In this paper, we discuss the boundedness of bilinear θ-type Calderón-Zygmund operators on the generalized variable exponent Morrey spaces. In addition, the corresponding results of commutators generated by bilinear θ-type Calderón-Zygmund operators with BMO functions on these spaces is also obtained.
Citation: Bo Xu. Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces[J]. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674
[1] | Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060 |
[2] | Yanqi Yang, Qi Wu . Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 25688-25713. doi: 10.3934/math.20231310 |
[3] | Jing Liu, Kui Li . Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces. AIMS Mathematics, 2024, 9(2): 3483-3504. doi: 10.3934/math.2024171 |
[4] | Muhammad Asim, Ghada AlNemer . Results for fractional bilinear Hardy operators in central varying exponent Morrey space. AIMS Mathematics, 2024, 9(11): 29689-29706. doi: 10.3934/math.20241438 |
[5] | Muhammad Asim, Ghada AlNemer . Analytical findings on bilinear fractional Hardy operators in weighted central Morrey spaces with variable exponents. AIMS Mathematics, 2025, 10(5): 10431-10451. doi: 10.3934/math.2025475 |
[6] | Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652 |
[7] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[8] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[9] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[10] | Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki . Boundedness of some operators on grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(6): 12964-12985. doi: 10.3934/math.2023653 |
In this paper, we discuss the boundedness of bilinear θ-type Calderón-Zygmund operators on the generalized variable exponent Morrey spaces. In addition, the corresponding results of commutators generated by bilinear θ-type Calderón-Zygmund operators with BMO functions on these spaces is also obtained.
θ-type Calderón-Zygmund operators, which used to study certain classes of pseudo-differential operators, was introduced by Peng [1] in 1985. Firstly, Yang and Tao obtained the boundedness of θ-type Calderón-Zygmund operators on Variable Exponents Herz space [2] and Morrey-Herz-type Hardy spaces with variable exponents [3].
Guliyev further proved that the Calderón-Zygmund operators with kernels of Dini's type are bounded on generalized weighted variable exponent Morrey spaces (see [4]). Besides, Maldonado and Naibo developed a theory of the bilinear Calderón-Zygmund operators of type ω(t) in 2009 and generalized the results of Yabuta [5]. For comprehensive bilinear θ-type Calderón-Zygmund operators references, interested readers may refer to Zheng [6,7] and Lu [8].
Variable exponent function spaces play a vital role in the fluid dynamics, elasticity dynamics, and differential equations with nonstandard growth, and thus have received a plenty of attention from researchers. For more details, one may refer to [9,10,11,12]. More specially, variable exponent Lebesgue spaces were studied in [13,14,15,16,17,18,19], Morrey spaces with variable exponent were studied in [3,20,21,22], generalized Morrey spaces with variable exponent were studied in [23,24,25,26,27] and local "complementary" generalized variable exponent Morrey space were studied in [28,29].
Inspired by the work above, this paper devotes to studying the boundedness of bilinear θ-type Calderón-Zygmund operator and its commutators on generalized variable exponent Morrey spaces.
Suppose that θ is a non-negative and non-decreasing function on R+=(0,∞) satisfying
∫10θ(t)tdt<∞. | (1.1) |
A continuous function K(⋅,⋅,⋅) on Rn×Rn×Rn∖{(x,y1,y2):x=y1=y2} is said to be a bilinear θ-type Calderón-Zygmund kernel if it satisfies: for all (x,y1,y2)∈Rn with x≠yi, i=1,2,
∣K(x,y1,y2)∣≤C(2∑i=1∣x−yi∣)−2n, | (1.2) |
and for all x,z,y1,y2∈Rn with 2∣x−z∣<max{∣x−y1∣,∣x−y2∣}, then exists a positive constant C such that
∣K(x,y1,y2)−K(z,y1,y2)∣≤Cθ(∣x−z∣2∑i=1∣x−yi∣)[2∑i=1∣x−yi∣]−2n. | (1.3) |
Now we state the definition of bilinear θ-type Calderón-Zygmund operator as follows.
Let Tθ be a linear operator from S(Rn)×S(Rn) into its dual S′(Rn), where S denotes the Schwartz class. One can say that Tθ is a bilinear θ-type Calderón-Zygmund operator with kernel K satisfying (1.2) and (1.3), for all f1,f2∈L∞c(Rn) (the space of compactly supported bounded functions on Rn) and x∉suppf1∩suppf2,
Tθ(f1,f2)(x)=∫Rn∫RnK(x,y1,y2)f1(y1)f2(y2)dy1dy2, | (1.4) |
where θ satisfies (1.1).
It is easy to see that the classical bilinear Calderón-Zygmund operator T with standard kernel is a special case of Tθ as θ(t)=tδ with 0<δ≤1. Let b1 and b2 be locally integrable functions, the commutator generated by b1,b2 and Tθ is defined by
[b1,b2,Tθ](f1,f2)(x):=b1(x)b2(x)Tθ(f1,f2)(x)−b1(x)Tθ(f1,b2f2)(x)−b2(x)Tθ(b1f1,f2)(x)+Tθ(b1f1,b2f2)(x). |
Also, [b1,Tθ] and [b2,Tθ] are defined by
[b1,Tθ](f1,f2)(x)=b1(x)Tθ(f1,f2)(x)−Tθ(b1f1,f2)(x), |
and
[b2,Tθ](f1,f2)(x)=b2(x)Tθ(f1,f2)(x)−Tθ(f1,b2f2)(x), |
respectively.
Due to the singularity of commutators generated by bilinear θ-type Calderón-Zygmund operators with BMO function is stronger than that of bilinear θ-type Calderón-Zygmund operators. Thus, we need to strength the condition of θ in (1.1). Let θ be a non-negative and non-decreasing function on (0,∞) such that
∫10θ(t)t∣logt∣2dt<∞. | (1.5) |
Furthermore, the commutators of bilinear θ-type Calderón-Zygmund operator are defined by
[b1,b2,Tθ](f1,f2)(x)=∫Rn∫Rn2∏i=1(bi(x)−bi(yi))K(x,y1,y2)f1(y1)f2(y2)dy1dy2, |
where θ satisfies (1.5).
For a measurable subset E⊆Rn, we define P0(E) to be the set of measurable functions p(⋅):E→(0,∞) such that
p−=essinfx∈Ep(x)>0,p+=esssupx∈Ep(x)<∞. |
Define P(E) to be the set of measurable functions p(⋅):E→[1,∞) such that
p−=essinfx∈Ep(x)>1,p+=esssupx∈Ep(x)<∞. |
Define P1(E) to be the set of measurable functions p(⋅):E→[1,∞) such that
p−=essinfx∈Ep(x)≥1,p+=esssupx∈Ep(x)<∞. |
By p′(x)=p(x)p(x)−1, we denote the conjugate exponent of p(x).
Let f∈L1loc(Rn), the Hardy-Littlewood maximal operator M is defined by
Mf(x)=supB∋x1∣B∣∫B∣f(y)∣dy, |
where the supremum is taken over all balls B containing x. Let B(E) be the set of p(⋅)∈P(E) such that M is bounded on Lp(⋅)(E).
A subset of B(Rn) is the class of globally log-Hölder continuous functions p(⋅)∈LH(Rn) and p(⋅)∈P(Rn). Recall that p(⋅)∈LH(Rn), if p(⋅) satisfies
∣p(x)−p(y)∣≤C−log∣x−y∣,x,y∈Rn,∣x−y∣≤12, | (1.6) |
and
∣p(x)−p∞∣≤C∞log(e+∣x∣),∣y∣≥∣x∣, | (1.7) |
where p∞=limx→∞p(x)>1.
Definition 1.1. [13] Given an open set E⊂Rn and p(⋅)∈P(Rn) denotes the set of measurable functions f on E such that
Ip(⋅)(f)=∫E∣f(x)∣p(x)dx<∞. |
This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm
∥f∥Lp(⋅)(E)=inf{λ>0:Ip(⋅)(fλ)≤1}. |
For all compact subsets E⊂Ω, the space Lp(⋅)loc(Ω) is defined by
Lp(⋅)loc(Ω)={fismeasurable:f∈Lp(⋅)(E)}. |
Definition 1.2. [25] Let p(⋅)∈P1(Rn), φ be a positive measurable function on Rn×(0,∞). The generalized variable exponent Morrey space Mp(⋅),φ(Rn) is defined by
Mp(⋅),φ(Rn):={f∈Lp(⋅)loc(Rn):∥f∥Mp(⋅),φ(Rn)<∞}, |
where
∥f∥Mp(⋅),φ(Rn)=supx∈Rn,t>0φ(x,t)−1t−θp(x,t)∥f∥Lp(⋅)(B(x,t))=supx∈Rn,t>0φ(x,t)−1t−θp(x,t)∥fχB(x,t)∥Lp(⋅)(Rn). |
We recall the definition of space of BMO(Rn).
Definition 1.3. [30] Suppose that b∈L1loc(Rn), and let
∥b∥BMO(Rn)=supx∈Rn,t>01∣B(x,t)∣∫B(x,t)∣b(y)−bB(x,t)∣dy<∞, |
where
bB(x,t)=1∣B(x,t)∣∫B(x,t)b(y)dy. |
Define
BMO(Rn)={b∈L1loc(Rn):∥b∥BMO(Rn)<∞}. |
Definition 1.4. [17] The BMOp(⋅)(Rn) space is the set of all locally integrable functions b with finite norm
∥b∥BMOp(⋅)(Rn)=supx∈Rn,t>0∥(b(⋅)−bB(x,t))χB(x,t)∥Lp(⋅)(Rn)∥χB(x,t)∥Lp(⋅)(Rn). |
The rest of this paper is organized as follows. Section 2 recalls some basic lemmas that will be used in the sequel. Section 3 demonstrates the boundedness of bilinear θ-type Calderón-Zygmund operators on generalized variable exponent Morrey spaces. Finally, the corresponding results of its commutators are made in Section 4.
The following notions will be encountered often throughout the text. C is denoted by a positive constant which is independent of the main parameters, but it may vary from line to line. Rn is the n-dimensional Euclidean space, χE(x) is the characteristic function of a set E⊆Rn. A≈B means that A≥CB and A≤CB. B(x0,r)={x∈Rn:∣x−x0∣<r} denotes the open ball with center x0∈Rn and radius r>0. Let B={B(x0,r):x0∈Rn,r>0}.
Lemma 2.1. [31] Let p(⋅)∈LH(Rn)∩P(Rn), Then there exists a positive constant C such that
∥χB(x,t)(⋅)∥Lp(⋅)(Rn)≤Ctθp(x,t),x∈Rn,t>0, |
where
θp(x,t)={np(x),0<t≤1,np(∞),t≥1, |
and p∞=limx→∞p(x).
Lemma 2.2. [32] Let k be a positive integer. Then one has that, for all b∈BMO(Rn) and all i,j∈Z with j>i,
C−1∥b∥kBMO(Rn)≤supB1∥χB∥Lp(⋅)(Rn)∥(b−bB)kχB∥Lp(⋅)(Rn)≤C∥b∥kBMO(Rn), |
∥(b−bBi)kχBj∥Lp(⋅)(Rn)≤C(j−i)∥b∥BMO(Rn)∥χBj∥Lp(⋅)(Rn). |
Lemma 2.3. [33] Let p(⋅)∈B(Rn), there exists a positive constant C such that
1∣B∣∥χB∥Lp(⋅)(Rn)∥χB∥Lp′(⋅)(Rn)≤C. |
Lemma 2.4. [27] Let p(⋅)∈P(Rn), for all f∈Lp(⋅)(Rn) and g∈Lp′(⋅)(Rn), then
∫Rn∣f(x)g(x)∣dx≤rp∥f∥Lp(⋅)(Rn)∥g∥Lp′(⋅)(Rn), |
where rp=1+1p−−1p+. This inequality is named the generalized Hölder inequality with respect to the variable Lebesgue spaces.
Lemma 2.5. [34] Let p(⋅),p1(⋅),p2(⋅)∈P(Rn), so that 1p(⋅)=1p1(⋅)+1p2(⋅). Then the inequality
∥f1f2∥Lp(⋅)(Rn)≤C∥f1∥Lp1(⋅)(Rn)∥f2∥Lp2(⋅)(Rn) |
holds for any fi∈Lpi(⋅)(Rn) and i=1,2.
We will use the following two Lemmas on the boundedness of weighted Hardy operator
Hωg(s):=∫∞sg(t)ω(t)dt,H∗ωg(s):=∫∞s(1+ts)g(t)ω(t)dt,0<s<∞, |
where ω is a weight.
Lemma 2.6. [35] Let v1,v2 and ω be weights on (0,∞) and v1(s) be bounded outside a neighborhood at the origin. The inequality
sups>0v2(s)Hωg(s)≤Csups>0v1(s)g(s) |
holds for some C>0 for all non-negative and non-decreasing functions g on (0,∞) if and only if
B:=sups>0v2(s)∫∞sω(t)dtessinft<r<∞v1(r)<∞. |
Lemma 2.7. [36] Let v1,v2 and ω be weights on (0,∞) and v1(s) be bounded outside a neighborhood at the origin. The inequality
sups>0v2(s)H∗ωg(s)≤Csups>0v1(s)g(s) |
holds for some C>0 for all non-negative and non-decreasing functions g on (0,∞) if and only if
B:=sups>0v2(s)∫∞s(1+ts)ω(t)dtessinft<r<∞v1(r)<∞. |
Lemma 2.8. [17] Let p(⋅)∈LH(Rn)∩P(Rn). Then ∥⋅∥BMOp(⋅)≈∥⋅∥BMO.
Lemma 2.9. [18] Let T be a bilinear Calderón-Zygmund operators. If p(⋅),p1(⋅),p2(⋅)∈LH(Rn)∩P(Rn) such that 1p(⋅)=1p1(⋅)+1p2(⋅), then for all fi∈Lpi(⋅)(Rn), i=1,2, we have
∥T(f1,f2)∥Lp(⋅)(Rn)≤C∥f1∥Lp1(⋅)(Rn)∥f2∥Lp2(⋅)(Rn). |
Lemma 2.10. [21] Let T be a bilinear Calderón-Zygmund operators, b1,b2∈BMO(Rn). If p(⋅),p1(⋅),p2(⋅)∈LH(Rn)∩P(Rn) such that 1p(⋅)=1p1(⋅)+1p2(⋅), then for all fi∈Lpi(⋅)(Rn), i=1,2, we have
∥[b1,b2,T](f1,f2)∥Lp(⋅)(Rn)≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)∥f1∥Lp1(⋅)(Rn)∥f2∥Lp2(⋅)(Rn). |
The main results of this section are stated as follows.
Lemma 3.1. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1). Suppose p1(⋅),p2(⋅),q(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p1(⋅)+1p2(⋅). Then for all fi∈Lpi(⋅)(Rn), i=1,2, we have
∥Tθ(f1,f2)∥Lq(⋅)(Rn)≤C∥f1∥Lp1(⋅)(Rn)∥f2∥Lp2(⋅)(Rn) | (3.1) |
with the constant C>0 independent of f1 and f2.
The above result can be proved by using a similar proof method with that of Lemma 2.9, which is omitted here for brevity.
We are now ready to extend the definition of Tθ(f1,f2) when fi∈Mpi(⋅),φi(Rn) (i=1,2) and Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1).
Definition 3.2. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1). If q(⋅),p1(⋅),p2(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p1(⋅)+1p2(⋅), φ,φ1,φ2 satisfy the condition
∫∞32ressinft<s<∞[φ1(x0,s)φ2(x0,s)sθq(x0,s)]tθq(x0,t)+1dt≤Cφ(x0,r), | (3.2) |
and denote φ(x0,r)=φ1(x0,r)φ2(x0,r), where C does not depend on r. Suppose that Tθ is a bounded linear operator on Lq(⋅)(Rn). For any fi∈Mpi(⋅),φi(Rn),i=1,2, and x∈B=B(x0,r)∈B, we define
Tθ(f1,f2)(x)=Tθ(f1χB(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χB(x0,2r),f2χRn∖B(x0,2r))(x)+Tθ(f1χRn∖B(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χRn∖B(x0,2r),f2χRn∖B(x0,2r))(x)=:E1+E2+E3+E4. | (3.3) |
We need to show that Tθ(f1,f2) is well defined. That is, the above definition is independent of the selection of B(x0,r). Its proof is similar to the Theorem 3.1 in [37].
Theorem 3.3. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1). If q(⋅),p1(⋅),p2(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p1(⋅)+1p2(⋅), φ,φ1,φ2 satisfy the condition (3.2) and φ=φ1φ2. If Tθ is a bounded linear operator on Lq(⋅)(Rn), then Tθ is a well defined linear operator on Mq(⋅),φ(Rn).
Since Tθ is well defined on Mq(⋅),φ(Rn), we are allowed to study the boundedness of Tθ on Mq(⋅),φ(Rn).
Theorem 3.4. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1). Suppose p1(⋅),p2(⋅),q(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p1(⋅)+1p2(⋅). Then for any ball B=B(x0,r) and fi∈Lpi(⋅)loc(Rn), i=1,2, the following inequality
∥Tθ(f1,f2)∥Lq(⋅)(B(x0,r))≤Crθp1(x0,r)+θp2(x0,r)∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt | (3.4) |
holds, where the constant C>0 independent of f1 and f2.
Now, we present the boundedness of bilinear θ-type Calderón-Zygmund operators on the generalized variable exponent Morrey spaces based on Lemma 3.1 and Theorem 3.4.
Theorem 3.5. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.1). Suppose p1(⋅),p2(⋅),q(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p1(⋅)+1p2(⋅), φ,φ1,φ2 satisfy the condition (3.2) and φ=φ1φ2. Then Tθ is bounded from the place Mp1(⋅),φ1(Rn)×Mp2(⋅),φ2(Rn) to the place Mq(⋅),φ(Rn).
Collory 3.6. Let T be a classical bilinear Calderón-Zygmund operators. If q(⋅),p1(⋅),p2(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p1(⋅)+1p2(⋅), φ,φ1,φ2 satisfy the condition (3.2) and φ=φ1φ2. Then T is bounded from the place Mp1(⋅),φ1(Rn)×Mp2(⋅),φ2(Rn) to the place Mq(⋅),φ(Rn).
Proof of Theorem 3.3. Let fi∈Mpi(⋅),φi(Rn),i=1,2. As Tθ is bounded on Lq(⋅)(Rn), E1 is well defined.
Noting that ∣x−y1∣+∣x−y2∣≈∣x0−y2∣ for x∈B(x0,r), y1∈2B and y2∈(2B)c. Applying Lemma 2.1, Lemma 2.4 and Lemma 2.3, E2 can be estimated as
E2≤∫2B∫(2B)c∣f1(y1)∣∣f2(y2)∣(2∑i=1∣x−yi∣)2ndy1dy2≤C∫2B∣f1(y1)∣dy1∫(2B)c∣f2(y2)∣∣x0−y2∣2ndy2≤C∫2B∣f1(y1)∣dy1∞∑k=1∫2k+1B∖2kB∣f2(y2)∣∣x0−y2∣2ndy2≤C∥f1∥Lp1(⋅)(2B)∥1∥Lp′1(⋅)(2B)∞∑k=1(2kr)−2n∥f2∥Lp2(⋅)(2k+1B)∥1∥Lp′2(⋅)(2k+1B)≤C∥f1∥Lp1(⋅)(2B)∥1∥Lp′1(⋅)(2B)×(∞∑k=1∫2k+2r2k+1r(2kr)−2n(2k+1r)−1∥f2∥Lp2(⋅)(2k+1B)∥1∥Lp′2(⋅)(2k+1B)dt)≤C24n∥f1∥Lp1(⋅)(2B)∥1∥Lp′1(⋅)(2B)×(∞∑k=1∫2k+2r2k+1r∥f2∥Lp2(⋅)(B(x0,t))t−2n−1∥1∥Lp′2(⋅)(B(x0,t))dt)≤C∥f1∥Lp1(⋅)(2B)∥1∥Lp′1(⋅)(2B)∫∞2r∥f2∥Lp2(⋅)(B(x0,t))t−n−θp2(x0,t)−1dt≤C∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt≤C2∏i=1∥fi∥Mpi(⋅),φi(Rn)∫∞2rφ1(x0,t)φ2(x0,t)tdt≤Cφ(x0,r)2∏i=1∥fi∥Mpi(⋅),φi(Rn). |
Similar to the estimates for E2, it is easy to get
E3≤C∫2B∣f2(y2)∣dy2∫(2B)c∣f1(y1)∣∣x0−y1∣2ndy1≤C∥f2∥Lp2(⋅)(2B)∥1∥Lp′2(⋅)(2B)∫∞2r∥f1∥Lp1(⋅)(B(x0,t))t−2n−1∥1∥Lp′1(⋅)(B(x0,t))dt≤C∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt≤C2∏i=1∥fi∥Mpi(⋅),φi(Rn)∫∞2rφ1(x0,t)φ2(x0,t)tdt≤Cφ(x0,r)2∏i=1∥fi∥Mpi(⋅),φi(Rn). |
For E4. Noting that ∣x−y1∣+∣x−y2∣≈∣x0−y1∣≈∣x0−y2∣ for x∈B(x0,r) and y1,y2∈(2B)c. By applying Lemma 2.1, Lemma 2.4 and Lemma 2.3, it follows that
E4≤∫(2B)c∫(2B)c∣f1(y1)∣∣f2(y2)∣(2∑i=1∣x−yi∣)2ndy1dy2≤∫(2B)c∫(2B)c∣f1(y1)∣∣f2(y2)∣∣x0−y1∣n∣x0−y2∣ndy1dy2≤C∞∑j=12∏i=1(2jr)−n∫2j+1B∖2jB∣fi(yi)∣dyi≤C∞∑j=1(2jr)−2n∥f1∥Lp1(⋅)(2j+1B)∥1∥Lp′1(⋅)(2j+1B)∥f2∥Lp2(⋅)(2j+1B)∥1∥Lp′2(⋅)(2j+1B)=C∞∑j=1∫2j+2r2j+1r(2jr)−2n(2j+1r)−1∥f1∥Lp1(⋅)(2j+1B)×(∥1∥Lp′1(⋅)(2j+1B)∥f2∥Lp2(⋅)(2j+1B)∥1∥Lp′2(⋅)(2j+1B)dt)≤C∞∑j=1∫2j+2r2j+1r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt≤C∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt≤C∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt≤C2∏i=1∥fi∥Mpi(⋅),φi(Rn)∫∞2rφ1(x0,t)φ2(x0,t)tdt≤Cφ(x0,r)2∏i=1∥fi∥Mpi(⋅),φi(Rn). |
Therefore, on the right hand side (3.3) is well defined.
Finally, it remains to show that the definition is independent of B(x0,r)∈B. That is, for any x∈B(x0,r)∩B(ω,R) with B(x0,r),B(ω,R)∈B and B(x0,r)∩B(ω,R)≠∅, we have
Tθ(f1χB(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χB(x0,2r),f2χRn∖B(x0,2r))(x)+Tθ(f1χRn∖B(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χRn∖B(x0,2r),f2χRn∖B(x0,2r))(x)=Tθ(f1χB(ω,2R),f2χB(ω,2R))(x)+Tθ(f1χB(ω,2R),f2χRn∖B(ω,2R))(x)+Tθ(f1χRn∖B(ω,2R),f2χB(ω,2R))(x)+Tθ(f1χRn∖B(ω,2R),f2χRn∖B(ω,2R))(x). |
Suppose B(S,M)∈B be selected so that B(x0,2r)∩B(ω,2R)⊂B(S,M). According to the estimate of E1,E2,E3 and E4, for any x∈B(x0,r)∩B(ω,R), we can get
Tθ(f1χB(S,M)∖B(x0,2r),f2χB(S,M)∖B(x0,2r))=∫B(S,M)∖B(x0,2r)∫B(S,M)∖B(x0,2r)K(x,y1,y2)f(y1)f(y2)dy1dy2<∞, |
Tθ(f1χB(S,M)∖B(ω,2R),f2χB(S,M)∖B(ω,2R))=∫B(S,M)∖B(ω,2R)∫B(S,M)∖B(ω,2R)K(x,y1,y2)f(y1)f(y2)dy1dy2<∞. |
Because of χB(x0,2r)fi,χB(S,M)∖B(x0,2r)fi∈Lpi(⋅)(Rn), where i=1,2, the linearity of Tθ on Lq(⋅)(Rn) implies that
Tθ(f1χB(x0,2r),f2χB(x0,2r))+Tθ(f1χB(x0,2r),f2χRn∖B(x0,2r))+Tθ(f1χRn∖B(x0,2r),f2χB(x0,2r))+Tθ(f1χRn∖B(x0,2r),f2χRn∖B(x0,2r))=Tθ(f1χB(x0,2r),f2χB(x0,2r))+Tθ(f1χB(x0,2r),f2χB(S,M)∖B(x0,2r))+Tθ(f1χB(x0,2r),f2χRn∖B(S,M))+Tθ(f1χB(S,M)∖B(x0,2r),f2χB(x0,2r))+Tθ(f1χRn∖B(S,M),f2χB(x0,2r))+Tθ(f1χB(S,M)∖B(x0,2r),f2χB(S,M)∖B(x0,2r))+Tθ(f1χB(S,M)∖B(x0,2r),f2χRn∖B(S,M))+Tθ(f1χRn∖B(S,M),f2χB(S,M)∖B(x0,2r))+Tθ(f1χRn∖B(S,M),f2χRn∖B(S,M))=Tθ(f1χB(S,M),f2χB(S,M))+Tθ(f1χB(S,M),f2χRn∖B(S,M))+Tθ(f1χRn∖B(S,M),f2χB(S,M))+Tθ(f1χRn∖B(S,M),f2χRn∖B(S,M)). |
Similarly, we also get
Tθ(f1χB(ω,2R),f2χB(ω,2R))+Tθ(f1χB(ω,2R),f2χRn∖B(ω,2R))+Tθ(f1χRn∖B(ω,2R),f2χB(ω,2R))+Tθ(f1χRn∖B(ω,2R),f2χRn∖B(ω,2R))=Tθ(f1χB(S,M),f2χB(S,M))+Tθ(f1χB(S,M),f2χRn∖B(S,M))+Tθ(f1χRn∖B(S,M),f2χB(S,M))+Tθ(f1χRn∖B(S,M),f2χRn∖B(S,M)). |
Therefore, Tθ(f1,f2) is well defined when fi∈Mpi(⋅),φi(Rn), i=1,2. Obviously, because of (3.3), Tθ is a linear operator on Mq(⋅),φ(Rn).
When f∈Lpi(⋅)(Rn)∩Mpi(⋅),φi(Rn) (i=1,2), E2,E3 and E4 guarantee that
Tθ(f1χB(x0,2r),f2χRn∖B(x0,2r))=∫Rn∖B(x0,2r)∫B(x0,2r)K(x,y1,y2)f(y1)f(y2)dy1dy2<∞, |
Tθ(f1χRn∖B(x0,2r),f2χB(x0,2r))=∫B(x0,2r)∫Rn∖B(x0,2r)K(x,y1,y2)f(y1)f(y2)dy1dy2<∞, |
Tθ(f1χRn∖B(x0,2r),f2χRn∖B(x0,2r))=∫Rn∖B(x0,2r)∫Rn∖B(x0,2r)K(x,y1,y2)f(y1)f(y2)dy1dy2<∞. |
Consequently, χRn∖B(x0,2r)fi∈Lpi(⋅)(Rn) (i=1,2) and the linearity of Tθ on Lq(⋅)(Rn) implies that
Tθ(f1,f2)(x)=Tθ(f1χB(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χB(x0,2r),f2χRn∖B(x0,2r))(x)+Tθ(f1χRn∖B(x0,2r),f2χB(x0,2r))(x)+Tθ(f1χRn∖B(x0,2r),f2χRn∖B(x0,2r))(x)=Tθ(f1,f2)(x). |
That is, Tθ reduces to Tθ on Lq(⋅)∩Mq(⋅),φ(Rn). Therefore, Tθ is an extension of Tθ.
So, we can get the precise definition of bilinear θ-type Calderón-Zygmund operators on generalized variable exponent Morrey spaces.
Proof of Theorem 3.4. For arbitrary ball B=B(x0,r), we represent f as fi=f1i+f2i for i=1,2, where f1i=fiχ2B and f2i=fiχRn∖2B.
Then, it can be rewritten as
∥Tθ(f1,f2)∥Lq(⋅)(B(x0,r))≤∥Tθ(f11,f12)∥Lq(⋅)(B(x0,r))+∥Tθ(f11,f22)∥Lq(⋅)(B(x0,r))+∥Tθ(f21,f12)∥Lq(⋅)(B(x0,r))+∥Tθ(f21,f22)∥Lq(⋅)(B(x0,r))=:I1+I2+I3+I4. |
According to Lemma 3.1, we conclude that
I1≤C∥f1∥Lp1(⋅)(2B)∥f2∥Lp2(⋅)(2B)≤Crθq(x0,r)∥f1∥Lp1(⋅)(2B)∥f2∥Lp2(⋅)(2B)∫∞2rt−θq(x0,t)−1dt≤Crθq(x0,r)∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θq(x0,t)−1dt=Crθp1(x0,r)+θp2(x0,r)∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt, |
where
θq(x0,t)={nq(x0)=np1(x0)+np2(x0)=θp1(x0,t)+θp2(x0,t),0<t≤1,nq(∞)=np1(∞)+np2(∞)=θp1(x0,t)+θp2(x0,t),t≥1. |
According to Lemma 2.1 and the estimate of E2, I2 can be estimated as
I2≤∥∫2B∫(2B)c∣f1(y1)∣∣f2(y2)∣(2∑i=1∣⋅−yi∣)2ndy1dy2∥Lq(⋅)(B(x0,r))≤C∫2B∣f1(y1)∣dy1∥∫(2B)c∣f2(y2)∣∣x0−y2∣2ndy2∥Lq(⋅)(B(x0,r))≤Crθq(x0,r)∫2B∣f1(y1)∣dy1∞∑k=1∫2k+1B∖2kB∣f2(y2)∣∣x0−y2∣2ndy2≤Crθp1(x0,r)+θp2(x0,r)∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt. |
Similar to the estimates for I2, it is easy to get
I3≤C∫2B∣f2(y2)∣dy2∥∫(2B)c∣f1(y1)∣∣x0−y1∣2ndy1∥Lq(⋅)(B(x0,r))≤Crθq(x0,r)∥f2∥Lp2(⋅)(2B)∥1∥Lp′2(⋅)(2B)∫∞2r∥f1∥Lp1(⋅)(B(x0,t))t−2n−1∥1∥Lp′1(⋅)(B(x0,t))dt≤Crθp1(x0,r)+θp2(x0,r)∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt. |
For I4. On the basis of Lemma 2.1 and E4, it follows that
I4≤∥∫(2B)c∫(2B)c∣f1(y1)∣∣f2(y2)∣(2∑i=1∣⋅−yi∣)2ndy1dy2∥Lq(⋅)(B(x0,r))≤∥∫(2B)c∫(2B)c∣f1(y1)∣∣f2(y2)∣∣x0−y1∣n∣x0−y2∣ndy1dy2∥Lq(⋅)(B(x0,r))≤Crθq(x0,r)∞∑j=12∏i=1(2jr)−n∫2j+1B∖2jB∣fi(yi)∣dyi≤Crθp1(x0,r)+θp2(x0,r)∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt. |
On account of the above estimates for I1,I2,I3 and I4, (3.4) is obtained.
Proof of Theorem 3.5. Let fi∈Mpi(⋅),φi(Rn),i=1,2. According to Theorem 3.4, Lemma 2.6 and (3.2), we get
∥Tθ(f1,f2)∥Mq(⋅),φ(Rn)=supx0∈Rn,r>0φ(x0,r)−1r−θq(x0,r)∥Tθ(f1,f2)∥Lq(⋅)(B(x0,r))≤Csupx0∈Rn,r>0φ(x0,r)−1∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt≤C2∏i=1∥fi∥Mpi(⋅),φi(Rn)supx0∈Rn,r>0φ(x0,r)−1∫∞2rφ1(x0,t)φ2(x0,t)tdt≤C2∏i=1∥fi∥Mpi(⋅),φi(Rn), |
thus, the proof of the Theorem 3.5 is completed.
Now we formulate the main results of this section.
Lemma 4.1. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.5). Suppose p1(⋅),p2(⋅),p(⋅)∈LH(Rn)∩P(Rn) such that 1p(⋅)=1p1(⋅)+1p2(⋅), b1,b2∈BMO(Rn). Then for all fi∈Lpi(⋅)(Rn), i=1,2, we have
∥[b1,b2,Tθ](f1,f2)∥Lp(⋅)(Rn)≤C2∏i=1∥bi∥BMO(Rn)∥f1∥Lp1(⋅)(Rn)∥f2∥Lp2(⋅)(Rn) | (4.1) |
with the constant C>0 independent of f1 and f2.
As this result can be proved in a way similar to Lemma 2.10, we do not present the proof here for the sake of brevity.
We now ready to study the boundedness of the commutator [b1,b2,Tθ] on Mq(⋅),φ(Rn) by (3.3).
Definition 4.2. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.5). Suppose p1(⋅),p2(⋅),p(⋅),q(⋅), s1(⋅),s2(⋅),s(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p(⋅)+1s(⋅),1p(⋅)=1p1(⋅)+1p2(⋅),1s(⋅)=1s1(⋅)+1s2(⋅), b1,b2∈BMO(Rn), φ,φ1,φ2 satisfy the condition
∫∞32r(1+logtr)2essinft<s<∞[φ1(x0,s)φ2(x0,s)sθq(x0,s)]tθq(x0,t)+1dt≤Cφ(x0,r), | (4.2) |
and denote φ(x0,r)=φ1(x0,r)φ2(x0,r), where C does not on r. Suppose that Tθ and [b1,b2,Tθ] is a bounded linear operator on Lp(⋅)(Rn). For any fi∈Mpi(⋅),φi(Rn), i=1,2, and x∈B=B(x0,r)∈B, we define
[b1,b2,Tθ](f1,f2)(x)=[b1,b2,Tθ](f1χB(x0,2r),f2χB(x0,2r))(x)+[b1,b2,Tθ](f1χB(x0,2r),f2χRn∖B(x0,2r))(x)+[b1,b2,Tθ](f1χRn∖B(x0,2r),f2χB(x0,2r))(x)+[b1,b2,Tθ](f1χRn∖B(x0,2r),f2χRn∖B(x0,2r))(x). | (4.3) |
Theorem 4.3. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.5). Suppose p1(⋅),p2(⋅),p(⋅),q(⋅),s1(⋅),s2(⋅),s(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p(⋅)+1s(⋅),1p(⋅)=1p1(⋅)+1p2(⋅),1s(⋅)=1s1(⋅)+1s2(⋅), b1,b2∈BMO(Rn), φ,φ1,φ2 satisfy the condition (4.2) and φ=φ1φ2. If Tθ and [b1,b2,Tθ] is a bounded linear operator on Lp(⋅)(Rn), then [b1,b2,Tθ] is a well defined linear operator on Mq(⋅),φ(Rn).
The result can be proved by using a similar proof method with that of Theorem 3.3, which is omitted here for brevity.
Additionally, for any f∈Lpi(⋅)(Rn)∩Mpi(⋅),φi(Rn), where i=1,2, we have [b1,b2,Tθ]=[b1,b2,Tθ].
Since [b1,b2,Tθ] is well defined on Mq(⋅),φ(Rn), we are allowed to study the boundedness of commutators of bilinear θ-type Calderón-Zygmund operators on Mq(⋅),φ(Rn).
Theorem 4.4. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.5). Suppose p1(⋅),p2(⋅),p(⋅),q(⋅),s1(⋅),s2(⋅),s(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p(⋅)+1s(⋅),1p(⋅)=1p1(⋅)+1p2(⋅),1s(⋅)=1s1(⋅)+1s2(⋅), b1,b2∈BMO(Rn). Then for any ball B=B(x0,r) and fi∈Lpi(⋅)loc(Rn), i=1,2, the following inequality
∥[b1,b2,Tθ](f1,f2)∥Lq(⋅)(B(x0,r))≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθq(x0,r)×[∫∞2r(1+logtr)2∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt] | (4.4) |
holds, where the constant C>0 independent of f1 and f2.
Combining Lemma 4.1 with Theorem 4.4, the following Theorem shows the boundedness of commutators of bilinear θ-type Calderón-Zygmund operators on the generalized variable exponent Morrey spaces.
Theorem 4.5. Let Tθ be a bilinear θ-type Calderón-Zygmund operator defined by (1.4) with θ satisfies (1.5). Suppose p1(⋅),p2(⋅),p(⋅),q(⋅),s1(⋅),s2(⋅),s(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p(⋅)+1s(⋅),1p(⋅)=1p1(⋅)+1p2(⋅),1s(⋅)=1s1(⋅)+1s2(⋅), b1,b2∈BMO(Rn), φ,φ1,φ2 satisfy the condition (4.2) and φ=φ1φ2. Then [b1,b2,Tθ] is bounded from the place Mp1(⋅),φ1(Rn)×Mp2(⋅),φ2(Rn) to the place Mq(⋅),φ(Rn).
Collory 4.6. Let T be a classical bilinear Calderón-Zygmund operators. Suppose p1(⋅),p2(⋅),p(⋅),q(⋅), s1(⋅),s2(⋅),s(⋅)∈LH(Rn)∩P(Rn) such that 1q(⋅)=1p(⋅)+1s(⋅),1p(⋅)=1p1(⋅)+1p2(⋅),1s(⋅)=1s1(⋅)+1s2(⋅), b1,b2∈BMO(Rn), φ,φ1,φ2 satisfy the condition (4.2) and φ=φ1φ2. Then [b1,b2,T] is bounded from the place Mp1(⋅),φ1(Rn)×Mp2(⋅),φ2(Rn) to the place Mq(⋅),φ(Rn).
Proof of Theorem 4.4. We decompose the function fi in the form fi=f1i+f2i in the proof of Theorem 3.4, where i=1,2. For all fi∈Lpi(⋅)loc(Rn), then
∥[b1,b2,Tθ](f1,f2)∥Lq(⋅)(B(x0,r))≤∥[b1,b2,Tθ](f11,f12)∥Lq(⋅)(B(x0,r))+∥[b1,b2,Tθ](f11,f22)∥Lq(⋅)(B(x0,r))+∥[b1,b2,Tθ](f21,f12)∥Lq(⋅)(B(x0,r))+∥[b1,b2,Tθ](f21,f22)∥Lq(⋅)(B(x0,r))=:H1+H2+H3+H4. |
Let 1p(⋅)=1p1(⋅)+1p2(⋅),1q(⋅)=1p(⋅)+1s(⋅). From Lemma 2.5, Theorem 4.1 and Lemma 2.1, it follows that
H1≤∥1∥Ls(⋅)(B(x0,r))∥[b1,b2,Tθ](f11,f12)∥Lp(⋅)(B(x0,r))≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)∥1∥Ls(⋅)(B(x0,r))∥f1∥Lp1(⋅)(2B)×(∥f2∥Lp2(⋅)(2B)rθp(x0,r)∫∞2rt−θp(x0,t)−1dt)≤C2∏i=1∥bi∥BMO(Rn)rθq(x0,r)∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt. |
Now we deal with H2. H2 can be decomposed into four terms.
H2≤∥2∏i=1(bi−(bi)B)Tθ(f11,f22)∥Lq(⋅)(B(x0,r))+∥(b1−(b1)B)Tθ(f11,(b2−(b2)B)f22)∥Lq(⋅)(B(x0,r))+∥(b2−(b2)B)Tθ((b1−(b1)B)f11,f22)∥Lq(⋅)(B(x0,r))+∥Tθ((b1−(b1)B)f11,(b2−(b2)B)f22)∥Lq(⋅)(B(x0,r))=:H21+H22+H23+H24. |
Noting that ∣x−y1∣+∣x−y2∣≈∣x0−y2∣ for x∈B(x0,r),y1∈2B and y2∈(2B)c. Let 1p(⋅)=1p1(⋅)+1p2(⋅),1s(⋅)=1s1(⋅)+1s2(⋅),1q(⋅)=1p(⋅)+1s(⋅). By Lemma 2.5, Lemma 2.1, lemma 2.8 and Lemma 2.4, one has
H21≤∥2∏i=1(bi−(bi)B)∥Ls(⋅)(B(x0,r))∥Tθ(f11,f22)∥Lp(⋅)(B(x0,r))≤∥b1−(b1)B∥Ls1(⋅)(B)∥b2−(b2)B∥Ls2(⋅)(B)∫2B∣f1(y1)∣dy1×(∥∫(2B)c∣f2(y2)∣∣x0−y2∣2ndy2∥Lp(⋅)(B(x0,r)))≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθs(x0,r)∥1∥Lp(⋅)(B(x0,r))∫2B∣f1(y1)∣dy1×(∞∑k=1∫2k+1B∖2kB∣f2(y2)∣∣x0−y2∣2ndy2)≤C2∏i=1∥bi∥BMO(Rn)rθq(x0,r)∫∞2r∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt. |
From Lemma 2.5, Lemma 2.8, Lemma 2.1, Lemma 2.4 and Lemma 2.3, it follows that
H22≤∥b1−(b1)B∥Ls(⋅)(B(x0,r))∥Tθ(f11,(b2−(b2)B)f22)∥Lp(⋅)(B(x0,r))≤∥b1−(b1)B∥Ls1(⋅)(B(x0,r))∥1∥Ls2(⋅)(B(x0,r))×(∥∫2B∫(2B)c∣f1(y1)∣∣f2(y2)∣(2∑i=1∣⋅−yi∣)2n∣b2(y2)−(b2)B∣dy2dy1∥Lp(⋅)(B(x0,r)))≤C∥b1∥BMO(Rn)∥1∥Ls(⋅)(B(x0,r))∫2B∣f1(y1)∣dy1×(∫(2B)c∣f2(y2)∣∣b2(y2)−(b2)B∣∣x0−y2∣2ndy2∥Lp(⋅)(B(x0,r)))≤C∥b1∥BMO(Rn)rθq(x0,r)∫2B∣f1(y1)∣dy1×[∫(2B)c∣f2(y2)∣∣b2(y2)−(b2)B∣(∫∞∣x0−y2∣dtt2n+1)dy2]≤C∥b1∥BMO(Rn)rθq(x0,r)∫2B∣f1(y1)∣dy1×[∫∞2r∫B(x0,t)∣f2(y2)∣∣b2(y2)−(b2)B∣dy2dtt2n+1]≤C∥b1∥BMO(Rn)rθq(x0,r)∫2B∣f1(y1)∣dy1×(∫∞2r∫B(x0,t)∣f2(y2)∣∣b2(y2)−(b2)B(x0,t)∣dy2dtt2n+1)+C∥b1∥BMO(Rn)rθq(x0,r)∫2B∣f1(y1)∣dy1×(∫∞2r∫B(x0,t)∣f2(y2)∣∣(b2)B(x0,t)−(b2)B∣dy2dtt2n+1)≤C∥b1∥BMO(Rn)rθq(x0,r)∥f1∥Lp1(⋅)(2B)∥1∥Lp′1(⋅)(2B)×(∫∞2r∥f2∥Lp2(⋅)(B(x0,t))∥b2(⋅)−(b2)B(x0,t)∥Lp′2(⋅)(B(x0,t))dtt2n+1)+C∥b1∥BMO(Rn)rθq(x0,r)∥f1∥Lp1(⋅)(2B)∥1∥Lp′1(⋅)(2B)×(∣(b2)B(x0,t)−(b2)B∣∫∞2r∥f2∥Lp2(⋅)(B(x0,t))∥1∥Lp′2(⋅)(B(x0,t))dtt2n+1)≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθq(x0,r)×[∫∞2r(1+logtr)∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt]. |
By applying Lemma 2.5, Lemma 2.1, Lemma 2.8, Lemma 2.4 and Lemma 2.3, we can deduce that
H23≤∥(b2−(b2)B)Tθ((b1−(b1)B)f11,f22)∥Lq(⋅)(B(x0,r))≤∥b2−(b2)B∥Ls(⋅)(B(x0,r))∥Tθ((b1−(b1)B)f11,f22)∥Lp(⋅)(B(x0,r))≤∥b2−(b2)B∥Ls2(⋅)(B(x0,r))∥1∥Ls1(⋅)(B(x0,r))×(∥∫2B∫(2B)c∣f1(y1)∣∣f2(y2)∣(2∑i=1∣⋅−yi∣)2n∣b1(y1)−(b1)B∣dy2dy1∥Lp(⋅)(B(x0,r)))≤C∥b2∥BMO(Rn)∥1∥Ls(⋅)(B(x0,r))∫2B∣b1(y1)−(b1)B∣∣f1(y1)∣dy1×(∥∫(2B)c∣f2(y2)∣∣x0−y2∣2ndy2∥Lp(⋅)(B(x0,r)))≤C∥b2∥BMO(Rn)rθq(x0,r)∫2B∣b1(y1)−(b1)B∣∣f1(y1)∣dy1×[∫(2B)c∣f2(y2)∣(∫∞∣x0−y2∣dtt2n+1)dy2]≤C∥b2∥BMO(Rn)rθq(x0,r)∫2B∣b1(y1)−(b1)B∣∣f1(y1)∣dy1×(∫∞2r∫B(x0,t)∣f2(y2)∣dy2dtt2n+1)≤C∥b2∥BMO(Rn)rθq(x0,r)∫2B∣b1(y1)−(b1)2B∣∣f1(y1)∣dy1×(∫∞2r∫B(x0,t)∣f2(y2)∣dy2dtt2n+1)+C∥b2∥BMO(Rn)rθq(x0,r)∫2B∣(b1)2B−(b1)B∣∣f1(y1)∣dy1×(∫∞2r∫B(x0,t)∣f2(y2)∣dy2dtt2n+1)≤C∥b2∥BMO(Rn)rθq(x0,r)∥f1∥Lp1(⋅)(2B)∥b1(⋅)−(b1)2B∥Lp′1(⋅)(2B)×(∫∞2r∥f2∥Lp2(⋅)(B(x0,t))∥1∥Lp′2(⋅)(B(x0,t))dtt2n+1)+C∥b2∥BMO(Rn)rθq(x0,r)∥f1∥Lp1(⋅)(2B)∥1∥Lp′1(⋅)(2B)∣(b1)2B−(b1)B∣×(∫∞2r∥f2∥Lp2(⋅)(B(x0,t))∥1∥Lp′2(⋅)(B(x0,t))dtt2n+1)≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθq(x0,r)(1+log2rr)∥f1∥Lp1(⋅)(2B)∥1∥Lp′1(⋅)(2B)×(∫∞2r∥f2∥Lp2(⋅)(B(x0,t))t−n−θp2(x0,t)−1dt)≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθq(x0,r)×[∫∞2r(1+logtr)∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt]. |
Further, according to Lemma 2.1, Lemma 2.4, Lemma 2.8 and Lemma 2.3, we obtain that
H24≤∥∫2B∫(2B)c∣b1(y1)−(b1)B∣∣b2(y2)−(b2)B∣(2∑i=1∣⋅−yi∣)2n∣f1(y1)∣∣f2(y2)∣dy2dy1∥Lq(⋅)(B(x0,r))≤C∫2B∣b1(y1)−(b1)B∣∣f1(y1)∣dy1∥∫(2B)c∣f2(y2)∣∣b2(y2)−(b2)B∣∣x0−y2∣2ndy2∥Lq(⋅)(B(x0,r))≤Crθq(x0,r)∫2B∣b1(y1)−(b1)B∣∣f1(y1)∣dy1∫(2B)c∣f2(y2)∣∣b2(y2)−(b2)B∣×[(∫∞∣x0−y2∣dtt2n+1)dy2]≤Crθq(x0,r)∫2B∣b1(y1)−(b1)B∣∣f1(y1)∣dy1×(∫∞2r∫B(x0,t)∣f2(y2)∣∣b2(y2)−(b2)B∣dy2dtt2n+1)≤Crθq(x0,r)∥f1∥Lp1(⋅)(2B)∥b1(⋅)−(b1)B∥Lp′1(⋅)(2B)×(∫∞2r∥f2∥Lp2(⋅)(B(x0,t))∥b2(⋅)−(b2)B∥Lp′2(⋅)(B(x0,t))dtt2n+1)≤Crθq(x0,r)∥f1∥Lp1(⋅)(2B)(∥b1(⋅)−(b1)2B∥Lp′1(⋅)(2B)+∥(b1)2B−(b1)B∥Lp′1(⋅)(2B))×[∫∞2r∥f2∥Lp2(⋅)(B(x0,t))(∥b2(⋅)−(b2)B(x0,t)∥Lp′2(⋅)(B(x0,t))+∥(b2)B(x0,t)−(b2)B∥Lp′2(⋅)(B(x0,t)))dtt2n+1]≤Crθq(x0,r)∥b1∥BMO(Rn)∥b2∥BMO(Rn)∥f1∥Lp1(2B)∥1∥Lp′1(⋅)(2B)(1+log2rr)×[∫∞2r(1+logtr)∥f2∥Lp2(⋅)(B(x0,t))∥1∥Lp′2(⋅)(B(x0,t))t−2n+1dt]≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθq(x0,r)×[∫∞2r(1+logtr)2∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt]. |
Which, together with the estimates for H21,H22,H23 and H24, we get
H2≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθq(x0,r)×[∫∞2r(1+logtr)2∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt]. |
Similarly, it is not difficult to obtain
H3≤∥2∏i=1(bi−(bi)B)Tθ(f21,f12)∥Lq(⋅)(B(x0,r))+∥(b1−(b1)B)Tθ(f21,(b2−(b2)B)f12)∥Lq(⋅)(B(x0,r))+∥(b2−(b2)B)Tθ((b1−(b1)B)f21,f12)∥Lq(⋅)(B(x0,r))+∥Tθ((b1−(b1)B)f21,(b2−(b2)B)f12)∥Lq(⋅)(B(x0,r))≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθq(x0,r)×[∫∞2r(1+logtr)2∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt]. |
It remains to estimate H4. Noting that ∣x−y1∣+∣x−y2∣≈∣x−y1∣≈∣x−y2∣ for x∈B(x0,r) and y1,y2∈(2B)c. By using Lemma 2.1, Lemma 2.4, Lemma 2.8 and Lemma 2.3, we can deduce that
H4≤∥∫(2B)c∫(2B)c∣b1(y1)−(b1)B∣∣b2(y2)−(b2)B∣(2∑i=1∣⋅−yi∣)2n∣f1(y1)∣∣f2(y2)∣dy1dy2∥Lq(⋅)(B(x0,r))≤∥∫(2B)c∫(2B)c∣b1(y1)−(b1)B∣∣b2(y2)−(b2)B∣∣x0−y1∣n∣x0−y2∣n∣f1(y1)∣∣f2(y2)∣dy1dy2∥Lq(⋅)(B(x0,r))≤Crθq(x0,r)∞∑j=12∏i=1(2jr)−n∫2j+1B∖2jB∣fi(yi)∣∣bi(yi)−(bi)B∣dyi≤Crθq(x0,r)∞∑j=12∏i=1(2jr)−n∫2j+1B∖2jB∣fi(yi)∣∣bi(yi)−(bi)2j+1B∣dyi+Crθq(x0,r)∞∑j=12∏i=1(2jr)−n∫2j+1B∖2jB∣fi(yi)∣∣(bi)2j+1B−(bi)B∣dyi≤Crθq(x0,r)∞∑j=12∏i=1(2jr)−n∥fi∥Lpi(⋅)(2j+1B)∥bi(⋅)−(bi)2j+1B∥Lp′i(⋅)(2j+1B)+Crθq(x0,r)∞∑j=12∏i=1(2jr)−n∣(bi)2j+1B−(bi)B∣∥fi∥Lpi(⋅)(2j+1B)∥1∥Lp′i(⋅)(2j+1B)≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθq(x0,r)∞∑j=1(2jr)−2n(1+log2j+1rr)2×(∥f1∥Lp1(⋅)(2j+1B)∥1∥Lp′1(⋅)(2j+1B)∥f2∥Lp2(⋅)(2j+1B)∥1∥Lp′2(⋅)(2j+1B))≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθq(x0,r)∞∑j=1∫2j+2r2j+1rt−2n−1(1+logtr)2×(∥f1∥Lp1(⋅)(B(x0,t))∥1∥Lp′1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))∥1∥Lp′2(⋅)(B(x0,t))dt)≤C∥b1∥BMO(Rn)∥b2∥BMO(Rn)rθq(x0,r)×[∫∞2r(1+logtr)2∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt]. |
which, combining the estimates of H1, H2 and H3, implies (4.4).
Proof of Theorem 4.5. Let fi∈Mpi(⋅),φi(Rn),i=1,2. By Theorem 4.4, Lemma 2.7 and (4.2), we obtain
∥[b1,b2,Tθ](f1,f2)∥Mq(⋅),φ(Rn)=supx0∈Rn,r>0φ(x0,r)−1r−θq(x0,r)∥[b1,b2,Tθ](f1,f2)∥Lq(⋅)(B(x0,r))≤C2∏i=1∥bi∥BMO(Rn)supx0∈Rn,r>0φ(x0,r)−1∫∞2r(1+logtr)2×(∥f1∥Lp1(⋅)(B(x0,t))∥f2∥Lp2(⋅)(B(x0,t))t−θp1(x0,t)−θp2(x0,t)−1dt)≤C2∏i=1∥bi∥BMO(Rn)∥fi∥Mpi(⋅),φi(Rn)supx0∈Rn,r>0φ(x0,r)−1∫∞2r(1+logtr)2φ1(x0,t)φ2(x0,t)tdt≤C2∏i=1∥bi∥BMO(Rn)∥fi∥Mpi(⋅),φi(Rn), |
which is our desire result.
In this paper, I mainly obtain the boundedness of bilinear θ-type Calderón-Zygmund operator Tθ and its commutator [b1,b2,Tθ] on the generalized variable exponent Morrey spaces.
The author would like to express sincere thanks to reviewers for their helpful comments and suggestions.
The author declares that he has no conflicts of interest.
[1] | L. Peng, Generalized Calderón-Zygmund operators and their weighted norm inequalities, Adv. Math., 14 (1985), 97–115. |
[2] |
Y. Yang, S. Tao, θ-Type Calderón-Zygmund operators and commutators in variable exponents Herz space, Open Math., 16 (2018), 1607–1620. http://dx.doi.org/10.1515/math-2018-0133 doi: 10.1515/math-2018-0133
![]() |
[3] | Y. Yang, S. Tao, θ-Type Calderón-Zygmund operators on Morrey and Morrey-Herz-type Hardy spaces with variable exponents, U.P.B. Sci. Bull., Series A, 82 (2020), 35–44. |
[4] |
V. Guliyev, Calderón-Zygmund operators with kernels of Dini's type on generalized weighted variable exponent Morrey spaces, Positivity, 25 (2021), 1771–1788. http://dx.doi.org/10.1007/s11117-021-00846-1 doi: 10.1007/s11117-021-00846-1
![]() |
[5] | K. Yabuta, Generalizations of Calderón-Zygmund operators, Studia Math., 82 (1985), 17–31. |
[6] |
T. Zheng, X. Tao, X. Wu, Bilinear Calderón-Zygmund operators of type ω(t) on non-homogeneous space, J. Inequal. Appl., 113 (2014), 1–18. http://dx.doi.org/10.1186/1029-242X-2014-113 doi: 10.1186/1029-242X-2014-113
![]() |
[7] |
T. Zheng, Z. Wang, W. Xiao, Maximal bilinear Calderón-Zygmund operators of type ω(t) on non-homogeneous space, Ann. Funct. Anal., 6 (2015), 134–154. http://dx.doi.org/10.15352/afa/06-4-134 doi: 10.15352/afa/06-4-134
![]() |
[8] | G. Lu, S. Tao, Bilinear θ-type Calderón-Zygmund operators on Non-homogeneous generalized Morrey spaces, J. Comput. Anal. Appl., 26 (2019), 650–670. |
[9] | P. Zhang, J. Sun, Commutators of multilinear Calderón-Zygmund operators with kernels of Dini's type and applications, 2016, arXiv.1605.07449. |
[10] |
H. Wang, Boundedness of θ-type Calderón-Zygmund operators and commutators in the generalized weighted Morrey spaces, J. Funct. Space., 2016 (2016), 1–18. http://dx.doi.org/10.1155/2016/1309348 doi: 10.1155/2016/1309348
![]() |
[11] | A. F. Ismayilova, Calderón-Zygmund operators with kernels of Dini's type and their multilinear commutators on generalized Morrey spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math., 41 (2021), 1–12. |
[12] |
R. Xie, L. Shu, On multilinear commutators of θ-type Calderón-Zygmund operators, Anal. Theory Appl., 24 (2008), 260–270. http://dx.doi.org/10.1007/s10496-008-0260-8 doi: 10.1007/s10496-008-0260-8
![]() |
[13] |
O. Kovacik, J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41 (1991), 592–618. http://dx.doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
![]() |
[14] |
J. Tan, Z. Liu, J. Zhao, On some multilinear commutators in variable Lebesgue spaces, J. Math. Inequal., 11 (2017), 715–734. http://dx.doi.org/10.7153/jmi-2017-11-57 doi: 10.7153/jmi-2017-11-57
![]() |
[15] | D. Cruz-Uribe, A. Fiorenza, J. Martell, C. Perez, The Boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239–264. |
[16] | D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: foundations and harmonic analysis, 1 Eds., Basel: Birkhäuser, 2013. http://dx.doi.org/10.1007/978-3-0348-0548-3 |
[17] | K. Ho, Singular integral operators, John-Nirenberg inequalities and Triebel-Lizorkin type spaces on weighted Lebesgue spaces with variable exponents, Rev. Un. Mat. Argentina, 57 (2016), 85–101. |
[18] |
A. Huang, J. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69–77. http://dx.doi.org/10.1007/s11766-010-2167-3 doi: 10.1007/s11766-010-2167-3
![]() |
[19] | L. Diening, P. Harjulehto, P. Hästo, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, 1 Eds., Berlin: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-18363-8 |
[20] |
R. Bandaliyev, V. Guliyev, Embedding theorems between variable-exponent Morrey Spaces, Math. Notes, 106 (2019), 488–500. http://dx.doi.org/10.1134/S0001434619090190 doi: 10.1134/S0001434619090190
![]() |
[21] |
W. Wang, J. Xu, Multilinear Calderón-Zygmund operators and their commutators with BMO functions in variable exponent Morrey spaces, Front. Math. China, 12 (2017), 1235–1246. http://dx.doi.org/10.1007/s11464-017-0653-0 doi: 10.1007/s11464-017-0653-0
![]() |
[22] |
A. Almeida, J. Hasanov, S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 15 (2008), 195–208. http://dx.doi.org/10.1515/GMJ.2008.195 doi: 10.1515/GMJ.2008.195
![]() |
[23] |
I. Ekincioglu, C. Keskin, A. Serbetci, Multilinear commutators of Calderón-Zygmund operator on generalized variable exponent Morrey spaces, Positivity, 25 (2021), 1551–1567. http://dx.doi.org/10.1007/s11117-021-00828-3 doi: 10.1007/s11117-021-00828-3
![]() |
[24] |
P. Long, H, Han, Characterizations of some operators on the vanishing generalized Morrey spaces with variable exponent, J. Math. Anal. Appl., 437 (2016), 419–430. http://dx.doi.org/10.1016/j.jmaa.2016.01.004 doi: 10.1016/j.jmaa.2016.01.004
![]() |
[25] | V. Guliyev, J. Hasanov, S. Stefan, Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces, Math. Scand., 107 (2010), 285–304. |
[26] |
V. S. Guliyev, S. G. Samko, Maximal, potential and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci., 193 (2013), 228–248. http://dx.doi.org/10.1007/s10958-013-1449-8 doi: 10.1007/s10958-013-1449-8
![]() |
[27] |
A. Karapetyants, H. Rafeiro, S. Samko, On singular operators in vanishing generalized variable-exponent Morrey spaces and applications to Bergman-type spaces, Math. Notes, 106 (2019), 727–739. http://dx.doi.org/10.1134/S0001434619110075 doi: 10.1134/S0001434619110075
![]() |
[28] |
C. Aykol, X. Badalov, J. Hasanov, Boundedness of the potential operators and their commutators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets, Ann. Funct. Anal., 11 (2020), 423–438. http://dx.doi.org/10.1007/s43034-019-00012-5 doi: 10.1007/s43034-019-00012-5
![]() |
[29] |
C. Aykol, X. Badalov, J. Hasanov, Maximal and singular operators in the local "complementary" generalized variable exponent Morrey spaces on unbounded sets, Quaest. Math., 43 (2020), 1487–1512. http://dx.doi.org/10.2989/16073606.2019.1635539 doi: 10.2989/16073606.2019.1635539
![]() |
[30] |
F. John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14 (1961), 415–426. http://dx.doi.org/10.1002/cpa.3160140317 doi: 10.1002/cpa.3160140317
![]() |
[31] |
Z. Liu, S. Lu, Endpoint estimates for commutators of Calderón-Zygmund type operators, Kodai Math. J., 25 (2002), 79–88. http://dx.doi.org/10.2996/kmj/1106171078 doi: 10.2996/kmj/1106171078
![]() |
[32] |
M. Izuki, Boundedness of commutators on Herz spaces with variable exponents, Rend. Circ. Mat. Palermo, 59 (2010), 199–213. http://dx.doi.org/10.1007/s12215-010-0015-1 doi: 10.1007/s12215-010-0015-1
![]() |
[33] |
M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponents, Hiroshima Math. J., 40 (2010), 343–355. http://dx.doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
![]() |
[34] |
L. Wang, Multilinear Calderón-Zygmund operators and their commutators on central Morrey spaces with variable exponent, Bull. Korean Math. Soc., 57 (2020), 1427–1449. https://doi.org/10.4134/BKMS.b191108 doi: 10.4134/BKMS.b191108
![]() |
[35] |
V. Guliyev, Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci., 193 (2013), 211–227. http://dx.doi.org/10.1007/s10958-013-1448-9 doi: 10.1007/s10958-013-1448-9
![]() |
[36] | V. Guliyev, Generalized weighted Morrey spaces and higher order commutators of sublinear operators, Eurasian Math. J., 3 (2012), 33–61. |
[37] |
K. Ho, Definability of singular integral operators on Morrey-Banach spaces, J. Math. Soc. Japan, 72 (2020), 155–170. http://dx.doi.org/10.2969/jmsj/81208120 doi: 10.2969/jmsj/81208120
![]() |
1. | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy, Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents, 2022, 7, 2473-6988, 19147, 10.3934/math.20221051 | |
2. | Guanghui Lu, Shuangping Tao, Miaomiao Wang, Bilinear Θ$\Theta$‐type Calderón–Zygmund operators and their commutators on product generalized fractional mixed Morrey spaces, 2024, 297, 0025-584X, 1988, 10.1002/mana.202200481 | |
3. | Bo Xu, Jiang Zhou, Two regularity criteria of the 3D magneto-micropolar equations in Vishik spaces, 2024, 14173875, 1, 10.14232/ejqtde.2024.1.52 | |
4. | Xiaoxi Xia, Jiang Zhou, Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications, 2024, 13, 2075-1680, 713, 10.3390/axioms13100713 |