Research article Special Issues

Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces

  • In this paper, we discuss the boundedness of bilinear θ-type Calderón-Zygmund operators on the generalized variable exponent Morrey spaces. In addition, the corresponding results of commutators generated by bilinear θ-type Calderón-Zygmund operators with BMO functions on these spaces is also obtained.

    Citation: Bo Xu. Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces[J]. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674

    Related Papers:

    [1] Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060
    [2] Yanqi Yang, Qi Wu . Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 25688-25713. doi: 10.3934/math.20231310
    [3] Jing Liu, Kui Li . Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces. AIMS Mathematics, 2024, 9(2): 3483-3504. doi: 10.3934/math.2024171
    [4] Muhammad Asim, Ghada AlNemer . Results for fractional bilinear Hardy operators in central varying exponent Morrey space. AIMS Mathematics, 2024, 9(11): 29689-29706. doi: 10.3934/math.20241438
    [5] Muhammad Asim, Ghada AlNemer . Analytical findings on bilinear fractional Hardy operators in weighted central Morrey spaces with variable exponents. AIMS Mathematics, 2025, 10(5): 10431-10451. doi: 10.3934/math.2025475
    [6] Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
    [7] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [8] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [9] Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352
    [10] Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki . Boundedness of some operators on grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(6): 12964-12985. doi: 10.3934/math.2023653
  • In this paper, we discuss the boundedness of bilinear θ-type Calderón-Zygmund operators on the generalized variable exponent Morrey spaces. In addition, the corresponding results of commutators generated by bilinear θ-type Calderón-Zygmund operators with BMO functions on these spaces is also obtained.



    θ-type Calderón-Zygmund operators, which used to study certain classes of pseudo-differential operators, was introduced by Peng [1] in 1985. Firstly, Yang and Tao obtained the boundedness of θ-type Calderón-Zygmund operators on Variable Exponents Herz space [2] and Morrey-Herz-type Hardy spaces with variable exponents [3].

    Guliyev further proved that the Calderón-Zygmund operators with kernels of Dini's type are bounded on generalized weighted variable exponent Morrey spaces (see [4]). Besides, Maldonado and Naibo developed a theory of the bilinear Calderón-Zygmund operators of type ω(t) in 2009 and generalized the results of Yabuta [5]. For comprehensive bilinear θ-type Calderón-Zygmund operators references, interested readers may refer to Zheng [6,7] and Lu [8].

    Variable exponent function spaces play a vital role in the fluid dynamics, elasticity dynamics, and differential equations with nonstandard growth, and thus have received a plenty of attention from researchers. For more details, one may refer to [9,10,11,12]. More specially, variable exponent Lebesgue spaces were studied in [13,14,15,16,17,18,19], Morrey spaces with variable exponent were studied in [3,20,21,22], generalized Morrey spaces with variable exponent were studied in [23,24,25,26,27] and local "complementary" generalized variable exponent Morrey space were studied in [28,29].

    Inspired by the work above, this paper devotes to studying the boundedness of bilinear θ-type Calderón-Zygmund operator and its commutators on generalized variable exponent Morrey spaces.

    Suppose that θ is a non-negative and non-decreasing function on R+=(0,) satisfying

    10θ(t)tdt<. (1.1)

    A continuous function K(,,) on Rn×Rn×Rn{(x,y1,y2):x=y1=y2} is said to be a bilinear θ-type Calderón-Zygmund kernel if it satisfies: for all (x,y1,y2)Rn with xyi, i=1,2,

    K(x,y1,y2)∣≤C(2i=1xyi)2n, (1.2)

    and for all x,z,y1,y2Rn with 2xz∣<max{xy1,xy2}, then exists a positive constant C such that

    K(x,y1,y2)K(z,y1,y2)∣≤Cθ(xz2i=1xyi)[2i=1xyi]2n. (1.3)

    Now we state the definition of bilinear θ-type Calderón-Zygmund operator as follows.

    Let Tθ be a linear operator from S(Rn)×S(Rn) into its dual S(Rn), where S denotes the Schwartz class. One can say that Tθ is a bilinear θ-type Calderón-Zygmund operator with kernel K satisfying (1.2) and (1.3), for all f1,f2Lc(Rn) (the space of compactly supported bounded functions on Rn) and xsuppf1suppf2,

    Tθ(f1,f2)(x)=RnRnK(x,y1,y2)f1(y1)f2(y2)dy1dy2, (1.4)

    where θ satisfies (1.1).

    It is easy to see that the classical bilinear Calderón-Zygmund operator T with standard kernel is a special case of Tθ as θ(t)=tδ with 0<δ1. Let b1 and b2 be locally integrable functions, the commutator generated by b1,b2 and Tθ is defined by

    [b1,b2,Tθ](f1,f2)(x):=b1(x)b2(x)Tθ(f1,f2)(x)b1(x)Tθ(f1,b2f2)(x)b2(x)Tθ(b1f1,f2)(x)+Tθ(b1f1,b2f2)(x).

    Also, [b1,Tθ] and [b2,Tθ] are defined by

    [b1,Tθ](f1,f2)(x)=b1(x)Tθ(f1,f2)(x)Tθ(b1f1,f2)(x),

    and

    [b2,Tθ](f1,f2)(x)=b2(x)Tθ(f1,f2)(x)Tθ(f1,b2f2)(x),

    respectively.

    Due to the singularity of commutators generated by bilinear θ-type Calderón-Zygmund operators with BMO function is stronger than that of bilinear θ-type Calderón-Zygmund operators. Thus, we need to strength the condition of θ in (1.1). Let θ be a non-negative and non-decreasing function on (0,) such that

    10θ(t)tlogt2dt<. (1.5)

    Furthermore, the commutators of bilinear θ-type Calderón-Zygmund operator are defined by

    [b1,b2,Tθ](f1,f2)(x)=RnRn2i=1(bi(x)bi(yi))K(x,y1,y2)f1(y1)f2(y2)dy1dy2,

    where θ satisfies (1.5).

    For a measurable subset ERn, we define P0(E) to be the set of measurable functions p():E(0,) such that

    p=essinfxEp(x)>0,p+=esssupxEp(x)<.

    Define P(E) to be the set of measurable functions p():E[1,) such that

    p=essinfxEp(x)>1,p+=esssupxEp(x)<.

    Define P1(E) to be the set of measurable functions p():E[1,) such that

    p=essinfxEp(x)1,p+=esssupxEp(x)<.

    By p(x)=p(x)p(x)1, we denote the conjugate exponent of p(x).

    Let fL1loc(Rn), the Hardy-Littlewood maximal operator M is defined by

    Mf(x)=supBx1BBf(y)dy,

    where the supremum is taken over all balls B containing x. Let B(E) be the set of p()P(E) such that M is bounded on Lp()(E).

    A subset of B(Rn) is the class of globally log-Hölder continuous functions p()LH(Rn) and p()P(Rn). Recall that p()LH(Rn), if p() satisfies

    p(x)p(y)∣≤Clogxy,x,yRn,xy∣≤12, (1.6)

    and

    p(x)p∣≤Clog(e+x),y∣≥∣x, (1.7)

    where p=limxp(x)>1.

    Definition 1.1. [13] Given an open set ERn and p()P(Rn) denotes the set of measurable functions f on E such that

    Ip()(f)=Ef(x)p(x)dx<.

    This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm

    fLp()(E)=inf{λ>0:Ip()(fλ)1}.

    For all compact subsets EΩ, the space Lp()loc(Ω) is defined by

    Lp()loc(Ω)={fismeasurable:fLp()(E)}.

    Definition 1.2. [25] Let p()P1(Rn), φ be a positive measurable function on Rn×(0,). The generalized variable exponent Morrey space Mp(),φ(Rn) is defined by

    Mp(),φ(Rn):={fLp()loc(Rn):fMp(),φ(Rn)<},

    where

    fMp(),φ(Rn)=supxRn,t>0φ(x,t)1tθp(x,t)fLp()(B(x,t))=supxRn,t>0φ(x,t)1tθp(x,t)fχB(x,t)Lp()(Rn).

    We recall the definition of space of BMO(Rn).

    Definition 1.3. [30] Suppose that bL1loc(Rn), and let

    bBMO(Rn)=supxRn,t>01B(x,t)B(x,t)b(y)bB(x,t)dy<,

    where

    bB(x,t)=1B(x,t)B(x,t)b(y)dy.

    Define

    BMO(Rn)={bL1loc(Rn):bBMO(Rn)<}.

    Definition 1.4. [17] The BMOp()(Rn) space is the set of all locally integrable functions b with finite norm

    bBMOp()(Rn)=supxRn,t>0(b()bB(x,t))χB(x,t)Lp()(Rn)χB(x,t)Lp()(Rn).

    The rest of this paper is organized as follows. Section 2 recalls some basic lemmas that will be used in the sequel. Section 3 demonstrates the boundedness of bilinear θ-type Calderón-Zygmund operators on generalized variable exponent Morrey spaces. Finally, the corresponding results of its commutators are made in Section 4.

    The following notions will be encountered often throughout the text. C is denoted by a positive constant which is independent of the main parameters, but it may vary from line to line. Rn is the n-dimensional Euclidean space, χE(x) is the characteristic function of a set ERn. AB means that ACB and ACB. B(x0,r)={xRn:∣xx0∣<r} denotes the open ball with center x0Rn and radius r>0. Let B={B(x0,r):x0Rn,r>0}.

    Lemma 2.1. [31] Let p()LH(Rn)P(Rn), Then there exists a positive constant C such that

    χB(x,t)()Lp()(Rn)Ctθp(x,t),xRn,t>0,

    where

    θp(x,t)={np(x),0<t1,np(),t1,

    and p=limxp(x).

    Lemma 2.2. [32] Let k be a positive integer. Then one has that, for all bBMO(Rn) and all i,jZ with j>i,

    C1bkBMO(Rn)supB1χBLp()(Rn)(bbB)kχBLp()(Rn)CbkBMO(Rn),
    (bbBi)kχBjLp()(Rn)C(ji)bBMO(Rn)χBjLp()(Rn).

    Lemma 2.3. [33] Let p()B(Rn), there exists a positive constant C such that

    1BχBLp()(Rn)χBLp()(Rn)C.

    Lemma 2.4. [27] Let p()P(Rn), for all fLp()(Rn) and gLp()(Rn), then

    Rnf(x)g(x)dxrpfLp()(Rn)gLp()(Rn),

    where rp=1+1p1p+. This inequality is named the generalized Hölder inequality with respect to the variable Lebesgue spaces.

    Lemma 2.5. [34] Let p(),p1(),p2()P(Rn), so that 1p()=1p1()+1p2(). Then the inequality

    f1f2Lp()(Rn)Cf1Lp1()(Rn)f2Lp2()(Rn)

    holds for any fiLpi()(Rn) and i=1,2.

    We will use the following two Lemmas on the boundedness of weighted Hardy operator

    Hωg(s):=sg(t)ω(t)dt,Hωg(s):=s(1+ts)g(t)ω(t)dt,0<s<,

    where ω is a weight.

    Lemma 2.6. [35] Let v1,v2 and ω be weights on (0,) and v1(s) be bounded outside a neighborhood at the origin. The inequality

    sups>0v2(s)Hωg(s)Csups>0v1(s)g(s)

    holds for some C>0 for all non-negative and non-decreasing functions g on (0,) if and only if

    B:=sups>0v2(s)sω(t)dtessinft<r<v1(r)<.

    Lemma 2.7. [36] Let v1,v2 and ω be weights on (0,) and v1(s) be bounded outside a neighborhood at the origin. The inequality

    sups>0v2(s)Hωg(s)Csups>0v1(s)g(s)

    holds for some C>0 for all non-negative and non-decreasing functions g on (0,) if and only if

    B:=sups>0v2(s)s(1+ts)ω(t)dtessinft<r<v1(r)<.

    Lemma 2.8. [17] Let p()LH(Rn)P(Rn). Then BMOp()≈∥BMO.

    Lemma 2.9. [18] Let T be a bilinear Calderón-Zygmund operators. If p(),p1(),p2()LH(Rn)P(Rn) such that 1p()=1p1()+1p2(), then for all fiLpi()(Rn), i=1,2, we have

    T(f1,f2)Lp()(Rn)Cf1Lp1()(Rn)f2Lp2()(Rn).

    Lemma 2.10. [21] Let T be a bilinear Calderón-Zygmund operators, b1,b2BMO(Rn). If p(),p1(),p2()LH(Rn)P(Rn) such that 1p()=1p1()+1p2(), then for all fiLpi()(Rn), i=1,2, we have

    [b1,b2,T](f1,f2)Lp()(Rn)Cb1BMO(Rn)b2BMO(Rn)f1Lp1()(Rn)f2Lp2()(Rn).

    The main results of this section are stated as follows.

    Lemma 3.1. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1). Suppose p1(),p2(),q()LH(Rn)P(Rn) such that 1q()=1p1()+1p2(). Then for all fiLpi()(Rn), i=1,2, we have

    Tθ(f1,f2)Lq()(Rn)Cf1Lp1()(Rn)f2Lp2()(Rn) (3.1)

    with the constant C>0 independent of f1 and f2.

    The above result can be proved by using a similar proof method with that of Lemma 2.9, which is omitted here for brevity.

    We are now ready to extend the definition of Tθ(f1,f2) when fiMpi(),φi(Rn) (i=1,2) and Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1).

    Definition 3.2. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1). If q(),p1(),p2()LH(Rn)P(Rn) such that 1q()=1p1()+1p2(), φ,φ1,φ2 satisfy the condition

    32ressinft<s<[φ1(x0,s)φ2(x0,s)sθq(x0,s)]tθq(x0,t)+1dtCφ(x0,r), (3.2)

    and denote φ(x0,r)=φ1(x0,r)φ2(x0,r), where C does not depend on r. Suppose that Tθ is a bounded linear operator on Lq()(Rn). For any fiMpi(),φi(Rn),i=1,2, and xB=B(x0,r)B, we define

    Tθ(f1,f2)(x)=Tθ(f1χB(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χB(x0,2r),f2χRnB(x0,2r))(x)+Tθ(f1χRnB(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χRnB(x0,2r),f2χRnB(x0,2r))(x)=:E1+E2+E3+E4. (3.3)

    We need to show that Tθ(f1,f2) is well defined. That is, the above definition is independent of the selection of B(x0,r). Its proof is similar to the Theorem 3.1 in [37].

    Theorem 3.3. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1). If q(),p1(),p2()LH(Rn)P(Rn) such that 1q()=1p1()+1p2(), φ,φ1,φ2 satisfy the condition (3.2) and φ=φ1φ2. If Tθ is a bounded linear operator on Lq()(Rn), then Tθ is a well defined linear operator on Mq(),φ(Rn).

    Since Tθ is well defined on Mq(),φ(Rn), we are allowed to study the boundedness of Tθ on Mq(),φ(Rn).

    Theorem 3.4. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1). Suppose p1(),p2(),q()LH(Rn)P(Rn) such that 1q()=1p1()+1p2(). Then for any ball B=B(x0,r) and fiLpi()loc(Rn), i=1,2, the following inequality

    Tθ(f1,f2)Lq()(B(x0,r))Crθp1(x0,r)+θp2(x0,r)2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt (3.4)

    holds, where the constant C>0 independent of f1 and f2.

    Now, we present the boundedness of bilinear θ-type Calderón-Zygmund operators on the generalized variable exponent Morrey spaces based on Lemma 3.1 and Theorem 3.4.

    Theorem 3.5. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1). Suppose p1(),p2(),q()LH(Rn)P(Rn) such that 1q()=1p1()+1p2(), φ,φ1,φ2 satisfy the condition (3.2) and φ=φ1φ2. Then Tθ is bounded from the place Mp1(),φ1(Rn)×Mp2(),φ2(Rn) to the place Mq(),φ(Rn).

    Collory 3.6. Let T be a classical bilinear Calderón-Zygmund operators. If q(),p1(),p2()LH(Rn)P(Rn) such that 1q()=1p1()+1p2(), φ,φ1,φ2 satisfy the condition (3.2) and φ=φ1φ2. Then T is bounded from the place Mp1(),φ1(Rn)×Mp2(),φ2(Rn) to the place Mq(),φ(Rn).

    Proof of Theorem 3.3. Let fiMpi(),φi(Rn),i=1,2. As Tθ is bounded on Lq()(Rn), E1 is well defined.

    Noting that xy1+xy2∣≈∣x0y2 for xB(x0,r), y12B and y2(2B)c. Applying Lemma 2.1, Lemma 2.4 and Lemma 2.3, E2 can be estimated as

    E22B(2B)cf1(y1)∣∣f2(y2)(2i=1xyi)2ndy1dy2C2Bf1(y1)dy1(2B)cf2(y2)x0y22ndy2C2Bf1(y1)dy1k=12k+1B2kBf2(y2)x0y22ndy2Cf1Lp1()(2B)1Lp1()(2B)k=1(2kr)2nf2Lp2()(2k+1B)1Lp2()(2k+1B)Cf1Lp1()(2B)1Lp1()(2B)×(k=12k+2r2k+1r(2kr)2n(2k+1r)1f2Lp2()(2k+1B)1Lp2()(2k+1B)dt)C24nf1Lp1()(2B)1Lp1()(2B)×(k=12k+2r2k+1rf2Lp2()(B(x0,t))t2n11Lp2()(B(x0,t))dt)Cf1Lp1()(2B)1Lp1()(2B)2rf2Lp2()(B(x0,t))tnθp2(x0,t)1dtC2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dtC2i=1fiMpi(),φi(Rn)2rφ1(x0,t)φ2(x0,t)tdtCφ(x0,r)2i=1fiMpi(),φi(Rn).

    Similar to the estimates for E2, it is easy to get

    E3C2Bf2(y2)dy2(2B)cf1(y1)x0y12ndy1Cf2Lp2()(2B)1Lp2()(2B)2rf1Lp1()(B(x0,t))t2n11Lp1()(B(x0,t))dtC2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dtC2i=1fiMpi(),φi(Rn)2rφ1(x0,t)φ2(x0,t)tdtCφ(x0,r)2i=1fiMpi(),φi(Rn).

    For E4. Noting that xy1+xy2∣≈∣x0y1∣≈∣x0y2 for xB(x0,r) and y1,y2(2B)c. By applying Lemma 2.1, Lemma 2.4 and Lemma 2.3, it follows that

    E4(2B)c(2B)cf1(y1)∣∣f2(y2)(2i=1xyi)2ndy1dy2(2B)c(2B)cf1(y1)∣∣f2(y2)x0y1nx0y2ndy1dy2Cj=12i=1(2jr)n2j+1B2jBfi(yi)dyiCj=1(2jr)2nf1Lp1()(2j+1B)1Lp1()(2j+1B)f2Lp2()(2j+1B)1Lp2()(2j+1B)=Cj=12j+2r2j+1r(2jr)2n(2j+1r)1f1Lp1()(2j+1B)×(1Lp1()(2j+1B)f2Lp2()(2j+1B)1Lp2()(2j+1B)dt)Cj=12j+2r2j+1rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dtC2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dtC2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dtC2i=1fiMpi(),φi(Rn)2rφ1(x0,t)φ2(x0,t)tdtCφ(x0,r)2i=1fiMpi(),φi(Rn).

    Therefore, on the right hand side (3.3) is well defined.

    Finally, it remains to show that the definition is independent of B(x0,r)B. That is, for any xB(x0,r)B(ω,R) with B(x0,r),B(ω,R)B and B(x0,r)B(ω,R), we have

    Tθ(f1χB(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χB(x0,2r),f2χRnB(x0,2r))(x)+Tθ(f1χRnB(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χRnB(x0,2r),f2χRnB(x0,2r))(x)=Tθ(f1χB(ω,2R),f2χB(ω,2R))(x)+Tθ(f1χB(ω,2R),f2χRnB(ω,2R))(x)+Tθ(f1χRnB(ω,2R),f2χB(ω,2R))(x)+Tθ(f1χRnB(ω,2R),f2χRnB(ω,2R))(x).

    Suppose B(S,M)B be selected so that B(x0,2r)B(ω,2R)B(S,M). According to the estimate of E1,E2,E3 and E4, for any xB(x0,r)B(ω,R), we can get

    Tθ(f1χB(S,M)B(x0,2r),f2χB(S,M)B(x0,2r))=B(S,M)B(x0,2r)B(S,M)B(x0,2r)K(x,y1,y2)f(y1)f(y2)dy1dy2<,
    Tθ(f1χB(S,M)B(ω,2R),f2χB(S,M)B(ω,2R))=B(S,M)B(ω,2R)B(S,M)B(ω,2R)K(x,y1,y2)f(y1)f(y2)dy1dy2<.

    Because of χB(x0,2r)fi,χB(S,M)B(x0,2r)fiLpi()(Rn), where i=1,2, the linearity of Tθ on Lq()(Rn) implies that

    Tθ(f1χB(x0,2r),f2χB(x0,2r))+Tθ(f1χB(x0,2r),f2χRnB(x0,2r))+Tθ(f1χRnB(x0,2r),f2χB(x0,2r))+Tθ(f1χRnB(x0,2r),f2χRnB(x0,2r))=Tθ(f1χB(x0,2r),f2χB(x0,2r))+Tθ(f1χB(x0,2r),f2χB(S,M)B(x0,2r))+Tθ(f1χB(x0,2r),f2χRnB(S,M))+Tθ(f1χB(S,M)B(x0,2r),f2χB(x0,2r))+Tθ(f1χRnB(S,M),f2χB(x0,2r))+Tθ(f1χB(S,M)B(x0,2r),f2χB(S,M)B(x0,2r))+Tθ(f1χB(S,M)B(x0,2r),f2χRnB(S,M))+Tθ(f1χRnB(S,M),f2χB(S,M)B(x0,2r))+Tθ(f1χRnB(S,M),f2χRnB(S,M))=Tθ(f1χB(S,M),f2χB(S,M))+Tθ(f1χB(S,M),f2χRnB(S,M))+Tθ(f1χRnB(S,M),f2χB(S,M))+Tθ(f1χRnB(S,M),f2χRnB(S,M)).

    Similarly, we also get

    Tθ(f1χB(ω,2R),f2χB(ω,2R))+Tθ(f1χB(ω,2R),f2χRnB(ω,2R))+Tθ(f1χRnB(ω,2R),f2χB(ω,2R))+Tθ(f1χRnB(ω,2R),f2χRnB(ω,2R))=Tθ(f1χB(S,M),f2χB(S,M))+Tθ(f1χB(S,M),f2χRnB(S,M))+Tθ(f1χRnB(S,M),f2χB(S,M))+Tθ(f1χRnB(S,M),f2χRnB(S,M)).

    Therefore, Tθ(f1,f2) is well defined when fiMpi(),φi(Rn), i=1,2. Obviously, because of (3.3), Tθ is a linear operator on Mq(),φ(Rn).

    When fLpi()(Rn)Mpi(),φi(Rn) (i=1,2), E2,E3 and E4 guarantee that

    Tθ(f1χB(x0,2r),f2χRnB(x0,2r))=RnB(x0,2r)B(x0,2r)K(x,y1,y2)f(y1)f(y2)dy1dy2<,
    Tθ(f1χRnB(x0,2r),f2χB(x0,2r))=B(x0,2r)RnB(x0,2r)K(x,y1,y2)f(y1)f(y2)dy1dy2<,
    Tθ(f1χRnB(x0,2r),f2χRnB(x0,2r))=RnB(x0,2r)RnB(x0,2r)K(x,y1,y2)f(y1)f(y2)dy1dy2<.

    Consequently, χRnB(x0,2r)fiLpi()(Rn) (i=1,2) and the linearity of Tθ on Lq()(Rn) implies that

    Tθ(f1,f2)(x)=Tθ(f1χB(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χB(x0,2r),f2χRnB(x0,2r))(x)+Tθ(f1χRnB(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χRnB(x0,2r),f2χRnB(x0,2r))(x)=Tθ(f1,f2)(x).

    That is, Tθ reduces to Tθ on Lq()Mq(),φ(Rn). Therefore, Tθ is an extension of Tθ.

    So, we can get the precise definition of bilinear θ-type Calderón-Zygmund operators on generalized variable exponent Morrey spaces.

    Proof of Theorem 3.4. For arbitrary ball B=B(x0,r), we represent f as fi=f1i+f2i for i=1,2, where f1i=fiχ2B and f2i=fiχRn2B.

    Then, it can be rewritten as

    Tθ(f1,f2)Lq()(B(x0,r))≤∥Tθ(f11,f12)Lq()(B(x0,r))+Tθ(f11,f22)Lq()(B(x0,r))+Tθ(f21,f12)Lq()(B(x0,r))+Tθ(f21,f22)Lq()(B(x0,r))=:I1+I2+I3+I4.

    According to Lemma 3.1, we conclude that

    I1Cf1Lp1()(2B)f2Lp2()(2B)Crθq(x0,r)f1Lp1()(2B)f2Lp2()(2B)2rtθq(x0,t)1dtCrθq(x0,r)2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθq(x0,t)1dt=Crθp1(x0,r)+θp2(x0,r)2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt,

    where

    θq(x0,t)={nq(x0)=np1(x0)+np2(x0)=θp1(x0,t)+θp2(x0,t),0<t1,nq()=np1()+np2()=θp1(x0,t)+θp2(x0,t),t1.

    According to Lemma 2.1 and the estimate of E2, I2 can be estimated as

    I22B(2B)cf1(y1)∣∣f2(y2)(2i=1yi)2ndy1dy2Lq()(B(x0,r))C2Bf1(y1)dy1(2B)cf2(y2)x0y22ndy2Lq()(B(x0,r))Crθq(x0,r)2Bf1(y1)dy1k=12k+1B2kBf2(y2)x0y22ndy2Crθp1(x0,r)+θp2(x0,r)2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt.

    Similar to the estimates for I2, it is easy to get

    I3C2Bf2(y2)dy2(2B)cf1(y1)x0y12ndy1Lq()(B(x0,r))Crθq(x0,r)f2Lp2()(2B)1Lp2()(2B)2rf1Lp1()(B(x0,t))t2n11Lp1()(B(x0,t))dtCrθp1(x0,r)+θp2(x0,r)2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt.

    For I4. On the basis of Lemma 2.1 and E4, it follows that

    I4(2B)c(2B)cf1(y1)∣∣f2(y2)(2i=1yi)2ndy1dy2Lq()(B(x0,r))(2B)c(2B)cf1(y1)∣∣f2(y2)x0y1nx0y2ndy1dy2Lq()(B(x0,r))Crθq(x0,r)j=12i=1(2jr)n2j+1B2jBfi(yi)dyiCrθp1(x0,r)+θp2(x0,r)2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt.

    On account of the above estimates for I1,I2,I3 and I4, (3.4) is obtained.

    Proof of Theorem 3.5. Let fiMpi(),φi(Rn),i=1,2. According to Theorem 3.4, Lemma 2.6 and (3.2), we get

    Tθ(f1,f2)Mq(),φ(Rn)=supx0Rn,r>0φ(x0,r)1rθq(x0,r)Tθ(f1,f2)Lq()(B(x0,r))Csupx0Rn,r>0φ(x0,r)12rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dtC2i=1fiMpi(),φi(Rn)supx0Rn,r>0φ(x0,r)12rφ1(x0,t)φ2(x0,t)tdtC2i=1fiMpi(),φi(Rn),

    thus, the proof of the Theorem 3.5 is completed.

    Now we formulate the main results of this section.

    Lemma 4.1. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.5). Suppose p1(),p2(),p()LH(Rn)P(Rn) such that 1p()=1p1()+1p2(), b1,b2BMO(Rn). Then for all fiLpi()(Rn), i=1,2, we have

    [b1,b2,Tθ](f1,f2)Lp()(Rn)C2i=1biBMO(Rn)f1Lp1()(Rn)f2Lp2()(Rn) (4.1)

    with the constant C>0 independent of f1 and f2.

    As this result can be proved in a way similar to Lemma 2.10, we do not present the proof here for the sake of brevity.

    We now ready to study the boundedness of the commutator [b1,b2,Tθ] on Mq(),φ(Rn) by (3.3).

    Definition 4.2. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.5). Suppose p1(),p2(),p(),q(), s1(),s2(),s()LH(Rn)P(Rn) such that 1q()=1p()+1s(),1p()=1p1()+1p2(),1s()=1s1()+1s2(), b1,b2BMO(Rn), φ,φ1,φ2 satisfy the condition

    32r(1+logtr)2essinft<s<[φ1(x0,s)φ2(x0,s)sθq(x0,s)]tθq(x0,t)+1dtCφ(x0,r), (4.2)

    and denote φ(x0,r)=φ1(x0,r)φ2(x0,r), where C does not on r. Suppose that Tθ and [b1,b2,Tθ] is a bounded linear operator on Lp()(Rn). For any fiMpi(),φi(Rn), i=1,2, and xB=B(x0,r)B, we define

    [b1,b2,Tθ](f1,f2)(x)=[b1,b2,Tθ](f1χB(x0,2r),f2χB(x0,2r))(x)+[b1,b2,Tθ](f1χB(x0,2r),f2χRnB(x0,2r))(x)+[b1,b2,Tθ](f1χRnB(x0,2r),f2χB(x0,2r))(x)+[b1,b2,Tθ](f1χRnB(x0,2r),f2χRnB(x0,2r))(x). (4.3)

    Theorem 4.3. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.5). Suppose p1(),p2(),p(),q(),s1(),s2(),s()LH(Rn)P(Rn) such that 1q()=1p()+1s(),1p()=1p1()+1p2(),1s()=1s1()+1s2(), b1,b2BMO(Rn), φ,φ1,φ2 satisfy the condition (4.2) and φ=φ1φ2. If Tθ and [b1,b2,Tθ] is a bounded linear operator on Lp()(Rn), then [b1,b2,Tθ] is a well defined linear operator on Mq(),φ(Rn).

    The result can be proved by using a similar proof method with that of Theorem 3.3, which is omitted here for brevity.

    Additionally, for any fLpi()(Rn)Mpi(),φi(Rn), where i=1,2, we have [b1,b2,Tθ]=[b1,b2,Tθ].

    Since [b1,b2,Tθ] is well defined on Mq(),φ(Rn), we are allowed to study the boundedness of commutators of bilinear θ-type Calderón-Zygmund operators on Mq(),φ(Rn).

    Theorem 4.4. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.5). Suppose p1(),p2(),p(),q(),s1(),s2(),s()LH(Rn)P(Rn) such that 1q()=1p()+1s(),1p()=1p1()+1p2(),1s()=1s1()+1s2(), b1,b2BMO(Rn). Then for any ball B=B(x0,r) and fiLpi()loc(Rn), i=1,2, the following inequality

    [b1,b2,Tθ](f1,f2)Lq()(B(x0,r))Cb1BMO(Rn)b2BMO(Rn)rθq(x0,r)×[2r(1+logtr)2f1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt] (4.4)

    holds, where the constant C>0 independent of f1 and f2.

    Combining Lemma 4.1 with Theorem 4.4, the following Theorem shows the boundedness of commutators of bilinear θ-type Calderón-Zygmund operators on the generalized variable exponent Morrey spaces.

    Theorem 4.5. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.5). Suppose p1(),p2(),p(),q(),s1(),s2(),s()LH(Rn)P(Rn) such that 1q()=1p()+1s(),1p()=1p1()+1p2(),1s()=1s1()+1s2(), b1,b2BMO(Rn), φ,φ1,φ2 satisfy the condition (4.2) and φ=φ1φ2. Then [b1,b2,Tθ] is bounded from the place Mp1(),φ1(Rn)×Mp2(),φ2(Rn) to the place Mq(),φ(Rn).

    Collory 4.6. Let T be a classical bilinear Calderón-Zygmund operators. Suppose p1(),p2(),p(),q(), s1(),s2(),s()LH(Rn)P(Rn) such that 1q()=1p()+1s(),1p()=1p1()+1p2(),1s()=1s1()+1s2(), b1,b2BMO(Rn), φ,φ1,φ2 satisfy the condition (4.2) and φ=φ1φ2. Then [b1,b2,T] is bounded from the place Mp1(),φ1(Rn)×Mp2(),φ2(Rn) to the place Mq(),φ(Rn).

    Proof of Theorem 4.4. We decompose the function fi in the form fi=f1i+f2i in the proof of Theorem 3.4, where i=1,2. For all fiLpi()loc(Rn), then

    [b1,b2,Tθ](f1,f2)Lq()(B(x0,r))≤∥[b1,b2,Tθ](f11,f12)Lq()(B(x0,r))+[b1,b2,Tθ](f11,f22)Lq()(B(x0,r))+[b1,b2,Tθ](f21,f12)Lq()(B(x0,r))+[b1,b2,Tθ](f21,f22)Lq()(B(x0,r))=:H1+H2+H3+H4.

    Let 1p()=1p1()+1p2(),1q()=1p()+1s(). From Lemma 2.5, Theorem 4.1 and Lemma 2.1, it follows that

    H11Ls()(B(x0,r))[b1,b2,Tθ](f11,f12)Lp()(B(x0,r))Cb1BMO(Rn)b2BMO(Rn)1Ls()(B(x0,r))f1Lp1()(2B)×(f2Lp2()(2B)rθp(x0,r)2rtθp(x0,t)1dt)C2i=1biBMO(Rn)rθq(x0,r)2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt.

    Now we deal with H2. H2 can be decomposed into four terms.

    H22i=1(bi(bi)B)Tθ(f11,f22)Lq()(B(x0,r))+(b1(b1)B)Tθ(f11,(b2(b2)B)f22)Lq()(B(x0,r))+(b2(b2)B)Tθ((b1(b1)B)f11,f22)Lq()(B(x0,r))+Tθ((b1(b1)B)f11,(b2(b2)B)f22)Lq()(B(x0,r))=:H21+H22+H23+H24.

    Noting that xy1+xy2∣≈∣x0y2 for xB(x0,r),y12B and y2(2B)c. Let 1p()=1p1()+1p2(),1s()=1s1()+1s2(),1q()=1p()+1s(). By Lemma 2.5, Lemma 2.1, lemma 2.8 and Lemma 2.4, one has

    H212i=1(bi(bi)B)Ls()(B(x0,r))Tθ(f11,f22)Lp()(B(x0,r))b1(b1)BLs1()(B)b2(b2)BLs2()(B)2Bf1(y1)dy1×((2B)cf2(y2)x0y22ndy2Lp()(B(x0,r)))Cb1BMO(Rn)b2BMO(Rn)rθs(x0,r)1Lp()(B(x0,r))2Bf1(y1)dy1×(k=12k+1B2kBf2(y2)x0y22ndy2)C2i=1biBMO(Rn)rθq(x0,r)2rf1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt.

    From Lemma 2.5, Lemma 2.8, Lemma 2.1, Lemma 2.4 and Lemma 2.3, it follows that

    H22b1(b1)BLs()(B(x0,r))Tθ(f11,(b2(b2)B)f22)Lp()(B(x0,r))b1(b1)BLs1()(B(x0,r))1Ls2()(B(x0,r))×(2B(2B)cf1(y1)∣∣f2(y2)(2i=1yi)2nb2(y2)(b2)Bdy2dy1Lp()(B(x0,r)))Cb1BMO(Rn)1Ls()(B(x0,r))2Bf1(y1)dy1×((2B)cf2(y2)∣∣b2(y2)(b2)Bx0y22ndy2Lp()(B(x0,r)))Cb1BMO(Rn)rθq(x0,r)2Bf1(y1)dy1×[(2B)cf2(y2)∣∣b2(y2)(b2)B(x0y2dtt2n+1)dy2]Cb1BMO(Rn)rθq(x0,r)2Bf1(y1)dy1×[2rB(x0,t)f2(y2)∣∣b2(y2)(b2)Bdy2dtt2n+1]Cb1BMO(Rn)rθq(x0,r)2Bf1(y1)dy1×(2rB(x0,t)f2(y2)∣∣b2(y2)(b2)B(x0,t)dy2dtt2n+1)+Cb1BMO(Rn)rθq(x0,r)2Bf1(y1)dy1×(2rB(x0,t)f2(y2)∣∣(b2)B(x0,t)(b2)Bdy2dtt2n+1)Cb1BMO(Rn)rθq(x0,r)f1Lp1()(2B)1Lp1()(2B)×(2rf2Lp2()(B(x0,t))b2()(b2)B(x0,t)Lp2()(B(x0,t))dtt2n+1)+Cb1BMO(Rn)rθq(x0,r)f1Lp1()(2B)1Lp1()(2B)×((b2)B(x0,t)(b2)B2rf2Lp2()(B(x0,t))1Lp2()(B(x0,t))dtt2n+1)Cb1BMO(Rn)b2BMO(Rn)rθq(x0,r)×[2r(1+logtr)f1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt].

    By applying Lemma 2.5, Lemma 2.1, Lemma 2.8, Lemma 2.4 and Lemma 2.3, we can deduce that

    H23(b2(b2)B)Tθ((b1(b1)B)f11,f22)Lq()(B(x0,r))b2(b2)BLs()(B(x0,r))Tθ((b1(b1)B)f11,f22)Lp()(B(x0,r))b2(b2)BLs2()(B(x0,r))1Ls1()(B(x0,r))×(2B(2B)cf1(y1)∣∣f2(y2)(2i=1yi)2nb1(y1)(b1)Bdy2dy1Lp()(B(x0,r)))Cb2BMO(Rn)1Ls()(B(x0,r))2Bb1(y1)(b1)B∣∣f1(y1)dy1×((2B)cf2(y2)x0y22ndy2Lp()(B(x0,r)))Cb2BMO(Rn)rθq(x0,r)2Bb1(y1)(b1)B∣∣f1(y1)dy1×[(2B)cf2(y2)(x0y2dtt2n+1)dy2]Cb2BMO(Rn)rθq(x0,r)2Bb1(y1)(b1)B∣∣f1(y1)dy1×(2rB(x0,t)f2(y2)dy2dtt2n+1)Cb2BMO(Rn)rθq(x0,r)2Bb1(y1)(b1)2B∣∣f1(y1)dy1×(2rB(x0,t)f2(y2)dy2dtt2n+1)+Cb2BMO(Rn)rθq(x0,r)2B(b1)2B(b1)B∣∣f1(y1)dy1×(2rB(x0,t)f2(y2)dy2dtt2n+1)Cb2BMO(Rn)rθq(x0,r)f1Lp1()(2B)b1()(b1)2BLp1()(2B)×(2rf2Lp2()(B(x0,t))1Lp2()(B(x0,t))dtt2n+1)+Cb2BMO(Rn)rθq(x0,r)f1Lp1()(2B)1Lp1()(2B)(b1)2B(b1)B×(2rf2Lp2()(B(x0,t))1Lp2()(B(x0,t))dtt2n+1)Cb1BMO(Rn)b2BMO(Rn)rθq(x0,r)(1+log2rr)f1Lp1()(2B)1Lp1()(2B)×(2rf2Lp2()(B(x0,t))tnθp2(x0,t)1dt)Cb1BMO(Rn)b2BMO(Rn)rθq(x0,r)×[2r(1+logtr)f1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt].

    Further, according to Lemma 2.1, Lemma 2.4, Lemma 2.8 and Lemma 2.3, we obtain that

    H242B(2B)cb1(y1)(b1)B∣∣b2(y2)(b2)B(2i=1yi)2nf1(y1)∣∣f2(y2)dy2dy1Lq()(B(x0,r))C2Bb1(y1)(b1)B∣∣f1(y1)dy1(2B)cf2(y2)∣∣b2(y2)(b2)Bx0y22ndy2Lq()(B(x0,r))Crθq(x0,r)2Bb1(y1)(b1)B∣∣f1(y1)dy1(2B)cf2(y2)∣∣b2(y2)(b2)B×[(x0y2dtt2n+1)dy2]Crθq(x0,r)2Bb1(y1)(b1)B∣∣f1(y1)dy1×(2rB(x0,t)f2(y2)∣∣b2(y2)(b2)Bdy2dtt2n+1)Crθq(x0,r)f1Lp1()(2B)b1()(b1)BLp1()(2B)×(2rf2Lp2()(B(x0,t))b2()(b2)BLp2()(B(x0,t))dtt2n+1)Crθq(x0,r)f1Lp1()(2B)(b1()(b1)2BLp1()(2B)+(b1)2B(b1)BLp1()(2B))×[2rf2Lp2()(B(x0,t))(b2()(b2)B(x0,t)Lp2()(B(x0,t))+(b2)B(x0,t)(b2)BLp2()(B(x0,t)))dtt2n+1]Crθq(x0,r)b1BMO(Rn)b2BMO(Rn)f1Lp1(2B)1Lp1()(2B)(1+log2rr)×[2r(1+logtr)f2Lp2()(B(x0,t))1Lp2()(B(x0,t))t2n+1dt]Cb1BMO(Rn)b2BMO(Rn)rθq(x0,r)×[2r(1+logtr)2f1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt].

    Which, together with the estimates for H21,H22,H23 and H24, we get

    H2Cb1BMO(Rn)b2BMO(Rn)rθq(x0,r)×[2r(1+logtr)2f1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt].

    Similarly, it is not difficult to obtain

    H32i=1(bi(bi)B)Tθ(f21,f12)Lq()(B(x0,r))+(b1(b1)B)Tθ(f21,(b2(b2)B)f12)Lq()(B(x0,r))+(b2(b2)B)Tθ((b1(b1)B)f21,f12)Lq()(B(x0,r))+Tθ((b1(b1)B)f21,(b2(b2)B)f12)Lq()(B(x0,r))Cb1BMO(Rn)b2BMO(Rn)rθq(x0,r)×[2r(1+logtr)2f1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt].

    It remains to estimate H4. Noting that xy1+xy2∣≈∣xy1∣≈∣xy2 for xB(x0,r) and y1,y2(2B)c. By using Lemma 2.1, Lemma 2.4, Lemma 2.8 and Lemma 2.3, we can deduce that

    H4(2B)c(2B)cb1(y1)(b1)B∣∣b2(y2)(b2)B(2i=1yi)2nf1(y1)∣∣f2(y2)dy1dy2Lq()(B(x0,r))(2B)c(2B)cb1(y1)(b1)B∣∣b2(y2)(b2)Bx0y1nx0y2nf1(y1)∣∣f2(y2)dy1dy2Lq()(B(x0,r))Crθq(x0,r)j=12i=1(2jr)n2j+1B2jBfi(yi)∣∣bi(yi)(bi)BdyiCrθq(x0,r)j=12i=1(2jr)n2j+1B2jBfi(yi)∣∣bi(yi)(bi)2j+1Bdyi+Crθq(x0,r)j=12i=1(2jr)n2j+1B2jBfi(yi)∣∣(bi)2j+1B(bi)BdyiCrθq(x0,r)j=12i=1(2jr)nfiLpi()(2j+1B)bi()(bi)2j+1BLpi()(2j+1B)+Crθq(x0,r)j=12i=1(2jr)n(bi)2j+1B(bi)B∣∥fiLpi()(2j+1B)1Lpi()(2j+1B)Cb1BMO(Rn)b2BMO(Rn)rθq(x0,r)j=1(2jr)2n(1+log2j+1rr)2×(f1Lp1()(2j+1B)1Lp1()(2j+1B)f2Lp2()(2j+1B)1Lp2()(2j+1B))Cb1BMO(Rn)b2BMO(Rn)rθq(x0,r)j=12j+2r2j+1rt2n1(1+logtr)2×(f1Lp1()(B(x0,t))1Lp1()(B(x0,t))f2Lp2()(B(x0,t))1Lp2()(B(x0,t))dt)Cb1BMO(Rn)b2BMO(Rn)rθq(x0,r)×[2r(1+logtr)2f1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt].

    which, combining the estimates of H1, H2 and H3, implies (4.4).

    Proof of Theorem 4.5. Let fiMpi(),φi(Rn),i=1,2. By Theorem 4.4, Lemma 2.7 and (4.2), we obtain

    [b1,b2,Tθ](f1,f2)Mq(),φ(Rn)=supx0Rn,r>0φ(x0,r)1rθq(x0,r)[b1,b2,Tθ](f1,f2)Lq()(B(x0,r))C2i=1biBMO(Rn)supx0Rn,r>0φ(x0,r)12r(1+logtr)2×(f1Lp1()(B(x0,t))f2Lp2()(B(x0,t))tθp1(x0,t)θp2(x0,t)1dt)C2i=1biBMO(Rn)fiMpi(),φi(Rn)supx0Rn,r>0φ(x0,r)12r(1+logtr)2φ1(x0,t)φ2(x0,t)tdtC2i=1biBMO(Rn)fiMpi(),φi(Rn),

    which is our desire result.

    In this paper, I mainly obtain the boundedness of bilinear θ-type Calderón-Zygmund operator Tθ and its commutator [b1,b2,Tθ] on the generalized variable exponent Morrey spaces.

    The author would like to express sincere thanks to reviewers for their helpful comments and suggestions.

    The author declares that he has no conflicts of interest.



    [1] L. Peng, Generalized Calderón-Zygmund operators and their weighted norm inequalities, Adv. Math., 14 (1985), 97–115.
    [2] Y. Yang, S. Tao, θ-Type Calderón-Zygmund operators and commutators in variable exponents Herz space, Open Math., 16 (2018), 1607–1620. http://dx.doi.org/10.1515/math-2018-0133 doi: 10.1515/math-2018-0133
    [3] Y. Yang, S. Tao, θ-Type Calderón-Zygmund operators on Morrey and Morrey-Herz-type Hardy spaces with variable exponents, U.P.B. Sci. Bull., Series A, 82 (2020), 35–44.
    [4] V. Guliyev, Calderón-Zygmund operators with kernels of Dini's type on generalized weighted variable exponent Morrey spaces, Positivity, 25 (2021), 1771–1788. http://dx.doi.org/10.1007/s11117-021-00846-1 doi: 10.1007/s11117-021-00846-1
    [5] K. Yabuta, Generalizations of Calderón-Zygmund operators, Studia Math., 82 (1985), 17–31.
    [6] T. Zheng, X. Tao, X. Wu, Bilinear Calderón-Zygmund operators of type ω(t) on non-homogeneous space, J. Inequal. Appl., 113 (2014), 1–18. http://dx.doi.org/10.1186/1029-242X-2014-113 doi: 10.1186/1029-242X-2014-113
    [7] T. Zheng, Z. Wang, W. Xiao, Maximal bilinear Calderón-Zygmund operators of type ω(t) on non-homogeneous space, Ann. Funct. Anal., 6 (2015), 134–154. http://dx.doi.org/10.15352/afa/06-4-134 doi: 10.15352/afa/06-4-134
    [8] G. Lu, S. Tao, Bilinear θ-type Calderón-Zygmund operators on Non-homogeneous generalized Morrey spaces, J. Comput. Anal. Appl., 26 (2019), 650–670.
    [9] P. Zhang, J. Sun, Commutators of multilinear Calderón-Zygmund operators with kernels of Dini's type and applications, 2016, arXiv.1605.07449.
    [10] H. Wang, Boundedness of θ-type Calderón-Zygmund operators and commutators in the generalized weighted Morrey spaces, J. Funct. Space., 2016 (2016), 1–18. http://dx.doi.org/10.1155/2016/1309348 doi: 10.1155/2016/1309348
    [11] A. F. Ismayilova, Calderón-Zygmund operators with kernels of Dini's type and their multilinear commutators on generalized Morrey spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math., 41 (2021), 1–12.
    [12] R. Xie, L. Shu, On multilinear commutators of θ-type Calderón-Zygmund operators, Anal. Theory Appl., 24 (2008), 260–270. http://dx.doi.org/10.1007/s10496-008-0260-8 doi: 10.1007/s10496-008-0260-8
    [13] O. Kovacik, J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41 (1991), 592–618. http://dx.doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
    [14] J. Tan, Z. Liu, J. Zhao, On some multilinear commutators in variable Lebesgue spaces, J. Math. Inequal., 11 (2017), 715–734. http://dx.doi.org/10.7153/jmi-2017-11-57 doi: 10.7153/jmi-2017-11-57
    [15] D. Cruz-Uribe, A. Fiorenza, J. Martell, C. Perez, The Boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239–264.
    [16] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: foundations and harmonic analysis, 1 Eds., Basel: Birkhäuser, 2013. http://dx.doi.org/10.1007/978-3-0348-0548-3
    [17] K. Ho, Singular integral operators, John-Nirenberg inequalities and Triebel-Lizorkin type spaces on weighted Lebesgue spaces with variable exponents, Rev. Un. Mat. Argentina, 57 (2016), 85–101.
    [18] A. Huang, J. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69–77. http://dx.doi.org/10.1007/s11766-010-2167-3 doi: 10.1007/s11766-010-2167-3
    [19] L. Diening, P. Harjulehto, P. Hästo, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, 1 Eds., Berlin: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-18363-8
    [20] R. Bandaliyev, V. Guliyev, Embedding theorems between variable-exponent Morrey Spaces, Math. Notes, 106 (2019), 488–500. http://dx.doi.org/10.1134/S0001434619090190 doi: 10.1134/S0001434619090190
    [21] W. Wang, J. Xu, Multilinear Calderón-Zygmund operators and their commutators with BMO functions in variable exponent Morrey spaces, Front. Math. China, 12 (2017), 1235–1246. http://dx.doi.org/10.1007/s11464-017-0653-0 doi: 10.1007/s11464-017-0653-0
    [22] A. Almeida, J. Hasanov, S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 15 (2008), 195–208. http://dx.doi.org/10.1515/GMJ.2008.195 doi: 10.1515/GMJ.2008.195
    [23] I. Ekincioglu, C. Keskin, A. Serbetci, Multilinear commutators of Calderón-Zygmund operator on generalized variable exponent Morrey spaces, Positivity, 25 (2021), 1551–1567. http://dx.doi.org/10.1007/s11117-021-00828-3 doi: 10.1007/s11117-021-00828-3
    [24] P. Long, H, Han, Characterizations of some operators on the vanishing generalized Morrey spaces with variable exponent, J. Math. Anal. Appl., 437 (2016), 419–430. http://dx.doi.org/10.1016/j.jmaa.2016.01.004 doi: 10.1016/j.jmaa.2016.01.004
    [25] V. Guliyev, J. Hasanov, S. Stefan, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand., 107 (2010), 285–304.
    [26] V. S. Guliyev, S. G. Samko, Maximal, potential and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci., 193 (2013), 228–248. http://dx.doi.org/10.1007/s10958-013-1449-8 doi: 10.1007/s10958-013-1449-8
    [27] A. Karapetyants, H. Rafeiro, S. Samko, On singular operators in vanishing generalized variable-exponent Morrey spaces and applications to Bergman-type spaces, Math. Notes, 106 (2019), 727–739. http://dx.doi.org/10.1134/S0001434619110075 doi: 10.1134/S0001434619110075
    [28] C. Aykol, X. Badalov, J. Hasanov, Boundedness of the potential operators and their commutators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets, Ann. Funct. Anal., 11 (2020), 423–438. http://dx.doi.org/10.1007/s43034-019-00012-5 doi: 10.1007/s43034-019-00012-5
    [29] C. Aykol, X. Badalov, J. Hasanov, Maximal and singular operators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets, Quaest. Math., 43 (2020), 1487–1512. http://dx.doi.org/10.2989/16073606.2019.1635539 doi: 10.2989/16073606.2019.1635539
    [30] F. John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14 (1961), 415–426. http://dx.doi.org/10.1002/cpa.3160140317 doi: 10.1002/cpa.3160140317
    [31] Z. Liu, S. Lu, Endpoint estimates for commutators of Calderón-Zygmund type operators, Kodai Math. J., 25 (2002), 79–88. http://dx.doi.org/10.2996/kmj/1106171078 doi: 10.2996/kmj/1106171078
    [32] M. Izuki, Boundedness of commutators on Herz spaces with variable exponents, Rend. Circ. Mat. Palermo, 59 (2010), 199–213. http://dx.doi.org/10.1007/s12215-010-0015-1 doi: 10.1007/s12215-010-0015-1
    [33] M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponents, Hiroshima Math. J., 40 (2010), 343–355. http://dx.doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
    [34] L. Wang, Multilinear Calderón-Zygmund operators and their commutators on central Morrey spaces with variable exponent, Bull. Korean Math. Soc., 57 (2020), 1427–1449. https://doi.org/10.4134/BKMS.b191108 doi: 10.4134/BKMS.b191108
    [35] V. Guliyev, Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci., 193 (2013), 211–227. http://dx.doi.org/10.1007/s10958-013-1448-9 doi: 10.1007/s10958-013-1448-9
    [36] V. Guliyev, Generalized weighted Morrey spaces and higher order commutators of sublinear operators, Eurasian Math. J., 3 (2012), 33–61.
    [37] K. Ho, Definability of singular integral operators on Morrey-Banach spaces, J. Math. Soc. Japan, 72 (2020), 155–170. http://dx.doi.org/10.2969/jmsj/81208120 doi: 10.2969/jmsj/81208120
  • This article has been cited by:

    1. Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy, Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents, 2022, 7, 2473-6988, 19147, 10.3934/math.20221051
    2. Guanghui Lu, Shuangping Tao, Miaomiao Wang, Bilinear Θ$\Theta$‐type Calderón–Zygmund operators and their commutators on product generalized fractional mixed Morrey spaces, 2024, 297, 0025-584X, 1988, 10.1002/mana.202200481
    3. Bo Xu, Jiang Zhou, Two regularity criteria of the 3D magneto-micropolar equations in Vishik spaces, 2024, 14173875, 1, 10.14232/ejqtde.2024.1.52
    4. Xiaoxi Xia, Jiang Zhou, Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications, 2024, 13, 2075-1680, 713, 10.3390/axioms13100713
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2320) PDF downloads(113) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog