samadi et al. [36]). Bernoulli polynomials have a full basis on the interval [0, 1]. 

Definition 2.3. (Samadi et al. [36]). Legendre Gauss quadrature formula can be specifically defined as 

1

00

( ) ( ),
N

i i
i

g s ds g s


                                                              (2.6) 

where 𝑡 𝑓𝑜𝑟𝑖 0,1,2, . . . 𝑁, are the roots of the (𝑁+1) Legendre polynomial 𝑃𝑁+1(𝑡) in the interval 

(-1,1) where 21
( ) ( 1)

2 !

n
n

n n n

d
p t t

n dt
  and i be the corresponding weights such that 

2 \i
i N+1 i

1= .
(1-t )P (t )

  

Theorem 2.1. (Odibat et al. [27]). Let X be a Banach space, { ( )}S s t  be a family of continuous 

mappings : .s J X  If S is uniformly bounded and equicontinuous, and for any * ,t J  the set 
*S is relatively compact, then there exists a uniformly convergent function sequence in S .  

Theorem 2.2. (Odibat et al. [27]). Let X  be a Banach space, K a convex subset of X , A an open 
set of .K  Suppose that :T A K  is a continuous and compact operator where A  is closure of

A . Then either T has a fixed point in A , or v A  such that v Tv for (0,1).   

Theorem 2.3. (Karthikeyan et al. [29]). Every contraction mapping on a Banach space admits a 
unique fixed point. 

3. Existence and uniqueness solution of NFIDEq 

To verify the existence and uniqueness of the solution of Eq (1.7), we first assume the following 
conditions: 

C1: ( , )f x t is a continuous function and 𝑃 , 𝑃 ∈ 𝑅  such that 
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   1 2, , , ,f s t u v P u v P    where [ , ],s a b t I   and 𝑢, 𝑣 ∈ 𝑅; 

C2: ( , )g x t  is a continuous function and  𝑞 , 𝑞 ∈ 𝑅  such that 

 1 2 1 2, , , ,g s t s u q u q   where 𝑠 , 𝑠 ∈ 𝑎, 𝑏 , 𝑡 ∈ 𝐼, 𝑢 ∈ 𝑅;  

C3: there exist 𝑁 ∈ 𝑅  such that 

 |𝑓 𝑠, 𝑡, 𝑢, 𝑣 𝑓 𝑠, 𝑡, 𝑤, 𝑧 | 𝑁 |𝑢 𝑤| |𝑣 𝑧| , where  𝑢, 𝑣, 𝑤, 𝑧 ∈ 𝑅,  [ , ], ;s a b t I   

C4: there exist 𝑁 ∈ 𝑅  such that 

   1 2 1 2 2, , , , , , ,g s t s u g s t s v N u v     where  𝑢, 𝑣 ∈ 𝑅, 2 1 2 N (s  , t , s  , ) .N   

Before proving the theory of existence and uniqueness of the solution, we must prove the 
following principle lemma. 
Lemma 3.1. If  ( [0, ])Eu C E T  , then ( , )u x t can be written in the following form 

0

( )1
0

01
0

( , )1 ( , )
( , ) ( )

( ) ( ) !

t mn
m

mt

u x ty x s
u x t ds t t

t s m






  
   , where; ( , ) ( [0, ])Ey x t C E T    satisfy the 

fractional integral equation 

0

( )1
0

0
0

( , )
( , ) , , ( , ), ( , , , ( ) ( , ) ) .

!

t mn
m

mt

u x t
y x t I f x t y x t g x t s s t I u x s ds

m
  






  
        

  

Proof. Consider ( , ) ( [0, ])Eu x t C E T   be a solution of Eq (1.7), from Lemma 2.1, we have that 

( , ) ( [0, ])t ED u x t C E T   ,  

Then 

( )1
0

0
0

( , )
( , ) ( , ) ( ) .

!

mn n
n m

t n
m

u x t
D u x t I u x t t t

t m
 






  
       

  

Using Lemma 2.2, we get 

( )1
0

0
0

( , )
( , ) ( , ) ( ) ,

!

mn
m

t
m

u x t
I D u x t I D u x t t t

m
   





  
    

  
  

( ) ( )1 1
0 0

0 0
0 0

( , ) ( , )
( , ) ( ) ( ) ,

! !

m n mn n
m mn

m m

u x t u x t
u x t t t t t

m m


 


 

       

where, 

( )1
0

0
0

( , )
( , ) ( ) .

!

mn
n m

n
m

u x t
u I u x t t t

m
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But  

( )
0( , ) , 0,1,..., 1.m

nu x t o for m n           (3.1) 

So 

(m)n-1
m0

0
m 0

u  (x , t )
   u(x, t)    (x , t) -    (t - t ) .

m !tI D u 



      (3.2) 

From Lemma 2.2 we get 
( , ) ( [0, ])x ED u x t C E T   , so, we can apply I   to both sides of Eq (1.7) and using Eq (3.2) we 

obtain 

0

t(m)n-1
m0

0
m 0 t

u  (x , t )
u (x, t)      (t - t )   I  f x, t, D  u(x, t), g (x, t, s, u(x, s)) ds . 

m ! x
 



  
        

   (3.3) 

Set ( , ) ( , )xy x t D u x t , then    ( [0, ])Ey C E T   and similar to Eq (3.3) we obtain 

0

t(m)n-1
m0

0 1-
m 0 t

u (x, ) 1 y (x , t)
(x, t )    (t - t )     ds.

m !  ( ) (t - s)

t
u 

 
        (3.4) 

From Lemma 2.2, we have 

0

1

0
0

( , ) ( ) ( , ) , , ( , ), ( , , , ( , )) ,
!

tn
mm

x x x
m t

u
D u x t D t t x t I f x t D u x t g x t s u x s ds

m
    






                 
   

using Lemma 2.1 and Eq (3.4), we get 

0

( )1
0

0
0

( , )
( , ) , , ( , ), , , , ( ) ( , ) .

!

t mn
m

x
mt

u x t
y x t I f x t y x t g x t s s t I y x s ds

m
  






   
          

    (3.5) 

Now, we will show that ( ) ( ,0)m
mu x u , for 0,1, 2,... 1.m n   For n = 1, it is easy to see that 

0( ,0) .u x u  

Now for 2 ,n   using Proposition 2.1 and Eq (3.2) we get 

 
0

( )2
1 10

0 1
0

( , )
( , ) ( ) , , ( , ), , , , ( , ) .

!

tmn
m m m

m x
m t

u x t
u x t x t I u I f x t D u x t g x t s u x s ds

m
 


  




  
          

   

Thus, from Lemma 2.1 we have 
( , ) ( [0, ])Eu x t C E T    and u(m) (x, 0) = um, for 0,1, 2,... 2.m n   

At 1m n  , we have 
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0

( 1) 1
0 1( , ) , , ( , ), , , , ( , ) .

t
n m

n x

t

u x t u I f x t D u x t g x t s u x s ds   


 
    

 
  

Using proposition 2.1 we obtain 

 
0

1 , , ( , ), , , , ( , ) 0.
t

m
x

t

I f x t D u x t g x t s u x s ds  
 

  
 

  

Then ( 1)
1( ,0) .n

nu x u
 ■ 

Theorem 3.1. Assume that the conditions (C1–C4) hold, then Eq (1.7) has a solution 

( , ) ( [0, ])Eu x t C E T   if 𝜇 :   b - a

  -   1
   b - a

   2
  1.     (3.6) 

Proof. From Lemma 3.1, it is sufficient to show that Eq (1.7) have a solution ( , ) ( [0, ])Eu x t C E T  . 

Using Eq (3.4) to define ( )( , )T y x t as 

0

( )1

0
0

( )( , ) , , ( , ), , , , ( ) ( , ) ( , ).
!

t mn
m

mt

u
T y x t I f x t y x t g x t s s t I y x s ds x t

m
  






   
          

  

Also, set , . 1 .r s t n n         

Consider  rB   y  C  (E  [0 , T] ; u   r .
E

E C
     

Now we need to show that r E:B   CT   is a continuous and compact operator. 

From the continuity of functions ( , ) ( , )f x t and g x t and the operators ,I I    on [ , ]C a b , 

it is easy to say that ( )( , ) ( [0, ]),ET y x t C E T   for ry B . 

Consider , ry z B  and using conditions C3, C4 we obtain 

 

 

1 2

1 2

1
1 2

 (T y) (x, t) - (T z) (x , t) ( , ) ( , ) ( , ) ( , ) ,

( , ) ( , ) ,

( ) ( )
.

( 1) ( 2)

E

E

C

C

I N y x t z x t I N y x s v x s

y z I N x t I N x t

N b a N b a
y z

  

   

  

  



 

 

   

  

  
        

 

Set 
1

1 2( ) ( )

( 1) ( 2)

N b a N b a  


  

  
 
    

, therefore we find that T is a continuous operator on rB

when 𝜇 1. The set { : }rA Tu u B   is uniformly bounded where       MT y  , such that 

sup{ ( , , , )}.M f s t u v         (3.7) 
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Let 1 2, [0, ]T    and ry B , we have 

1 2

1

1 2 1 21 1 1
1 2 2 1

1 ( , ) ( , ) 1 ( , )
 (T y) (x, ) - (T y) (x , ) , .

( ) ( ) ( ) ( ) ( )
o ot t

Tu x s Tu x s Tu x s
ds ds ds for

s s

 

     


   
               

          

From Eq (3.6) we have 

2 1 1 0 2 0 2 1

1 2

( ) ( ) ( ) ( )
 (T y) (x, ) - (T y) (x , ) ,

( ) ( ) ( ) ( )

M t t M            
 

       

               
     

 

2 12 ( )
.

( 1)

M   

 

  
  

        (3.8) 

Then r E:B   CT   is uniformly bounded and equicontinuous; also, E is a relatively compact 

subset of CE (E  [0, T]), and hence we can say that the operator T satisfies Arzela Weierstrass's 
theory (Theorem 2.1). If we show that u Tu  doesn’t have any solution in rB for some , then 

by (Theorem 2.2), T has a fixed point in rB . Hence, the Eq (1.7) has a solution 

( , ) ( [0, ])Eu x t C E T  .■ 

Theorem 3.2. Equation (1.7) has a unique solution u(x,t) C (E  [0,T]E  .  

Proof. We can prove the uniqueness of the solution of Eq (1.7) using Banach contraction principle as 
follow. 
Using the conditions (C1–C4), and Eq (3.7) we have  

 1 2 (T y) (x, ) - (T z) (x , ) ( , ) ( , ) ( , ) ( , ) ,t t I N y x t z x t I N y x s z x s         

 1
1 2( , ) ( , ) ,

, (0,1).

E

E

C

C

y z I N x t I N x t

y z for

  

 

   

  

 

Thus, T is a contraction operator, from the Banach Contraction Principle (Theorem 2.3), we get the 
existence and uniqueness of the solution of the Eq (1.7). ∎ 

4. Bernoulli matrix approach (BMA)  

In this Section, we present a computational approach for solving the NFIDEq which is based on 
the Bernoulli polynomials approximation. (See Tohidi et al. [33] and Hassani et al. [34]).  

We need to approximate the solution of F(x,t)  CE(E  [0, 1]) by the truncated Bernoulli series 

F(x,t) = 
N N

m ,n m n
m 0 n 0

f B ( x ) B ( t )
 
  , where the coefficients fm,n extracted a  
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1 1

,

0 0

1 ( , )
.

! !

m n

m n m n

F x t
f dxdt

m n x t




                           (4.1) 

Lemma 4.1. Let ( , )tD u x t be approximated by the Bernoulli polynomials as 

,
0 0

( , )  ( ) ( )
N N

t m n m n
m n

D u x t u B x B t

 

  , suppose0 1  , 

then we have 
 

1
\ ( )

, ,
0 0 0

( , ) ( ) ( ,0) .
!

iN N n
r i

m n n r m
m n i

t
u x t u b t B x u x

i





  

    

Proof. Applying operator tI  on both sides of ( , )tD u x t  ,
0 0

 ( ) ( )
N N

m n m n
m n

u B x B t
 

  , we have 

1
( )

,
0 0 0

( , ) ( ,0) ( ) ( ) ,
!

in N N
i

t m n m n
i m n

t
u x t u x I u B x B t

i




  

     
   

,
0 0 0

 ( ) ,
N N m

r
t m n n r m

m n r

n
I u B t B x

r



  

   
    

    
 

,
0 0 0

( 1)
 ( ) ,

( 1 )

N N m
r

m n n r m
m n r

n r
u B t B x

r r






  

    
        
   

\
, ,

0 0

( ).
N N

r
m n n r m

m n

u b x B x

 

 

 

Where \
,

( 1)
,  

( 1 )n r n r

n r
b B

r r 

   
     

then we obtain 

1
\ ( )

, ,
0 0 0

( , ) ( ) ( ,0)
!

iN N n
r i

m n n r m
m n i

t
u x t u b t B x u x

i





  

   .                (4.2) 

4.1. Numerical solution of Eq (1.7) using BMA 

The BMA approach turns the NFIDEq to a system of algebraic equations by extending the 
relevant approximate solutions as the linear combination of the Bernoulli polynomials. 

According to Lemma 4.1, we can get an approximation solution of Eq (1.7) as follow 
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Furthermore, we apply Legendre Gauss collocation nodes and also Legendre Gauss quadrature 
rule for approximating the existing integrals. By collocating the Eq (4.3) at (𝑁+1) points 𝑥𝑝 s.t

0 1 20 ... ... 1p Nx x x x x       , then we have  
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Where 𝑥𝑝  0,12 ,... ,p N  indicates the roots of the shifted Legendre polynomial 𝑃𝑁+1 (𝑥) in the 

interval (0,1). Also to apply the Legendre Gauss quadrature for estimating the following equation 
involves integrals, we should convert s-interval [0, 1] into 𝜏-interval [−1, 1] by the following change 
of variable:  2 1s   , then Eq (4.4) will be transformed to  
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(4.5) 

Where all of the 𝜏𝑞’s are the 𝑁+1 zeroes of the Legendre polynomial P 𝑁+1 (𝜏) and the 𝑤𝑞’s are the 
corresponding weights. The solutions of the nonlinear algebraic system (4.5) are the coefficients of 
the truncated double Bernoulli series, which are defined in the interval [0, 1]. 

4.2. Convergence analysis of the nonlinear algebraic system (4.5) 

Also, convergence analysis associated to the presented idea is provided as follow 
For E( , )  c ([0 , 1] [0 , 1]) , x [0,1]p iu x t    , define an operator 

E E:  ( [0 , 1] [0 , 1])  c  ([0 , 1] [0 , 1])A c    , such that 
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According to conditions (C1–C4) which listed above, we get 
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𝜂 , ‖𝑢 𝑣‖ .                                                          (4.6) 
Thus, A is a contraction operator in the case of , (0.1)p i  , and from the Banach contraction. 

Principle, we get the existence of a unique solution for the Eq (1.7). 

5. Numerical examples 

In this Section, we present two numerical examples to make a verification of the theoretical 
work which presented in Section 4 by using BMA method. 
Example 5.1. Consider the following nonlinear fractional integro-differential equation 

 
3

0.4

0

( , ) ( , ) tan ( , ) ,
1

t

t xt

x x s
D u x t D u x t u x s ds

e s
 

 
  (5.1) 

with initial condition 𝑢 𝑜, 𝑥 𝑢 0, 𝑡 0, 𝑥 ∈ 0,1 . 
Observe that example (5.1) is a special case of Eq (1.7) with β =0.4 and functions f and g 

determined as: f x, t, y, v  y + v, y, v ∈R and 𝑔 𝑥, 𝑡, 𝑦, 𝑣  𝑡𝑎𝑛𝑦. The exact solution of 

Eq (5.1) is 𝑢 𝑥, 𝑡 𝑥 𝑒 . The results of exact solution, approximate solutions and the absolute 
error between them are obtained in Table 1. 
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Table 1. Represents the exact solution and approximate solutions for example (5.1) at α = 
0.5 and α = 0.95. 

 
x 

 
t 

Exact  
Solution 

0.5   0.95   

Numerical solution Abs. Error Numerical solution Abs. Error 

 0.33 0.055638725 0.0556387189 6.02e−08 0.0556387238 1.2e−08 

0.2 0.66 0.077391693 0.0773900142 1.55e−06 0.0773916847 8.3e−08 

 0.99 0.107649378 0.1076492547 1.24e−07 0.1074693216 5.72e−07 

 0.33 0.22255490 0.222534436 2.04e−05 0.22253443435 3.2 e−07 

0.4 0.66 0.30956677 0.3095698121 3.04e−06 0.30956981232 4.7 e−09 

 0.99 0.430597515 0.430597516 1.12e−09 0.4305975121 9.1 e−09 

 0.33 0.500748526 0.5007435324 4.99e−06 0.50074353232 5.2 e−08 

0.6 0.66 0.696525240 0.6965352467 1.01e−07 0.69653524672 5.76 e−09 

 0.99 0.968844410 0.968844364 4.62e−08 0.96884436443 1.34 e−10 

 0.33 0.980219602 0.980214141 5.46e−08 0.98021414098 9.44 e−7 

0.8 0.66 1.238267094 1.2382670076 8.64e−08 1.23826700753 2.11 e−8 

 0.99 1.722390067 1.72239006007 6.93e−09 1.722390060069 5.87 e−10 

Example 5.2. Consider the following nonlinear fractional integro-differential equation 

0.02 2

0

( , ) cos ( ( , ) ) ( ) ( , ) ,
4

t

t x

x
D u x t D u x t x s u x s ds     (5.2) 

with initial condition 𝑢 𝑜, 𝑥 𝑢 0, 𝑡 0,  𝑥 ∈ 0,1 . 
Also, we observe that example (5.2) is a special case of Eq (1.7) with β =0.02 and functions f 

and g determined as: f x, t, y, v cos y + v, and 𝑔 𝑥, 𝑡, 𝑦, 𝑣 𝑥 𝑡 𝑢, y, v ∈ R. The exact 

solution of Eq (5.2) is 𝑢 𝑥, 𝑡 𝑥 𝑠𝑖𝑛𝑡. The results of exact solution, approximate solutions and the 
absolute error between them are obtained in Table 2. 
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Table 2. Represents the exact solution and approximate solutions for example (5.2) at α = 
0.5 and α = 0.95. 

 
x 

 
t 

Exact  
Solution 

0.5   0.95   
Numerical solution Abs. 

Error 

Numerical solution Abs. 

Error 

 0.33 0.19999668273 0.199996682716 1.39e−11 0.1999966827159 3.4 e−10 

0.2 0.66 0.19998673101 0.199986731072 2.8e−11 0.19998673107162 2.6 e−11 

 0.99 0.19997014519 0.199970145180 9.99e−12 0.199970145180 9.01 e−13 

 0.33 0.39999336545 0.399993365395 4.1e−10 0.39999336539476 2.43 e−11 

0.4 0.66 0.39997346202 0.399973462014 5.2e−11 0.39997346201401 2.49 e−12 

 0.99 0.39994029038 0.399940290375 4.33e−12 0.39994029037499 3.56 e−14 

 0.33 0.59999004818 0.599990048154 2.52e−11 0.59999004815391 8.65 e−13 

0.6 0.66 0.59996019304 0.599960193024 1.57e−11 0.5999601930233 3.69 e−13 

 0.99 0.59991043557 0.599910435563 5.71e−12 0.59991043556284 9.54 e−14 

 0.33 0.7999867309 0.799986730857 4.3e−11 0.7999867308521 1.06 e−11 

0.8 0.66 0.79994692405 0.799946924047 2.2e−12 0.7999469240469 7.54 e−13 

 0.99 0.79988058076 0.799880580759 2.12e−12 0.79988058075892 6.94 e−14 

6. Conclusions 

The major purpose of this study is to prove the existence and uniqueness of the solution of a 
nonlinear fractional integro-differential equation in dual Banach space. The desired findings are 
demonstrated by applying fixed-point theorems after employing fractional calculus. Also, we use the 
Bernoulli matrix approach method by reducing the NFIDEq to an algebraic system and deriving the 
numerical solution. We also observed that the matrix approach method is very efficient by verifying the 
conversion analysis of the numerical solution. Finally, we have chosen two examples as a verification 
of the theoretical work. The difference between exact solutions and approximate solutions for different 
levels of  and t are computed as shown in Figures 1–4, and concluded the following: 
Throughout Example 5.1, we deduced that  

(1) In Table 1, at α = 0.5, the minimum error is 6.93 e−09 at x = 0.8, t = 0.99, and the 
maximum error is 1.55 e-06 at x = 0.2, t = 0.66. 

(2) In Table 1, at α = 0.95, the minimum error is 5.87 e−10 at x = 0.8, t = 0.99, and the 
maximum error is 3.2 e−07 at x = 0.4, t = 0.33. 

Throughout Example 5.2, we deduced that  
(3) In Table 2, at α = 0.5, the minimum error 9.99 e−12 at x = 0.2, t = 0.99, and the maximum 

error is 4.1e−10 at x = 0.4, t = 0.33. 
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(4) In Table 2, at α = 0.95, the minimum error is 6.94 e−14 at x = 0.8, t = 0.99, and the 
maximum error is 3.4 e−10 at x = 0.2, t = 0.33.  

We can deduce that when the value of α increases to α = 0.8 and the value of t reaches t = 0.99 
in each case, the approximation solutions are convergent to exact solutions, hence the error is small. 
When the value of α decreases to α = 0.2 and the value of t = 0.33, then the approximate solutions are 
divergent away from exact solutions and the difference between the two solutions is increase. 

 

Figure 1. Represent the numerical solutions for example (5.1) at α = 0.5. 

 

Figure 2. Represent the numerical solutions for example (5.1) at α = 0.95. 
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Figure 3. Represent the numerical solutions for example (5.2) at α = 0.5. 

 

Figure 4. Represent the numerical solutions for example (5.2) at α = 0.95. 

From Figures 5 and 6, we concluded the following: 
(I) The BMA method is very powerful in finding precise numerical solutions, which appear 

clearly in the comparison between the exact solutions and the numerical solutions as 
shown.  

(II) The numerical solutions at  =0.95 are more accurate than the numerical solutions at  
=0.5. The interpretation of it is that the behavior of the function u(x, t) at  =0.5 
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represents a potential function that causes a slight perturbation in the values of u. We can 
declare that we obtain the equilibrium state when 1  , we have a singular case, which is 
called Cauchy kernel (see [26,37]). 

 

Figure 5. Represent the comparison between the exact solution and the numerical 
solutions for example (5.1). 

 

Figure 6. Represent the comparison between the exact solution and the numerical 
solutions for example (5.2). 
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Future work: We would like to expand on this work to investigate the optimality conditions for 

solving this fractional optimal control problem: ( ( ), ( ), ) ( ( ), ( ), ) ( ( ), )
T

a

J x t u t t L x t u t t dt x t t  , subject 

to a dynamical constraint on the form:
0

( ) ( ) , , ( ), ( , , ( ))
t

t x

t

D x t f x t t D x t g x s u s ds 
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