Research article

Morphological nanolayer impact on hybrid nanofluids flow due to dispersion of polymer/CNT matrix nanocomposite material

  • † These authors contributed equally to this work and are co-first authors.
  • Received: 29 July 2022 Revised: 01 September 2022 Accepted: 07 September 2022 Published: 09 October 2022
  • MSC : 35Q30, 76D05, 76R10

  • The objective of this study is to explore the heat transfer properties and flow features of an MHD hybrid nanofluid due to the dispersion of polymer/CNT matrix nanocomposite material through orthogonal permeable disks with the impact of morphological nanolayer. Matrix nanocomposites (MNC) are high-performance materials with unique properties and design opportunities. These MNC materials are beneficial in a variety of applications, spanning from packaging to biomedical applications, due to their exceptional thermophysical properties. The present innovative study is the dispersion of polymeric/ceramic matrix nanocomposite material on magnetized hybrid nanofluids flow through the orthogonal porous coaxial disks is deliberated. Further, we also examined the numerically prominence of the permeability (A) function consisting of the Permeable Reynold number associated with the expansion/contraction ratio. The morphological significant effects of these nanomaterials on flow and heat transfer characteristics are explored. The mathematical structure, as well as empirical relations for nanocomposite materials, are formulated as partial differential equations, which are then translated into ordinary differential expressions using appropriate variables. The Runge–Kutta and shooting methods are utilized to find the accurate numerical solution. Variations in skin friction coefficient and Nusselt number at the lower and upper walls of disks, as well as heat transfer rate measurements, are computed using important engineering physical factors. A comparison table and graph of effective nanolayer thermal conductivity (ENTC) and non-effective nanolayer thermal conductivity are presented. It is observed that the increment in nanolayer thickness (0.4−1.6), enhanced the ENTC and thermal phenomena. By the enhancement in hybrid nanoparticles volume fraction (2% to 6%), significant enhancement in Nusselt number is noticed. This novel work may be beneficial for nanotechnology and relevant nanocomponents.

    Citation: M Zubair Akbar Qureshi, M Faisal, Qadeer Raza, Bagh Ali, Thongchai Botmart, Nehad Ali Shah. Morphological nanolayer impact on hybrid nanofluids flow due to dispersion of polymer/CNT matrix nanocomposite material[J]. AIMS Mathematics, 2023, 8(1): 633-656. doi: 10.3934/math.2023030

    Related Papers:

    [1] Taqi A. M. Shatnawi, Nadeem Abbas, Wasfi Shatanawi . Comparative study of Casson hybrid nanofluid models with induced magnetic radiative flow over a vertical permeable exponentially stretching sheet. AIMS Mathematics, 2022, 7(12): 20545-20564. doi: 10.3934/math.20221126
    [2] Yasir Khan, Sohaib Abdal, Sajjad Hussain, Imran Siddique . Numerical simulation for thermal enhancement of $ H_2O $ + Ethyl Glycol base hybrid nanofluid comprising $ GO + (Ag, AA7072, MoS_2) $ nano entities due to a stretched sheet. AIMS Mathematics, 2023, 8(5): 11221-11237. doi: 10.3934/math.2023568
    [3] S. R. Mishra, Subhajit Panda, Mansoor Alshehri, Nehad Ali Shah, Jae Dong Chung . Sensitivity analysis on optimizing heat transfer rate in hybrid nanofluid flow over a permeable surface for the power law heat flux model: Response surface methodology with ANOVA test. AIMS Mathematics, 2024, 9(5): 12700-12725. doi: 10.3934/math.2024621
    [4] C. S. K. Raju, S.V. Siva Rama Raju, S. Mamatha Upadhya, N. Ameer Ahammad, Nehad Ali Shah, Thongchai Botmart . A numerical study of swirling axisymmetric flow characteristics in a cylinder with suspended PEG based magnetite and oxides nanoparticles. AIMS Mathematics, 2023, 8(2): 4575-4595. doi: 10.3934/math.2023226
    [5] Mohammed Alrehili . Managing heat transfer effectiveness in a Darcy medium with a vertically non-linear stretching surface through the flow of an electrically conductive non-Newtonian nanofluid. AIMS Mathematics, 2024, 9(4): 9195-9210. doi: 10.3934/math.2024448
    [6] Subhan Ullah, Hassan Ali Ghazwani, Dolat Khan, Zareen A. Khan . Heat transfer augmentation of Jeffery–Hamel hybrid nanofluid in a stretching convergent/divergent channel through porous medium. AIMS Mathematics, 2025, 10(1): 388-402. doi: 10.3934/math.2025018
    [7] Yousef Jawarneh, Samia Noor, Ajed Akbar, Rafaqat Ali Khan, Ahmad Shafee . Intelligent neural networks approach for analysis of the MHD viscous nanofluid flow due to rotating disk with slip effect. AIMS Mathematics, 2025, 10(5): 10387-10412. doi: 10.3934/math.2025473
    [8] Umar Nazir, Abdelaziz Nasr . Utilizing the Box-Behnken method on modeling of ternary-Casson nanofluid with variable density and heat sink across a vertical jet. AIMS Mathematics, 2025, 10(4): 10093-10123. doi: 10.3934/math.2025460
    [9] Nadeem Abbas, Wasfi Shatanawi, Taqi A. M. Shatnawi . Innovation of prescribe conditions for radiative Casson micropolar hybrid nanofluid flow with inclined MHD over a stretching sheet/cylinder. AIMS Mathematics, 2025, 10(2): 3561-3580. doi: 10.3934/math.2025164
    [10] Umair Khan, Aurang Zaib, Sakhinah Abu Bakar, Anuar Ishak, Dumitru Baleanu, El-Sayed M Sherif . Computational simulation of cross-flow of Williamson fluid over a porous shrinking/stretching surface comprising hybrid nanofluid and thermal radiation. AIMS Mathematics, 2022, 7(4): 6489-6515. doi: 10.3934/math.2022362
  • The objective of this study is to explore the heat transfer properties and flow features of an MHD hybrid nanofluid due to the dispersion of polymer/CNT matrix nanocomposite material through orthogonal permeable disks with the impact of morphological nanolayer. Matrix nanocomposites (MNC) are high-performance materials with unique properties and design opportunities. These MNC materials are beneficial in a variety of applications, spanning from packaging to biomedical applications, due to their exceptional thermophysical properties. The present innovative study is the dispersion of polymeric/ceramic matrix nanocomposite material on magnetized hybrid nanofluids flow through the orthogonal porous coaxial disks is deliberated. Further, we also examined the numerically prominence of the permeability (A) function consisting of the Permeable Reynold number associated with the expansion/contraction ratio. The morphological significant effects of these nanomaterials on flow and heat transfer characteristics are explored. The mathematical structure, as well as empirical relations for nanocomposite materials, are formulated as partial differential equations, which are then translated into ordinary differential expressions using appropriate variables. The Runge–Kutta and shooting methods are utilized to find the accurate numerical solution. Variations in skin friction coefficient and Nusselt number at the lower and upper walls of disks, as well as heat transfer rate measurements, are computed using important engineering physical factors. A comparison table and graph of effective nanolayer thermal conductivity (ENTC) and non-effective nanolayer thermal conductivity are presented. It is observed that the increment in nanolayer thickness (0.4−1.6), enhanced the ENTC and thermal phenomena. By the enhancement in hybrid nanoparticles volume fraction (2% to 6%), significant enhancement in Nusselt number is noticed. This novel work may be beneficial for nanotechnology and relevant nanocomponents.



    Abbreviations: A: permeability component; β0: the strength magnetic field; β1: The ratio of nanolayer thickness to Particle radius; σel: electrical conductivity; p: pressure; ˆT: fluids temperature; ks1: thermals conductivity of first Particle; ks2: thermals conductivity of second Particle; kbf: thermals conductivity of base fluids; knf: thermals conductivity of the nanofluid; knfl: thermals conductivity of the Nanofluid with effect of nanolayer; khnf: thermals conductivity of the Hybrid nanofluid; khnfl: effective nanolayer thermal conductivity of hybrid nanofluid; kpe: equivalent thermals conductivity of equivalent Particle; kpe1: equivalent thermals conductivity of first equivalent Particle; kpe2: equivalent thermals conductivity of second equivalent Particle; S: shape factor; σhnf: thermals conductivity of the hybrid nanofluid; σs1: thermals conductivity of first nanoparticle; σs2: thermals conductivity of second nanoparticle; ρs1: density of the first nanoparticle; ρs2: density of the second nanoparticle; cp: Specifics heats at constant pressures; (cp)nf: Specifics heats for the Nanofluid; M: the magnetic parameter; Sc: Schmidt number; Re: the permeability Reynolds number; Pr: the Prandtl number; μhnf: the viscosity of the hybrid nanofluid; ρhnf: the density of the hybrid nanofluid; αhnf: the thermal diffusivity of hybrid nanofluid; υhnf: the kinematic viscosity of hybrid nanofluid; HNF: hybrid nanofluid; ENTC: effective nanolayer thermal conductivity; NENTC: non-effective nanolayer thermal conductivity; SFC: Skin friction coefficients; MNC: Matrix nanocomposite; α: the wall expansion ratio; η: scaled boundary layer coordinate; θ: self-similar temperature; μ: dynamic viscosity; υ: kinematic viscosity; ρ: density; φs1: first nanoparticle volume fraction; φs2: second nanoparticle volume fraction; nf: nanofluid; hnf: hybrid nanofluid; hnfl: effective hybrid nanofluid; s1: first nanoparticle; s2: second nanoparticle

    Polytetrafluoroethylene (PTFE) is an excellent claimant in extensive applications, such as mechanical systems, biomaterials, chemical, and electrical, because of its low frictional coefficient and dielectric constant, few moistures absorption, chemical inertness, and excellent thermal stability [1]. Plunkett [2] initially described PTFE, which has remarkable physical properties in addition to the highly fluorinated saturated organic compounds. Polymer matrix nanocomposites (PMNC) is the material which composes of polymeric matrix distributed in silica, CNT, or organic substances. The distribution and reinforcement of matrix material particles at the nano-scale lead to a significant improvement in the mechanical properties of the produced composite. PMNC is appreciative in transportation, aircraft, defensive weapons etc. The most widely used reinforcement in PMNC is CNT due to their remarkable mechanical and electrical properties [3]. Chen et al. [4] have examined the behavior of CNT-filled composites of PTFE. Lin et al. [5] have investigated the Functionalization of Polymeric Carbon Nanocomposites from CNT with polymer matrix.

    Yu et al. [6] demonstrated that liquid molecules near particle surfaces form layered structures and behave like solids. Despite the fact that the related layer of fluid molecules at the interface is only a few nanometers thick, it may play a significant role in heat transmission from concrete to a surrounding fluid. As a result, the theoretical investigation by Yu and Choi [7] suggested that the nanolayer which exists between the base fluid and NPs is a key factor. Xue [8] suggested a thermal conductivity (TC) model based on the theory of Maxwell and theory of the average polarization. An elliptical interfacial layer was examined Yu and Choi [9]. However, with the various sorts and forms of particles, it is not clear what his model's depolarization factor would be. Furthermore, it is complicated to determine the TC of complex NPs (NPs with an interfacial layer). The experimental data is matched with the expected TC values by using a thicker interfacial layer thickness (h = 03nm), which cannot be accurate for smaller particles. The influence of nanolayer near the particles to the Maxwell equation for the effective TC of solid–fluid interruption. The TC of the nanolayer was assumed to be similar as that of the particles in their model. This is impracticable due to the fact that interfacial layer is formed via way of means of fluid molecules surrounding the particle surface, and the awareness of these adsorbed molecules with inside the interfacial layer is smaller than that of the solid particle. As a result, the interfacial layer's TC should be smaller than that of solid particles but greater than that of liquid.

    Permeable co-axial disks have remarkable applications in the fields of biomechanics, the processes of crystal growth, oceanography, mass and heat transfer, lubricants, viscometer, rotating machineries, and storage devices for computers. Several researchers have focused on issues with disks with various wall conditions. As an example, the impact of shape and size on the dispersion of metallic/ceramic matrix nanocomposite material in magnetized hybrid nanofluids flow via permeable coaxial disks was examined by Qureshi et al. [10]. Abdelmalek et al. [11] investigated the effects of several magnetized hybrid nanoparticles on the fluid flow between two orthogonal spinning disks. Banchok et al. [12] investigated heat transfers in nanofluid flow over a rotating porous disk. The Heat and Mass Transfer Analysis of Unsteady Non-Newtonian Fluid Flow between Porous Surfaces in the Presence of Magnetic Nanoparticles was investigated by Qureshi et al. [13]. By using the Darcy-Forchheimer relation, Bilal et al. [14] investigated the mathematical analysis of hybridized ferromagnetic nanofluid with the induction of copper oxide nanoparticles in permeable surfaces.

    The flow behavior of a moving conducting fluid is described by magnetohydrodynamics, which polarizes it. Magnetic field effects are studied in industrial operations such as fuel manufacturing, electrical generators, crystal fabrication, nuclear power plants, and aerodynamics, among others. Elfven et al. [15] established the field of magnetohydrodynamics. Aly et al. [16] presented a numerical study of a hybrid magnetic nanomaterial in a stretching medium that is permeable. The MHD nanofluids natural convection in an insertion below have an effect on thermal radiation usage of the controlled volume-based finite element approach, as well as the form factor of NPs using the Duan Rach Approach was investigated by Chamkha et al. [17]. For turbine cooling applications, Dogonchi and Ganji [18] have explored the equations for the transfer of heat in an axisymmetric channel with permeable walls for a non-Newtonian fluid flow. Krishna [19] has analyzed the heat transfer of aluminium oxide and copper nanofluids flowing through a stretched porous surface in a steady MHD flow. Devi and Devi [20] investigated the magnetohydrodynamics flow of copper-alumina/H2O hybrid nanofluids computationally. Krishna et al. [21] have recently investigated the radiative MHD Casson hybrid nanofluids flow across an immense exponentially improved perpendicular permeable surface. Abbas et al. [22] investigated heat transfer in MHD hybrid nanofluid flow across a nonlinear stretched curved surface with thermal slip. Upreti et al. [23] investigated the entropy generation and unstable squeezing flow of MHD hybrid nanofluids within parallel plates. Heat transfer in three-dimensional hybrid nanofluids flow due to convective surface and base fluids was investigated by Upreti et al. [24]. Abbas et al. [25] investigated the techniques of data collection of Cu−Al2O3/H2O flow over a vertical wedge in water. Nadeem et al. [26] investigated the flow of a nanomaterial with a base viscoelastic MHD micropolar fluid over a stretched surface. Anwar et al. [27] investigated the computational analysis of induced MHD nonlinear stretching sheet flow. MHD hybrid nanofluid flow investigated by many researchers [28,29,30,31,32,33,34].

    The above mentioned literature revealed to the authors that no research has been done on the dispersion of polymer/CNT matrix nanocomposite material through permeable surfaces subject to magnetized hybrid nanofluids flow with the influence of morphological nanolayer. Further, in the present study, we examined numerically the prominence of the permeability function consisting of the permeable Reynold number associated with the expansion/contraction ratio. The governing equations are transformed into dimensionless ordinary differential equations (ODEs) via similarity variable transformation technique. The Runge-Kutta and shooting procedures are implemented to achieve the solution of ODEs. Variations in skin friction coefficient and Nusselt number at the lower and upper walls of disks, as well as heat transfer rate measurements are computed using important engineering physical factors. A comparison table and graph of effective nanolayer thermal conductivity and non-effective nanolayer thermal conductivity are presented.

    Flows between two disks have many important applications in the fields of biomechanics, the processes of crystal growth, oceanography, mass and heat transfer, lubricants, viscometer, rotating machineries, and storage devices for computers. The disks in thrust bearings are separated through a lubricant pumped via disks. Furthermore, in modern lubrication technology fluids with polymer additives have been used as enhanced lubricating oils. In this problem, we assume the laminar, viscous, incompressible, unsteady, 2D flow of hybrid nanofluid (HNF) containing PTFE-SWCNT/H2O between two porous disks which are orthogonally moving in the presence of an external magnetic field utilized in the z-direction. 2r1 is the diameter of the boundary disks. 2k(t) is the distance between the disks. The disks move uniformly at a time-dependent rate k'(t) down or up and have the same permeability. The physical model uses a cylindrical coordinate system (r, θ, z) velocity ˆu in the line of r and velocity ˆw in the line of z, but velocity v̂ disappears. The Tl represents the temperature at the lower disk and Tu represents the temperature at the upper disk shown in Figure 1. The thermophysical properties of nanoparticles and bases fluids are mentioned in the Tables 1 and 2. The governing equations are as follows [35]:

    ˆur+ˆur+ˆwz=0, (1)
    ρhnf(ˆut+ˆuˆur+ˆwˆuz)=Pr+μhnf(2ˆur2+1rˆurˆur2+2ˆuz2)σhnfβ20ˆu, (2)
    ρhnf(ˆwt+ˆuˆwr+ˆwˆwz)=Pz+μhnf(2ˆwr2+1rˆwrˆwr2+2ˆwz2), (3)
    (ρCp)hnf(ˆTt+ˆuˆTr+ˆwTz)=Khnfl2ˆTz2, (4)

    where ρhnf is the density of HNF, β0 is magnetic field strength, σhnf is the electrically conductivity of hybrid nanofluid, T̂ is the temperature, P is the pressure, (ρCp)hnf is the heat capacitance of HNF, Khnfl is the ENTC and μhnf is the viscosity of HNF. Which are given in Table 1.

    Figure 1.  Physical model.
    Table 1.  Description of thermophysical properties of nanofluid and HNF [37, 38].
    For nanofluid For HNF
    ρnf=(1φ)ρf+φρs1, ρhnf=(1φs1φs2)ρf+φs1ρs1+φ2ρs2,
    (ρCp)nf=(1φ)(ρCp)f+φ(ρCp)s1, (ρCp)hnf=(1φs1φs2)(ρCp)f+φs1(ρCp)s1+φ2(ρCp)s2,
    μnf=μf(1φ)2.5, μhnf=μf(1φ1φ2)2.5,
    knflkbf=[kpe+(S1)kbf(S1)(kbfkpe)(1+β1)3φkpe+(S1)kbf+(kbfkpe)(1+β1)3φ],
    where
    kpe=[2(1λ)+(1+β1)3(1+2λ)]λ(1λ)+(1+β1)3(1+2λ)ks,
    khnflkbf=[kpe2+(S1)kbf(S1)(kbfkpe2)(1+β1)3φs2kpe2+(S1)kbf+(kbfkpe2)(1+β1)3φs2],
    where
    \frac{{\mathrm{k}}_{\mathrm{b}\mathrm{f}}}{{\mathrm{k}}_{\mathrm{f}}}=\left[\frac{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}-\left(\mathrm{S}-1\right)\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\,right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}{{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}+\left(\mathrm{S}-1\right){\mathrm{k}}_{\mathrm{f}}+\left({\mathrm{k}}_{\mathrm{f}}-{\mathrm{k}}_{\mathrm{p}\mathrm{e}1}\,\right){\left(1+{\mathrm{\beta }}_{1}\right)}^{3}{\mathrm{\varphi }}_{\mathrm{s}1}}\right],
    where
    kpe1=[2(1λ1)+(1+β1)3(1+2λ1)]λ1(1λ1)+(1+β1)3(1+2λ1)ks1,
    kpe2=[2(1λ)+(1+β1)3(1+2λ)]λ(1λ)+(1+β1)3(1+2λ)ks2,
    σnfσf=σs1+2σf2φ1(σfσs1)σs1+2σf+φ1(σfσs1). σhnfσbf=σs2+2σbf2φ2(σbfσs2)σs2+2σbf+φ2(σbfσs2),
    where
    σbfσf=σs1+2σf2φ1(σfσs1)σs1+2σf+φ1(σfσs1).

     | Show Table
    DownLoad: CSV
    Table 2.  The base fluid's and NP' thermophysical properties.
    Physical properties Base fluid Nanoparticles
    Water (H2O) PTFE SWCNT
    CP(j/kgK) 4179 970 425
    ρ(kg/m3) 997 2200 2600
    K(W/mK) 0.608 0.25 6600

     | Show Table
    DownLoad: CSV

    In Table 1, φs1 and φs2 shows volume fraction, ρf is the base fluid density, ρs1 and ρs2 is the solid NP density, (ρCp)s1 and (ρCp)s1 is the thermal capacitance of solid NP, the thermal capacitance for base fluid is represented as (ρCp)f, khnfl is the ENTC of HNF, kf and kbf represent base fluid TC, knfl is the nanofluids TC with the effect of nanolayer, kpe1andkpe2 is equivalent TC of the equivalent solid NP, the ratio of the nanolayer thickness to the radius of NP is β1=hr, λ1=klayersks1 is the ratio of TC of nanolayer to TC of the first particle, λ=klayersks2 is the ratio of ENTC to TC of the second particle, ks1andks2 is TC of the first particle and second particle respectively, The particle radius is r, and the thickness of the nanolayer is h, σhnf is the electrical conductivity of hybrid nanofluid, σnf is the electrical conductivity of nanofluid, σs1 and σs2 are the electrical conductivity of first and second nanoparticles, respectively, σbf is the electrical conductivity of base fluid.

    Table 2, CP shows Specifics heats at constant pressures, ρ is the density, and K is the thermal capacitance of base fluid and solid NP.

    The upper boundary and lower boundary have the following boundary conditions:

    atZ=k(t),ˆu=0,ˆw=Ak(t)andˆT=Tl,atZ=k(t),ˆu=0,ˆw=Ak(t)andˆT=Tu, (5)

    where A is denote the permeability and the prime denotes the time derivative w.r.t t.

    The similarity variables listed below are used as:

    η=zk,ˆu=rυfk2Fη(η,t),ˆw=2υfkF(η,t),θ=ˆTTuTlTu. (6)

    First of all the continuity equation is satisfied by the similarity variables stated in Eq (6). Furthermore, the similarity variables are used in the governing equations to acquire Eqs (7) and (8):

    υhnfυfFηηηη+α(3Fηη+ηFηηη)2FFηηηK2υfFηηtρfρhnfσhnfσfMFηη=0, (7)
    θηη+υfαhnf(αη2F)θηk2αhnfθt=0, (8)

    where αhnf is the thermal diffusivity of HNF and αhnf=Khnfl(ρCp)hnf, υhnf is the kinematics viscosity of the HNF and υhnf=μhnfρhnf, (ρCp)hnf is the heat capacitance of HNF, the viscosity of HNF is μhnf, the density of HNF is ρhnf.

    Associated boundary conditions are

    F=Re,Fη=0,θ=1,atη=1,
    F=Re,Fη=0,θ=0,atη=1, (9)

    here Re=Akk'(t)2υf is absorptivity Reynold number, here A is the permeability, and is defined as the function of Reynold number and wall expansion ratio, and mathematically defined as A=A(α,Re)=Re2α, α=kk'(t)υf is the ratio of wall expansion, and M=σβ20k2μf is the magnetic parameter.

    Finally, we set F=fRe and by following Majdalani et al. [36]. When α is constant, f=f(η) and θ=θ(η), which leads to θt=0 and fηηt=0. Thus, we have

    υhnfυffηηηη+α(3fηη+ηfηηη)2ReffηηηρfρhnfσhnfσfMfηη=0, (10)
    θηη+(φ1(ρCp)s1(ρCp)f+φ2(ρCp)s2(ρCp)f(1φ1φ2))kfkhnflPr(αη2Ref)θη=0. (11)

    At lower and upper wall of channel boundary condition are

    atη=1,f=1,fη=0,andθ=1,atη=1,f=1,fη=0,andθ=0. (12)

    Nusselt number and SFC at both permeable walls are computed coefficients that are of engineering interest are computed in this section.

    The SFC of the upper and lower disk represents as Cf1 and Cf1 and expressed as in [10],

    Cf1=rςzrǀη=1kρf(K'A1)2=((1φs1φs2)2.5)Ref''(1),
    AndCf1=rςzrǀη=1kρf(K'A1)2=((1φs1φs2)2.5)Ref''(1), (13)

    where Re denote the Reynold number and ςzr denote the shear stress at the bottom and upper disks in the radial direction, respectively,

    ςzrǀη=1=μhnf(ˆuz)ǀη=1,andςzrǀη=1=μhnf(ˆuz)ǀη=1 (14)

    The heat transfer rate (Nusselt number) calculations at the bottom and upper disks are given as Nuǀη=1 and Nuǀη=1, respectively [10]

    Nuǀη=1=kszkf(T1T2)ǀη=1=khnfkfθ'(1),andNuǀη=1=kszkf(T1T2)ǀη=1=khnfkfθ'(1), (15)

    here sz is the heat flux, which is following as,

    szǀη=1=khnf(Tz)ǀη=1,andszǀη=1=khnf(Tz)ǀη=1. (16)

    Thermophysical properties like density, viscosity, heat capacitance, and TC of base liquids are changed due to the mixing of NPs and distinguishing the efficacy of NPs on thermo-physical properties of resulting nanofluids. Gupta et al. [39] give a detailed investigation of the thermophysical characteristics of nanofluids. TC is a key thermophysical feature of nanofluids, according to a comprehensive examination of their thermophysical properties. Over the years, numerous investigations on the TC of nanofluids have been done. Yang et al. [40] have submitted a report on the effect of critical factors on the TC of nanofluids. Until now, several researchers have attempted to calculate the TC of nanofluids using various methods to provide a comprehensive correlation to compute this in nanofluids. Maxwell [41] established the first correlation to calculate the TC of nanofluids in 1881. This relationship is accurate for globe-shaped NP and small amounts of NP. Later, in 1962, Hamilton and Crosser (H-C) [42] established the Maxwell correlation, which included the effect of morphology on nanofluids TC. Subsequently, a research study by Jiang et al. [43] found that i = 1.550 was more suitable for CNT nanofluids.

    The three models in Table 3 of TC failed to predict the high TC of nanofluids. The reason for this is that these TC models ignore the effect of nanolayer and particle radius. Murshed et al. [44] proposed a TC model in which the nanolayer is assumed as a separate component when calculating the effective TC of nano-fluids in 2007. Below is a representation of a nanoparticle with a nanolayer in the base fluid.

    Table 3.  Shows the TC models.
    Maxwell model Hamilton and Crosser (H-C) model Xue model
    knfkbf=ks+2kbf2φ(kbfks)ks+2kbf+φ(kbfks) knfkbf=ks+(S1)kbf(S1)φ(kbfks)ks+(S1)kbf+φ(kbfks) knfkbf=1φ+2φ[ks(kskbf)]In[ks+kbf2kbf]1φ+2φ[kbf(kskbf)]In[ks+kbf2kbf]

     | Show Table
    DownLoad: CSV

    In the above Table 3, kbf denotes the TC of the base fluid, ks denotes the TC of NP, and knf denotes the TC of nanofluid, S=3(ϖ)i whereϖ is sphericalness, ϖ=1.00 for spherical NP, and ϖ=0.50 for cylindrical NP, and the variable "i" is experimental. In the actual H-C correlation, I = 1 is used.

    The model of effective TC is given below, for nanofluids,

    knflkbf=[kpe+(S1)kbf(S1)(kbfkpe)(1+β1)3φkpe+(S1)kbf+(kbfkpe)(1+β1)3φ],
    kpe=[2(1λ)+(1+β1)3(1+2λ)]λ(1λ)+(1+β1)3(1+2λ)ks (17)

    where knfl is the TC of nanofluids with the effect of nanolayer, kpeis equivalent TC of the equivalent particles, where λ=klks is the ratio of nanolayer TC to TC of particle, the ratio of the thickness of nanolayer to the radius of NP is β1=hr.

    The effective TC correlation is shown below, for HNF,

    khnflkbf=[kpe2+(S1)kbf(S1)(kbfkpe2)(1+β1)3φs2kpe2+(S1)kbf+(kbfkpe2)(1+β1)3φs2],
    kbfkf=[kpe1+(S1)kf(S1)(kfkpe1)(1+β1)3φs1kpe1+(S1)kf+(kfkpe1)(1+β1)3φs1], (18)

    where kpe1andkpe2 are equivalent TC of the equivalent first particle and second particle respectively, and defined as

    kpe1=[2(1λ1)+(1+β1)3(1+2λ1)]λ1(1λ1)+(1+β1)3(1+2λ1)ks1,
    kpe2=[2(1λ)+(1+β1)3(1+2λ)]λ(1λ)+(1+β1)3(1+2λ)ks2, (19)

    where λ1=klayersks1 is the ratio of nanolayer TC to TC of the first particle, λ=klayersks2 is the ratio of nanolayer TC to TC of the second particle, ks1andks2 is TC of the first particle and second particle respectively.

    Because the system of ODE's is manipulated in Eqs (10) and (11) are complex and involve boundary value conditions, the numerical solution is obtained rather than using analytical methods. The shooting technique is used in conjunction with the RK method for numerical computations. The Runge–Kutta method is a preferable alternative since it requires less computing, is more stable, and produces accurate results in less time. The rapidity (computational cost) and additivity of this technique to the IVP are its main advantages. Finding the IVP (initial value problem) using an appropriate shooting approach is massively successful because of the importance of IVPs in real-world/practical applications. The missing beginning condition at the Interval's start point is assumed in a shooting method, and the DE (differential equation) is then numerically integrated as an IVP. The accuracy of the missing initial condition is determined by comparing the computed value of the dependent variable at the terminal point with its given value here. If there is a difference, the process is repeated with a new value. This method is repeated until the calculated and given conditions are in agreement. Table 4 shows how our numerical results converge as the step size gets reduced for this purpose, providing us confidence in our computing technique. Our boundary conditions satisfy accurate and symmetric shear stress results at the lower wall as well.

    Table 4.  Data for numerical stability.
    η f(η) f'(η) f''(η)
    -1 -1 0 1.23169
    -0.8 -0.971619 0.303868 1.83141
    -0.6 -0.869844 0.734952 2.45554
    -0.4 -0.671254 1.25769 2.64651
    -0.2 -0.370295 1.72443 1.82153
    0 4.8871×10(-8) 1.91717 -5.09381×10(-8)
    0.2 0.370295 1.72443 -1.82153
    0.4 0.671254 1.25769 -2.64651
    0.6 0.869844 0.734952 -2.45554
    0.8 0.971619 0.303868 -1.83141
    1 1 0 -1.23169

     | Show Table
    DownLoad: CSV

    A massive representation of a non-linear coupled system of ODE's with coefficients that have matrix composite material and HNF properties.

    (1φs1φs2)2.5(1φs1φs2)+φs1(ρCp)s1(ρCp)f+φs2(ρCp)s2(ρCp)ff''''+α(3f''+ηf''')2Reff'''1(1φs1φs2)+φs1ρs1ρf+φs2ρs2ρfσhnfσfMf''=0, (20)
    θ''+(φs1(ρCp)s1(ρCp)f+φs2(ρCp)s2(ρCp)f(1φs1(φs2))(kpe2+(S1)kbf(S1)(kbfkpe2)(1+β1)3φs2kpe2+(S1)kbf+(kbfkpe2)(1+β1)3φs2)(kpe1+(S1)kf(S1)(kfkpe1)(1+β1)3φs1kpe1+(S1)kf+(kfkpe1)(1+β1)3φs1)Pr(αη2Ref)θ''=0. (21)

    Where, we let the following expressions as:

    G1=(1φs1φs2)2.5(1φs1φs2)+φs1(ρCp)s1(ρCp)f+φ2(ρCp)s2(ρCp)f,
    G2=1(1φs1φs2)+φs1ρs1ρf+φs2ρs2ρfσhnfσf,
    G3=(φs1(ρCp)s1(ρCp)f+φs2(ρCp)s2(ρCp)f(1φ1φ2)),
    G4=(kpe2+(S1)kbf(S1)(kbfkpe2)(1+β1)3φs2kpe2+(S1)kbf+(kbfkpe2)(1+β1)3φs2),
    G5=(kpe1+(S1)kf(S1)(kfkpe1)(1+β1)3φs1kpe1+(S1)kf+(kfkpe1)(1+β1)3φs1).

    By putting the values of G1, G2, G3, G4, and G5 in Eqs (21) and (22), the final Equations are:

    G1f''''+α(3f''+ηf''')2Reff'''G2Mf''=0, (22)
    θ''+G3G4G5Pr(αη2Ref)θ'=0. (23)

    For the determination of solving the existing flow model, we used the RK technique with the addition of shooting methods. The following substitution is required to begin the process:

    w1=f(η), w2=f'(η), w3=f''(η), w4=f'''(η), w5=θ(η), w6=θ'(η) (24)

    First, in Eqs (22) and (23), change the model in the following pattern:

    f''''[η]=1G1(α(3f''+ηf''')+2Reff'''+G2Mf'') (25)
    θ''[η]=(G3G4G5Pr(2Refαη)w6 (26)

    The following system is obtained by using the substitution contained in Eq (24):

    [w'1w'2w'3w'4w'5w'6]=[w2w3w41G1(α(3f''+ηf''')+2Reff'''+G2Mf'')w6(G3G4G5Pr(2Refαη)w6)] (27)

    Consequently, the initial condition is:

    [w'1w'2w'3w'4w'5w'6]=[101010] (28)

    Mathematical techniques and an appropriate initial condition are now used to solve the aforementioned system. Runge-Kutta and the well-known accurate "shooting method" have been considered in this case. This approach is suitable for dealing with dimensionless ODEs. First, we create the initial condition by applying the shooting procedure in a way that satisfies boundary criteria and yields the necessary level of efficiency and accuracy.

    This section explains the influence of flow on concerning equations and physical parameters like expansion/contraction ratio parameter "α", suction/injection permeable Reynold number "Re", NTP (nanolayer thickness of particles) "h", the radius of particles "r", shape size factor "S", the magnetic parameter "M", volume friction parameters "φs1 and φs2", Prandtl number "Pr", on velocity and temperature profile are explained through Figures 310. The default values of involve parameters are: for h=0.4,r=0.8,φs1=φs2=0.02,Re=2.5,Pr=6.2,M=1andα=3. In addition, engineering quantities such as shear stress coefficients at the upper and lower disks, as well as heat fluxes, are estimated numerically against the variables involved. Table 5 shows the comparison result of effective nanolayer thermal conductivity (ENTC) and non-effective nanolayer thermal conductivity (NENTC). It is observed that the enhancement in h, increases the ENTC, and has no effect on NENTC. The reason is that the NENTC does not include the influence of the nanolayer thickness of the particle. The nanolayer thickness and radius of particle have opposite behavior on ENTC. The increment in volume fraction increases the ENTC and NENTC are noticed. For all three cases of shape size factor (sphere, cylindrical, laminar) the highest values of ENTC and NENTC are achieved for aspherical shape. Table 6 represents the variation in SFC and Nusselt numbers for suction and injection cases at the lower disks. For suction Re<0 case, suction occurs when inertia is less than viscosity, it is observed the increment in NTP increases the Nusselt number. The NTP and radius of particles have opposite behavior on the Nusselt number. For all three cases of shape size factor (sphere, cylindrical, laminar) the highest value of Nusselt number is achieved for aspherical shape. It is also obtrusive that the amount of SFC and Nusselt number rises with the volume fraction and magnetic parameter. it is noticed that as the value of α changes from negative to positive the SFC and Nusselt numbers decreased. The Prandtl number and radius of particles have the same behavior as the Nusselt number. The reason is that the Prandtl number is the product of diffusive momentum to the inverse of thermal diffusivity, so increasing the Pr momentum increases diffusivity, which decreases the coefficient of heat flux. For injection Re>0 cases, injection occurs when inertia is greater than viscosity, it is observed that the effect of NTP, radius of particles, shape size factor, volume fraction, expansion/contraction ratio parameter, and magnetic parameter have the same nature in both suction /injection case on SFC and Nusselt number. The Prandtl number has opposite behavior in both suction /injection cases on SFC and Nusselt number, therefore as the increment in Prandtl number increases the Nusselt number.

    Figure 2.  Comparison graph of effective nanolayer thermal conductivity and non-effective nanolayer thermal conductivity.
    Figure 3.  The effect of α on radial velocity for h=0.4,r=0.8,φs1=φs2=0.02,Re=2.5,Pr=6.2,M=1.
    Figure 4.  The effect of α on axial velocity for h=0.4,r=0.8,φs1=φs2=0.02,Re=2.5,M=1,Pr=6.2.
    Figure 5.  The effect of Pr on temperature for h=0.4,r=0.8,φs1=φs2=0.02,Re=2.5,M=6.2,α=3.
    Figure 6.  The effect of M on radial velocity for h=0.4,r=0.8,φs1=φs2=0.02,Re=2.5,Pr=6.2,α=3.
    Figure 7.  The effect of φs1=φs2 on axial velocity for h=0.4,r=0.8,α=3,Re=2.5,Pr=6.2,M=1.
    Figure 8.  The effect of h on temperature for Re=2.5,r=0.8,φs1=φs2=0.02,M=1,Pr=6.2,α=3.
    Figure 9.  Contour of radial velocity for Re=1,r=0.8,φs1=φs2=0.02,M=1,Pr=6.2,α=1.
    Figure 10.  Contour of temperature for Re=1,r=0.8,φs1=φs2=0.02,M=1,Pr=6.2,α=1.
    Table 5.  The comparison results of effective nanolayer thermal conductivity (khnfl) and non-effective nanolayer thermal conductivity(khnf).
    h r φs1=φs2 S khnfl khnf
    0.4 0.8 2% 3 1.25951 1.04573
    0.6 1.39172 1.04573
    0.8 1.4749 1.04573
    1 1.52875 1.04573
    1.2 1.56473 1.04573
    1.4 1.58951 1.04573
    1.6 1.60707 1.04573
    0.4 1 2% 3 1.25951 1.04573
    1.2 1.18620 1.04573
    1.4 1.08329 1.04573
    1.6 1.04631 1.04573
    1.8 1.01581 1.04573
    2 0.990267 1.04573
    0.4 0.8 3% 3 1.29148 1.06891
    4% 1.32414 1.09232
    5% 1.35752 1.11595
    6% 1.39162 1.13982
    7% 1.42647 1.16394
    8% 1.46208 1.18831
    0.2 0.8 2% 3 1.25951 1.04573
    5.7 1.23202 1.01163
    16 1.18829 1.00984

     | Show Table
    DownLoad: CSV
    Table 6.  Variation in SFC and Nusselt number for suction and injection cases at lower disk.
    h r φs1=φs2 S α M Pr Cf1 for suction case Nuǀη=1 for suction case Cf1 for injection case Nuǀη=1 for injection case
    0.4 0.8 2% 3 -1 1 6.2 4.1612 0.391643 5.15113 6.38635
    0.8 4.1612 0.426513 5.15113 6.97705
    1.2 4.1612 0.43887 5.15113 7.27113
    1.6 4.1612 0.4430 5.15113 7.36504
    0.2 1 2% 4.1612 0.377217 5.15113 6.11274
    1.2 4.1612 0.36550 5.15113 5.91552
    1.4 4.1612 0.355864 5.15113 5.73457
    1.6 4.1612 0.34729 5.15113 5.5923
    1.8 4.1612 0.339912 5.15113 5.44889
    2 4.1612 0.333482 5.15113 5.34295
    0.8 3% 4.4447 0.417098 5.99246 5.22673
    4% 4.6902 0.419584 6.10532 5.37543
    5% 5.09975 0.42962 6.45018 5.40737
    6% 5.39447 0.43225 7.33692 5.52024
    2% 5.7 4.16126 4.68091 5.15113 4.68091
    16 4.16126 4.48139 5.15113 4.48139
    -2 5.6884 1.5682 7.4958 6.0701
    -1 4.8060 0.5089 7.4885 4.01579
    0 3.0190 0.11391 4.6616 2.07580
    1 1.6621 0.02079 1.69420 0.83367
    2 0.7781 0.0034132 -1.6029 0.287673
    -1 1 4.63161 0.434089 5.70674 4.88936
    3 5.58803 0.44855 6.45215 4.57098
    9 5.87033 0.46987 6.9390 3.86002
    11 6.8723 0.473094 7.2379 3.85519
    1 6.2 4.26126 0.41097 5.49747 5.54713
    5.5 4.26126 0.42796 5.49747 4.89344
    5.2 4.26126 0.435245 5.49747 4.58897
    4.5 4.26126 0.452571 5.49747 3.8860

     | Show Table
    DownLoad: CSV

    Table 7 demonstrates the variation in SFC and Nusselt numbers for expansion and contraction cases at the lower disk. For contraction α<0 cases, contraction occurs when viscosity is enhanced, it is observed the increment in NTP increases the Nusselt number. The NTP and radius of particles have opposite natures on Nusselt number that is the Nusselt number is decrease as the increase in radius of particles. It is also evident that the amount of SFC and Nusselt number rises with volume fraction and magnetic parameter. For all three cases of shape size factor (sphere, cylindrical, laminar) the highest value of Nusselt number is achieved for aspherical shape. It is noticed that the value of Re changes from negative to positive the increase the SFC and decrease the Nusselt number. It is observed that the NTP and Prandtl number have opposite in nature to the Nusselt number. For expansion α>0 cases, expansion occurs when viscosity decreases, it is observed that the effect of NTP, radius of particles, shape size factor, volume fraction, magnetic parameter, and Prandtl number have the same nature in both contraction /expansion cases on SFC and Nusselt number. The Re have opposite behavior in both contraction /expansion cases on SFC and Nusselt numbers. Table 4 states the numerical stability of the results forf(1),f'(1),andf''(1) at various values ofη. Table 8 demonstrates the comparison result of the Nusselt number for the suction case via bvp4c method and shooting method. An excellent comparison between two numerical techniques is obtained which certifies the present finding validity. Table 9 shows the comparison results of the heat transfer rate of the present work with already published results of Kashif et al. [35]. An astonishing relationship has been accomplished which certifies the validity of present results.

    Table 7.  Variation in SFC and Nusselt number for expansion and contraction cases at lower disk.
    h r φs1=φs2 S Re M Pr Cf1 for contraction case Nuǀη=1 for contraction case Cf1 for expansion case Nuǀη=1 for expansion case
    0.4 0.8 2% 3 -1 1 6.2 4.16126 0.391643 2.42591 0.00196
    0.8 4.16126 0.426513 2.42591 0.00200
    1.2 4.16126 0.43887 2.42591 0.00206
    1.6 4.16126 0.4430 2.42591 0.00209
    0.2 1 4.16126 0.377217 2.42591 0.0021
    1.2 4.16126 0.36550 2.42591 0.00194
    1.4 4.16126 0.355864 2.42591 0.00183201
    1.6 4.16126 0.34729 2.42591 0.001807
    1.8 4.16126 0.339912 2.42591 0.001767
    2 4.16126 0.333482 2.42591 0.001766
    0.8 3% 4.4447 0.417098 2.55701 0.00198
    4% 4.69021 0.419584 2.63048 0.00218
    5% 5.09975 0.42962 2.70455 0.00244
    6% 5.39447 0.43225 2.82254 0.00249
    2% 5.7 4.16126 4.68091 2.42591 0.00193
    16 4.16126 4.48139 2.42691 0.00179
    -2 1.9029 1.5682 1.16283 0.000052
    -1.5 2.6488 0.09384 1.15799 0.00039
    -1 4.1626 0.05089 2.42591 0.00916
    1 4.8060 0.01254 3.3248 0.0175
    2 5.8672 0.00243 3.0047 0.0232
    -1 1 41612 0.391643 2.42591 0.00192
    3 5.0499 0.39928 2.84139 0.00202
    9 5.5127 0.417178 3.896 0.00224
    11 5.7993 0.42936 4.20132 0.002304
    1 6.2 4.1612 0.392613 2.42591 0.00192
    5.5 4.16126 0.41001 2.42591 0.0039
    5.2 4.16126 0.41806 2.42591 0.00529
    4.5 4.16126 0.43727 2.42591 0.01064

     | Show Table
    DownLoad: CSV
    Table 8.  Comparison results in Nusselt number for the suction case at the lower disk for r=0.8,h=0.4,φs1=φs2=0.02,Re=1,S=3,M=1,Pr=6.2.
    Bvp4c results Shooting method results
    h Nuǀη=1 for suction case Nuǀη=1 for suction case
    0.4 0.391635 0.391643
    0.8 0.426509 0.426513
    1.2 0.438828 0.43887
    1.6 0.443035 0.4430
    0.4 0.377209 0.377217

     | Show Table
    DownLoad: CSV
    Table 9.  Comparison results in heat transfer rate at the lower disk for NENTC Re=10,φs2=0,M=2.
    Kashif et al [35] Present results Kashif et al [35] Present results
    φ φs1 α<0 α<0 α>0 α>0
    0% 0% 3.1664 3.166501 1.6794 1.67956
    5% 5% 3.6112 3.6113 1.9174 1.91749
    10% 10% 4.1606 4.160708 2.2135 2.21378
    15% 15% 4.8430 4.84315 2.5839 2.58399
    20% 20% 5.6988 5.69893 3.0519 3.051989

     | Show Table
    DownLoad: CSV

    Figure 2 shows a comparison graph of ENTC and NENTC we observed that ENTC is able to determine the high TC of nanofluids as compared to NENTC of hybrid nanofluids. The reason is that NENTC does not include the influence of the radius of particles and nanolayer thickness. Figures 3 and 4 are established to signify the consequences of expansion/contraction parameter on radial and axial velocity field for fixed values h=0.4,r=0.8,φs1=φs2=0.02,Re=2.5,Pr=6.2,M=1. It is observed that α changes from contraction to expansion axial velocity increases, whereas the increment in radial velocity in the region between the disks and decrement near the disk.

    Figure 5 elaborates on the thermal phenomenon against the Prandtl number. If the value of Pr is decreased, then the maximum temperature profile achieved for Pr= 3 at the lower disk and for Pr = 6.2 for an upper disk. The reason is that the Prandtl number is the product of diffusive momentum to the inverse of thermal diffusivity, so increasing the Pr momentum increases diffusivity, which decreases the coefficient of heat flux. Figure 6 is plotted to show the behavior of the magnetic parameters onto the radial velocity profile. It is observed that by increasing the magnetic parameter radial velocity component decreases. This is because by enhancing the magnetic value, Lorentz forces are produced, decreasing the axial momentum of fluid particles. We can conclude from this argument that the transverse application magnetic field normalizes fluid velocity. The magnetic effect causes the particles within the fluid to vibrate, which is governed by the Lorentz force.

    Figure 7 is sketched to illustrate the impact of volume fraction on axial profile. It is examined that as the volume fraction value is increasing the axial component of velocity rises. Figure 8 represents that when disks are expanding, and fluid is sucked if the NTP is increased then the temperature profile increase at the upper disk and decreased at the lower disk.

    The contour of variable M's influence on radial velocity is shown in Figure 9. In Figure 9, contour lines depicting variants on the radial velocity are sketched, showing the optimal change in velocity against edges and zero change at the Centre. The variation of temperature against (M) is depicted in Figure 10 by contour lines. Contour lines are shown to be roughly fat around the problem's midpoint, with a minimal decreasing pattern along the problem's perimeter.

    The impact of nanolayer on TC of HNF flow with the influence of shape and size via porous surfaces is presented in this paper. Polymeric and CNT nanocomposite properties are combined with hybrid nanofluids. In terms of SFC and Nusselt numbers, numerical and graphical results are achieved. The contour graph of temperature and velocity profiles is drawn in this paper.

    ● effective nanolayer thermal conductivity indicates better results as compared to non-effective nanolayer thermal conductivity

    ● the NTP (h) has a significant effect on ENTC and the heat transfer rate of hybrid nanofluids

    ● the Nusselt number is increase with increment in values of NTP, volume fraction, and magnetic field parameter but decreases with the increase in radius of particles, S, α, Pr for suction case

    ● SFC rises with the increase in volume fraction, and magnetic field parameter and decreases against the value of α for suction case

    ● the Nusselt number is rise with increment in values of NTP, volume fraction, magnetic field parameter, Pr but decrease with the increase in radius of particles, S, Re for contraction

    ● SFC increases with the increase in Re, volume fraction, and magnetic field parameter for contraction

    ● the contrary effect of Re in expansion case as compared contraction case to except NTP, S, r is seen. The effect of NTP, S, and r on Nusselt number and SFC are the same in both cases.

    This work has been done for Newtonian hybrid nanofluid. In the future similar work can be done for non-Newtonian hybrid nanofluid and second-grade hybrid nanofluid.

    This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018).

    The authors declare no conflict of interest.



    [1] L. F. Tóth, P. De. Baets, G. Szebényi, Thermal, viscoelastic, mechanical and wear behaviour of nanoparticle filled polytetrafluoroethylene: A comparison, Polymers, 12 (2020), 1940. https://doi.org/10.3390/polym12091940 doi: 10.3390/polym12091940
    [2] W. E. Hanford, R. M. Joyce, Polytetrafluoroethylene, J. Am. Chem. Soc., 68 (1946), 2082−2085. https://doi.org/10.1021/ja01214a062 doi: 10.1021/ja01214a062
    [3] V. Choudhary, A. Gupta, Polymer/carbon nanotube nanocomposites, In: Carbon nanotubes-polymer nanocomposites, London: IntechOpen, 2011. https://doi.org/10.5772/18423
    [4] W. X. Chen, F. Li, G. Han, J. B. Xia, L. Y. Wang, J. P. Tu, et al., Tribological behavior of carbon-nanotube-filled PTFE composites, Tribol. Lett., 15 (2003), 275−278. https://doi.org/10.1023/A:1024869305259 doi: 10.1023/A:1024869305259
    [5] Y. Lin, B. Zhou, K. A. Shiral Fernando, P. Liu, L. F. Allard, Y. P. Sun, Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer, Macromolecules, 36 (2003), 7199−7204. https://doi.org/10.1021/ma0348876 doi: 10.1021/ma0348876
    [6] C. J. Yu, A. G. Richter, A. Datta, M. K. Durbin, P. Dutta, Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study, Physica B., 283 (2000), 27−31. https://doi.org/10.1016/S0921-4526(99)01885-2 doi: 10.1016/S0921-4526(99)01885-2
    [7] W. Yu, S. U. S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model, J. Nanopart. Res., 6 (2004), 355−361. https://doi.org/10.1007/s11051-004-2601-7 doi: 10.1007/s11051-004-2601-7
    [8] Q. Z. Xue, Model for effective thermal conductivity of nanofluids, Phys. Lett. A, 307 (2003), 313−317. https://doi.org/10.1016/S0375-9601(02)01728-0 doi: 10.1016/S0375-9601(02)01728-0
    [9] W. Yu, S. U. S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res., 5 (2003), 167−171. https://doi.org/10.1023/A:1024438603801 doi: 10.1023/A:1024438603801
    [10] M. Z. A. Qureshi, S. Bilal, M. Y. Malik, Q. Raza, E. S. M. Sherif, Y. M. Li, Dispersion of metallic/ceramic matrix nanocomposite material through porous surfaces in magnetized hybrid nanofluids flow with shape and size effects, Sci. Rep., 11 (2021), 12271. https://doi.org/10.1038/s41598-021-91152-z doi: 10.1038/s41598-021-91152-z
    [11] Z. Abdelmalek, M. Z. A. Qureshi, S. Bilal, Q. Raza, E. S. M. Sherif, A case study on morphological aspects of distinct magnetized 3D hybrid nanoparticles on fluid flow between two orthogonal rotating disks: An application of thermal energy systems, Case Stud. Therm. Eng., 23 (2021), 100744. https://doi.org/10.1016/j.csite.2020.100744 doi: 10.1016/j.csite.2020.100744
    [12] N. Bachok, A. Ishak, I. Pop, Flow and heat transfer over a rotating porous disk in a nanofluid, Physica B, 406 (2011), 1767−1772. https://doi.org/10.1016/j.physb.2011.02.024 doi: 10.1016/j.physb.2011.02.024
    [13] M. Z. A. Qureshi, K. Ali, M. F. Iqbal, M. Ashraf, Heat and mass transfer analysis of unsteady non-newtonian fluid flow between porous surfaces in the presence of magnetic nanoparticles, J. Porous Media, 20 (2017), 1137−1154. https://doi.org/10.1615/JPorMedia.v20.i12.60 doi: 10.1615/JPorMedia.v20.i12.60
    [14] S. Bilal, M. Z. A. Qureshi, Mathematical analysis of hybridized ferromagnetic nanofluid with induction of copper oxide nanoparticles in permeable channel by incorporating Darcy–Forchheimer relation, Math. Sci., 2021. https://doi.org/10.1007/s40096-021-00421-5 doi: 10.1007/s40096-021-00421-5
    [15] H. Alfven, Existance of electromagnetic-hydrodynamic waves, Nature, 150 (1942), 405−406. https://doi.org/10.1038/150405d0 doi: 10.1038/150405d0
    [16] E. H. Aly, I. Pop, MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition, Int. J. Numer. Method. H., 29 (2019), 3012−3038. https://doi.org/10.1108/HFF-12-2018-0794 doi: 10.1108/HFF-12-2018-0794
    [17] A. J. Chamkha, A. S. Dogonchi, D. D. Ganji, Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM, Appl. Sci., 8 (2018), 2396. https://doi.org/10.3390/app8122396 doi: 10.3390/app8122396
    [18] A. S. Dogonchi, D. D. Ganji, Investigation of heat transfer for cooling turbine disks with a non-Newtonian fluid flow using DRA, Case Stud. Therm. Eng., 6 (2015), 40−51. https://doi.org/10.1016/j.csite.2015.06.002 doi: 10.1016/j.csite.2015.06.002
    [19] M. V. Krishna, Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface, Heat Transf., 49 (2020), 1374-1385. https://doi.org/10.1002/htj.21667 doi: 10.1002/htj.21667
    [20] S. P. A. Devi, S. S. U. Devi, Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction, Int. J. Nonlin. Sci. Num., 17 (2016), 249−257. https://doi.org/10.1515/ijnsns-2016-0037 doi: 10.1515/ijnsns-2016-0037
    [21] M. V. Krishna, N. A. Ahammad, A. J. Chamkha, Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface, Case Stud. Therm. Eng., 27 (2021), 101229. https://doi.org/10.1016/j.csite.2021.101229 doi: 10.1016/j.csite.2021.101229
    [22] N. Abbas, K. U. Rehman, W. Shatanawi, M. Y. Malik, Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip, Int. Commun. Heat. Mass., 135 (2022), 106107. https://doi.org/10.1016/j.icheatmasstransfer.2022.106107 doi: 10.1016/j.icheatmasstransfer.2022.106107
    [23] H. Upreti, A. K. Pandey, M. Kumar, Unsteady squeezing flow of magnetic hybrid nanofluids within parallel plates and entropy generation, Heat Transf., 50 (2021), 105−125. https://doi.org/10.1002/htj.21994 doi: 10.1002/htj.21994
    [24] H. Upreti, A. K. Pandey, M. Kumar, Assessment of entropy generation and heat transfer in three-dimensional hybrid nanofluids flow due to convective surface and base fluids, J. Porous Media, 24 (2021), 35−50. https://doi.org/10.1615/JPorMedia.2021036038 doi: 10.1615/JPorMedia.2021036038
    [25] N. Abbas, S. Nadeem, A. Saleem, Computational analysis of water based Cu-Al2O3/H2O flow over a vertical wedge, Adv. Mech. Eng., 12 (2020). https://doi.org/10.1177/1687814020968322 doi: 10.1177/1687814020968322
    [26] S. Nadeem, A. Amin, N. Abbas, On the stagnation point flow of nanomaterial with base viscoelastic micropolar fluid over a stretching surface, Alex. Eng. J., 59 (2020), 1751−1760. https://doi.org/10.1016/j.aej.2020.04.041 doi: 10.1016/j.aej.2020.04.041
    [27] M. I. Anwar, H. Firdous, A. A. Zubaidi, N. Abbas, S. Nadeem, Computational analysis of induced magnetohydrodynamic non-Newtonian nanofluid flow over nonlinear stretching sheet, Prog. React. Kinet. Mec., 47 (2022). https://doi.org/10.1177/14686783211072712 doi: 10.1177/14686783211072712
    [28] P. Priyadharshini, M. V. Archana, N. A. Ahammad, C. S. K. Raju, S. J. Yook, N. A. Shah, Gradient descent machine learning regression for MHD flow: Metallurgy process, Int. Commun. Heat. Mass., 138 (2022), 106307. https://doi.org/10.1016/j.icheatmasstransfer.2022.106307 doi: 10.1016/j.icheatmasstransfer.2022.106307
    [29] N. A. Shah, A. Wakif, E. R. El-Zahar, S. Ahmad, S. J. Yook, Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO), Case Stud. Therm. Eng., 35 (2022), 102046. https://doi.org/10.1016/j.csite.2022.102046 doi: 10.1016/j.csite.2022.102046
    [30] K. Sajjan, N. A. Shah, N. A. Ahammad, C. S. K. Raju, M. D. Kumar, W. Weera, Nonlinear Boussinesq and Rosseland approximations on 3D flow in an interruption of Ternary nanoparticles with various shapes of densities and conductivity properties, AIMS Mathematics, 7 (2022), 18416−18449. https://doi.org/10.3934/math.20221014 doi: 10.3934/math.20221014
    [31] Q. Raza, M. Z. A. Qureshi, B. A. Khan, A. K. Hussein, B. Ali, N. A. Shah, et al., Insight into dynamic of mono and hybrid nanofluids subject to binary chemical reaction, activation energy, and magnetic field through the porous surfaces, Mathematics, 10 (2022), 3013. https://doi.org/10.3390/math10163013 doi: 10.3390/math10163013
    [32] A.S. Sabu, A. Wakif, S. Areekara, A. Mathew, N.A. Shah, Significance of nanoparticles' shape and thermo-hydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating heated disk: the passive control approach, Int. Commun. Heat Mass Transf., 129 (2021) 105711. https://doi.org/10.1016/j.icheatmasstransfer.2021.105711 doi: 10.1016/j.icheatmasstransfer.2021.105711
    [33] T. C. Zhang, Q. L. Zou, Z. H. Cheng, Z. H. Chen, Y. Liu, Z. B. Jiang, Effect of particle concentration on the stability of water-based SiO2 nanofluid, Powder Technol., 379 (2021), 457−465. https://doi.org/10.1016/j.powtec.2020.10.073 doi: 10.1016/j.powtec.2020.10.073
    [34] T. Oreyeni, N. A. Shah, A. O. Popoola, E. R. Elzahar, S. J. Yook, The significance of exponential space-based heat generation and variable thermophysical properties on the dynamics of Casson fluid over a stratified surface with nonuniform thickness, Wave. Random. Complex., 2022, 1−19. https://doi.org/10.1080/17455030.2022.2119304 doi: 10.1080/17455030.2022.2119304
    [35] K. Ali, M. F. Iqbal, Z. Akbar, M. Ashraf, Numerical simulation of unsteady water-based nanofluid flow and heat transfer between two orthogonally moving porous coaxial disks, J. Theor. App. Mech., 52 (2014), 1033−1046. https://doi.org/10.15632/jtam-pl.52.4.1033 doi: 10.15632/jtam-pl.52.4.1033
    [36] J. Majdalani, C. Zhou, C. A. Dawson, Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability, J. Biomech., 35 (2002) 1399–1403. https://doi.org/10.1016/S0021-9290(02)00186-0 doi: 10.1016/S0021-9290(02)00186-0
    [37] Q. Lou, B. Ali, S. U. Rehman, D. Habib, S. Abdal, N. A. Shah, et al., Micropolar dusty fluid: coriolis force effects on dynamics of MHD rotating fluid when lorentz force is significant, Mathematics, 10 (2022), 2630. https://doi.org/10.3390/math10152630 doi: 10.3390/math10152630
    [38] M. Z. Ashraf, S. U. Rehman, S. Farid, A. K. Hussein, B. Ali, N. A. Shah, et al., Insight into significance of bioconvection on MHD tangent hyperbolic nanofluid flow of irregular thickness across a slender elastic surface, Mathematics, 10 (2022), 2592. https://doi.org/10.3390/math10152592 doi: 10.3390/math10152592
    [39] M. Gupta, V. Singh, R. Kumar, Z. Said, A review on thermophysical properties of nanofluids and heat transfer applications, Renew. Sust. Energ. Rev., 74 (2017), 638−670. https://doi.org/10.1016/j.rser.2017.02.073 doi: 10.1016/j.rser.2017.02.073
    [40] L. Yang, W. K. Ji, J. N. Huang, G. Y. Xu, An updated review on the influential parameters on thermal conductivity of nano-fluids, J. Mol. Liq., 296 (2019), 111780. https://doi.org/10.1016/j.molliq.2019.111780 doi: 10.1016/j.molliq.2019.111780
    [41] M. L. Levin, M. A. Miller, Maxwell's "treatise on electricity and magnetism", Sov. Phys. Usp., 24 (1981), 904. https://doi.org/10.1070/PU1981V024N11ABEH004793 doi: 10.1070/PU1981V024N11ABEH004793
    [42] R. L. Hamilton, O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundament., 1 (1962), 187−191. https://doi.org/10.1021/i160003a005 doi: 10.1021/i160003a005
    [43] H. F. Jiang, Q. H. Xu, C. Huang, L. Shi, The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids, Appl. Phys. A, 118 (2015), 197−205. https://doi.org/10.1007/s00339-014-8902-5 doi: 10.1007/s00339-014-8902-5
    [44] S. M. S. Murshed, K. C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., 47 (2008), 560−568. https://doi.org/10.1016/j.ijthermalsci.2007.05.004 doi: 10.1016/j.ijthermalsci.2007.05.004
  • This article has been cited by:

    1. Fatima Zohra Zaoui, Djamel Ouinas, Belkacem Achour, Mabrouk Touahmia, Mustapha Boukendakdji, Enamur R. Latifee, Ahmed A. Alawi Al-Naghi, Jaime Aurelio Viña Olay, Mathematical Approach for Mechanical Behaviour Analysis of FGM Plates on Elastic Foundation, 2022, 10, 2227-7390, 4764, 10.3390/math10244764
    2. Mahnoor Sarfraz, Masood Khan, Thermodynamic irreversibility analysis of water conveying argentum and titania nanoparticles subject to inclined stretching surface, 2023, 98, 0031-8949, 025205, 10.1088/1402-4896/acab92
    3. I. Rashid, T. Zubair, M. I. Asjad, S. Irshad, S. M. Eldin, The MHD graphene−CMC−water nanofluid past a stretchable wall with Joule heating and velocity slip impact: Coolant application, 2023, 10, 2296-424X, 10.3389/fphy.2022.1065982
    4. Amjad Ali, Zainab Bukhari, Muhammad Amjad, Sohail Ahmad, Wasim Jamshed, Sayed M. El Din, Heat transfer analysis of the MHD stagnation-point flow of third-grade fluid over a porous sheet with thermal radiation effect: An algorithmic approach, 2023, 21, 2391-5471, 10.1515/phys-2022-0227
    5. Muhammad Amin Sadiq Murad, Faraidun Kadir Hamasalh, Hajar F. Ismael, Numerical study of stagnation point flow of Casson-Carreau fluid over a continuous moving sheet, 2023, 8, 2473-6988, 7005, 10.3934/math.2023353
    6. S.A. Abdollahi, P. Jalili, B. Jalili, H. Nourozpour, Y. Safari, P. Pasha, D.D. Ganji, Computer simulation of Cu: AlOOH/water in a microchannel heat sink using a porous media technique and solved by numerical analysis AGM and FEM, 2023, 20950349, 100432, 10.1016/j.taml.2023.100432
    7. Yihao Shao, Huai Yang, Xiuya Guo, Huili Wang, Limei Zhu, Xuan Ma, Ruijuan Chen, Shufen Ruan, Lulu Ren, Qian Zheng, Thermal Conductivity Model of Porous Media Embedded with a Damaged Tree-like Branching Network Considering the Influence of Roughness, 2022, 7, 2504-3110, 5, 10.3390/fractalfract7010005
    8. Yasir Nawaz, Muhammad Shoaib Arif, Kamaleldin Abodayeh, Muavia Mansoor, Finite difference schemes for MHD mixed convective Darcy–forchheimer flow of Non-Newtonian fluid over oscillatory sheet: A computational study, 2023, 11, 2296-424X, 10.3389/fphy.2023.1072296
    9. Aziz Ur Rehman, Muhammad Bilal Riaz, Ilyas Khan, Abdullah Mohamed, Time fractional analysis of Casson fluid with application of novel hybrid fractional derivative operator, 2023, 8, 2473-6988, 8185, 10.3934/math.2023414
    10. Mohamed Boujelbene, Sohail Rehman, Sultan Alqahtani, Sultan Alshehery, Sayed M. Eldin, Thermal transport and magnetohydrodynamics flow of generalized Newtonian nanofluid with inherent irreversibility between conduit with slip at the walls, 2023, 17, 1994-2060, 10.1080/19942060.2023.2182364
    11. K Deka, G Sharma, R Paul, R Moulick, S Adhikari, S S Kausik, B K Saikia, Study of plasma sheath in the presence of dust particles in a magnetic mirror-like field configuration, 2023, 98, 0031-8949, 045608, 10.1088/1402-4896/acc0b4
    12. Bing Zhang, Liqin Tang, Hongwei Zhang, Bagh Ali, Nehad Ali Shah, Yongseok Jeon, Finite element study of nanoparticles spacing and radius on dynamics of water fluid subject to microgravity environment, 2023, 47, 22113797, 106355, 10.1016/j.rinp.2023.106355
    13. M. Bilal, M. Safdar, S. Ahmed, R. Ahmad Khan, Analytic similarity solutions for fully resolved unsteady laminar boundary layer flow and heat transfer in the presence of radiation, 2023, 9, 24058440, e14765, 10.1016/j.heliyon.2023.e14765
    14. Kamran Ahmed, Tanvir Akbar, Iftikhar Ahmed, Taseer Muhammad, Muhammad Amjad, Mixed convective MHD flow of Williamson fluid over a nonlinear stretching curved surface with variable thermal conductivity and activation energy, 2023, 1040-7782, 1, 10.1080/10407782.2023.2194689
    15. Sufian Munawar, Najma Saleem, Dharmendra Tripathi, Cilia and electroosmosis induced double diffusive transport of hybrid nanofluids through microchannel and entropy analysis, 2023, 12, 2192-8029, 10.1515/nleng-2022-0287
    16. Qadeer Raza, M Zubair Akbar Qureshi, Shalan Alkarni, Bagh Ali, Ali Zain, Kanayo Kenneth Asogwa, Nehad Ali Shah, Se-Jin Yook, Significance of viscous dissipation, nanoparticles, and Joule heat on the dynamics of water: The case of two porous orthogonal disk, 2023, 2214157X, 103008, 10.1016/j.csite.2023.103008
    17. Sumera Dero, Mustafa Abbas Fadhel, Liaquat Ali Lund, Nehad Ali Shah, Multiple solutions of unsteady flow of CNTs nanofluid over permeable shrinking surface with effects of dissipation and slip conditions, 2024, 38, 0217-9849, 10.1142/S0217984924501203
    18. Umer Farooq, Musawara Safeer, Jifeng Cui, Muzamil Hussain, Nitasha Naheed, Forced convection analysis of Williamson-based magnetized hybrid nanofluid flow through a porous medium: Nonsimilar modeling, 2024, 1040-7790, 1, 10.1080/10407790.2023.2300704
    19. Yasir Nawaz, Muhammad Shoaib Arif, Amna Nazeer, Javeria Nawaz Abbasi, Kamaleldin Abodayeh, A two‐stage reliable computational scheme for stochastic unsteady mixed convection flow of Casson nanofluid, 2024, 96, 0271-2091, 719, 10.1002/fld.5264
    20. Talha Anwar, Poom Kumam, Essam R. El-Zahar, Kanokwan Sitthithakerngkiet, Shah Muhammad, Comparative thermal analysis of Nickel and Tantalum based hybrid nanofluid using constant proportional Caputo and Atangana–Baleanu operators with time-controlled condition, 2023, 49, 2214157X, 103202, 10.1016/j.csite.2023.103202
    21. Moh Yaseen, Sawan Kumar Rawat, Umair Khan, Ioannis E Sarris, Humera Khan, Anup Singh Negi, Arshad Khan, El-Sayed M Sherif, Ahmed M Hassan, Aurang Zaib, Numerical analysis of magnetohydrodynamics in an Eyring–Powell hybrid nanofluid flow on wall jet heat and mass transfer, 2023, 34, 0957-4484, 485405, 10.1088/1361-6528/acf3f6
    22. Samah Maatoug, Kamel Al-Khaled, Ali Raza, Taher Labidi, Lioua Kolsi, Wathek Chammam, Muqrin Almuqrin, Sami Ullah Khan, Fractional computations for free convective flow of Casson-hybrid nanofluid flow with sodium alginate and water as based materials, 2024, 38, 0217-9792, 10.1142/S0217979224502400
    23. Ikram Ullah, Saira Shukat, Ashwag Albakri, Hamid Khan, Ahmed M. Galal, Wasim Jamshed, Thermal performance of aqueous alumina–titania hybrid nanomaterials dispersed in rotating channel, 2023, 37, 0217-9792, 10.1142/S0217979223502375
    24. Xiaomang Miao, Fahid Riaz, Badr Alotaibi, Manoj Kumar Agrawal, Mohammed Abuhussain, Theyab R. Alsenani, Mansoureh Alizadeh Balderlou, Qing Lin, Performance enhancement of latent heat thermal energy storage system by using spiral fins in phase change material solidification process, 2023, 176, 09575820, 568, 10.1016/j.psep.2023.05.102
    25. Seyed Esmail Razavi, Tohid Adibi, Shams Forruque Ahmed, Suvash C. Saha, Semi-analytical solution of nanofluid flow with convective and radiative heat transfer, 2024, 38, 0217-9792, 10.1142/S0217979224503454
    26. Humaira Yasmin, Azzh Saad Alshehry, Abdul Hamid Ghanie, Rasool Shah, Stability of non-Newtonian nanofluid movement with heat/mass transportation passed through a hydro magnetic elongating/contracting sheet: multiple branches solutions, 2023, 13, 2045-2322, 10.1038/s41598-023-44640-3
    27. F. Ali, A. Zaib, M. Faizan, S.S. Zafar, Shalan Alkarni, Nehad Ali Shah, Jae Dong Chung, Heat and mass exchanger analysis for Ree-Eyring hybrid nanofluid through a stretching sheet utilizing the homotopy perturbation method, 2024, 54, 2214157X, 104014, 10.1016/j.csite.2024.104014
    28. Kanwal Jabeen, Bioconvective Carreau nanofluid flow with magnetic dipole, viscous, and ohmic dissipation effects subject to Arrhenius activation energy, 2024, 85, 1040-7782, 2341, 10.1080/10407782.2023.2221005
    29. Danial Habib, Nadeem Salamat, Sajjad Hussain, Sohaib Abdal, Ahmed Kadhim Hussein, Bagh Ali, Variable viscosity effects on dynamic of non-Newtonian fluid nanofluid over a paraboloid of revolution via Keller box method, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05242-8
    30. Dania Qaiser, Naseer M. Khan, Optimizing entropy in mixed convective MHD dissipative nanofluid with cross-diffusion and nonlinear velocity slip, 2024, 1040-7782, 1, 10.1080/10407782.2024.2345865
    31. Prabhat Patel, Ravindra Pathak, Experimental analysis and comparison of thermophysical properties of the three different hybrid nano-catalyst blended diesel fuels, 2024, 1448-4846, 1, 10.1080/14484846.2024.2383041
    32. Qadeer Raza, Xiaodong Wang, Bagh Ali, M. Zubair Akbar Qureshi, Ali J. Chamkha, Heat and mass transfer phenomenon and aligned entropy generation with simultaneous effect for magnetized ternary nanoparticles induced by ferro and nano-layer fluid flow of porous disk subject to motile microorganisms, 2023, 1040-7782, 1, 10.1080/10407782.2023.2292767
    33. Soniya Hegde, N Srikantha, Ahmed Kadhim Hussein, Optimisation of time-dependent Sisko flow in a wire coating process using response surface methodology, 2024, 98, 0973-7111, 10.1007/s12043-024-02761-y
    34. B. Lavanya, J. Girish Kumar, M. Jayachandra Babu, C.S.K. Raju, Bander Almutairi, Nehad Ali Shah, Entropy generation minimization in the Carreau nanofluid flow over a convectively heated inclined plate with quadratic thermal radiation and chemical reaction: A Stefan blowing application, 2024, 13, 2212540X, 233, 10.1016/j.jppr.2024.04.004
    35. H. Ashraf, Sadia Sabir, A.M. Siddiqui, Hamood Ur Rehman, Bander Almutairi, Nehad Ali Shah, Heat transfer analysis of temperature dependent viscosity Johnson–Segalman fluid film flow on a vertical heated belt, 2023, 49, 2214157X, 103362, 10.1016/j.csite.2023.103362
    36. Fehmi Gamaoun, B. M. Shankaralingappa, K. Thanesh Kumar, B. Shanker, Raman Kumar, R. J. Punith Gowda, Consequence of the direction of uniform horizontal magnetic field on nanolubricant flow over a permeable rotating disk, 2024, 38, 0217-9849, 10.1142/S0217984924501732
    37. Humaira Yasmin, Showkat Ahmad Lone, Hussam Alrabaiah, Zehba Raizah, Anwar Saeed, A numerical investigation of the two-dimensional magnetohydrodynamic water-based hybrid nanofluid flow composed of Fe3O4 and Au nanoparticles over a heated surface, 2024, 13, 2191-9097, 10.1515/ntrev-2024-0010
    38. Sanatan Das, Tilak Kumar Pal, Rabindra Nath Jana, Thermal flow of dust particulates-laden fluid in a slanted channel subject to magnetic force, radiant heat flux, and slip and periodic thermal conditions, 2024, 2196-4378, 10.1007/s40571-024-00761-8
    39. Mahi Jaiswal, B. N. Hanumagowda, P V Ananth Subray, S. V. K. Varma, Umair Khan, Ioannis E. Sarris, El-Sayed M. Sherif, Thermal scrutinization of a triangular porous fin induced by linear and nonlinear temperature-dependent heat generation and magnetic field effect: the case of Darcy model, 2024, 1951-6355, 10.1140/epjs/s11734-024-01114-5
    40. Kefeng He, Jiale Chen, Jinying Yu, Lizhe Liang, Zhi Qun Tian, The mechanism of boiling heat transfer of polycarboxylate superplasticizer modified stereotaxically constructed graphene water-based nanofluid: Experiment and molecular dynamics simulation, 2024, 246, 13594311, 122956, 10.1016/j.applthermaleng.2024.122956
    41. Z. Abbas, T. Rahim, J. Hasnain, N. Abid, Z.M. Shah, Entropy generation analysis of multi-mass diffusion in a nanofluid-interfaced three-phase viscous fluid in an inclined channel, 2023, 49, 2214157X, 103368, 10.1016/j.csite.2023.103368
    42. Humaira Sharif, Bagh Ali, Iqra Saman, Nehad Ali Shah, Magda Abd El‐Rahman, Significance of tri‐hybrid nanoparticles on the dynamics of Ellis rotating nanofluid with thermal stratification, 2024, 104, 0044-2267, 10.1002/zamm.202300932
    43. Kezheng Zhang, C.S.K. Raju, Kiran Sajjan, Bander Almutairi, Nehad Ali Shah, Sayed M. Eldin, Nonlinear free convective with longitudinal slits in the presence of super-hydrophobic and non-hydrophobic microchannels in a suspension of nanoparticles: Multi-Linear Regression Analysis, 2023, 49, 2214157X, 103138, 10.1016/j.csite.2023.103138
    44. Jian Wang, Nehad Ali Shah, Bander Almutairi, Oh Kyung Kwon, Jae Dong Chung, Bvp4c approach and duality of hybrid nanofluid over extending and contracting sheet with chemical reaction and cross-diffusion effects, 2024, 57, 22113797, 107362, 10.1016/j.rinp.2024.107362
    45. Shilpa B., Pudhari Srilatha, Umair Khan, Naveen Kumar R., Samia Ben Ahmed, Raman Kumar, Numerical study of thermal and solutal advancements in ZnO–SAE50 nanolubricant flow past a convergent/divergent channel with the effects of thermophoretic particle deposition, 2023, 5, 2516-0230, 6647, 10.1039/D3NA00816A
    46. Madhu J, Shreedevi Kalyan, Yamanappa Gudagi, Varun Kumar R S, Raman Kumar, S. Sureshkumar, Fluid sustainability by the effect of microrotational flow and chemical reactions in a vertical channel, 2024, 0228-6203, 1, 10.1080/02286203.2024.2319008
    47. Zakir Hussain, Asad UR Rehman, Sergei Zuev, Kaouther Ghachem, Khurram Javid, Lioua Kolsi, Sami Ullah Khan, Hydrodynamic instability of graphene oxide-water (GO/H2O) suspension with thermo-capillary layers of shear-thinning fluid, 2024, 38, 0217-9792, 10.1142/S0217979224501650
    48. Sun Yi, Azher M. Abed, Ahmed Deifalla, M. Riaz, Theyab R. Alsenani, Samia Elattar, Chun Yulei, Saleh Al Sulaie, Exergoeconomic evaluation of a novel multigeneration process using solar driven Kalina cycle integrated with gas turbine cycle, double-effect absorption chiller, and liquefied natural gas cold energy recovery, 2023, 176, 09575820, 271, 10.1016/j.psep.2023.05.077
    49. Abdul Rauf, Hafiza Khadija Khan, Nehad Ali Shah, Exploring the influence of morphology on magnetized Ree–Eyring tri‐hybrid nanofluid flow between orthogonally moving coaxial disks using artificial neural networks with Levenberg–Marquardt scheme, 2024, 104, 0044-2267, 10.1002/zamm.202400147
    50. Liaqat Ali, Pardeep Kumar, Hemant Poonia, Sujesh Areekara, Retna Apsari, The significant role of Darcy–Forchheimer and thermal radiation on Casson fluid flow subject to stretching surface: A case study of dusty fluid, 2024, 38, 0217-9849, 10.1142/S0217984923502159
    51. J.K. Madhukesh, G.K. Ramesh, Krishna B. Chavaraddi, Emad H. Aly, Bander Almutairi, Nehad Ali Shah, Impact of active and passive control of nanoparticles in ternary nanofluids across a rotating sphere, 2023, 54, 22113797, 107069, 10.1016/j.rinp.2023.107069
    52. Yasir Nawaz, Muhammad Shoaib Arif, Kamaleldin Abodayeh, Atif Hassan Soori, Umer Javed, A modification of explicit time integrator scheme for unsteady power-law nanofluid flow over the moving sheets, 2024, 12, 2296-598X, 10.3389/fenrg.2024.1335642
    53. Heng Chen, Ibrahim B. Mansir, Bhupendra Singh Chauhan, Ahmed Al-Zahrani, Ahmed Deifalla, Yinhai Hua, Fan Peng, A comprehensive numerical study on the effectiveness of a rotational-based PTC collector integrated porous foam and PV module, 2023, 215, 09601481, 118869, 10.1016/j.renene.2023.05.127
    54. Paresh Vyas, , Darcy-Forchhiemer thermofluidics of Micropolar-Casson fluid adjacent to a non-isothermal vertical plate with velocity slip using homotopy analysis method: Cattaneo-Christov flux, 2023, 1040-7790, 1, 10.1080/10407790.2023.2296075
    55. Abdul Rauf, Fiaz Ahmad, Nehad Ali Shah, Exploring the influence of nanolayer morphology on magnetized tri-hybrid nanofluid flow using artificial neural networks and Levenberg–Marquardt optimization, 2024, 1040-7790, 1, 10.1080/10407790.2024.2346922
    56. Thimlapura Nagaraju Tanuja, Linganna Kavitha, Pudhari Srilatha, Umair Khan, Sibyala Vijaykumar Varma, Rangaswamy Naveen Kumar, Amal Abdulrahman, Mohammed Modather Mohammed Abdou, Effects of dissipation and radiation on the Jeffrey fluid flow in between nano and hybrid nanofluid subject to porous medium, 2024, 104, 0044-2267, 10.1002/zamm.202300852
    57. E. O. Titiloye, A. T. Adeosun, Mojeed T. Akolade, Y. O. Tijani, J. O. Olabode, THERMAL CRITICALITY OF ELECTROMAGNETOHYDRODYNAMIC REACTIVE SQUEEZED CASSON MATERIAL IN A COMBUSTIBLE CHANNEL: A SPECTRAL APPROACH , 2023, 15, 1940-2503, 69, 10.1615/ComputThermalScien.2023043611
    58. Yi Liang, Cheng Wang, Pengtao Sun, An Interface-Fitted Fictitious Domain Finite Element Method for the Simulation of Neutrally Buoyant Particles in Plane Shear Flow, 2023, 8, 2311-5521, 229, 10.3390/fluids8080229
    59. Saquib Ul Zaman, Muhammad Nauman Aslam, Mathematical analysis of Williamson nanofluid flow under radiation effects through slender cylinder, 2023, 0228-6203, 1, 10.1080/02286203.2023.2296635
    60. Basma Souayeh, Zulqurnain Sabir, Designing Hyperbolic Tangent Sigmoid Function for Solving the Williamson Nanofluid Model, 2023, 7, 2504-3110, 350, 10.3390/fractalfract7050350
    61. Kashif Ali, Sohail Ahmad, Shabbir Ahmad, Wasim Jamshed, Vineet Tirth, Ali Algahtani, Tawfiq Al-Mughanam, Kashif Irshad, Haifa Alqahtani, Sayed M. El Din, Insights into the thermal attributes of sodium alginate (NaCHO) based nanofluids in a three-dimensional rotating frame: A comparative case study, 2023, 49, 2214157X, 103211, 10.1016/j.csite.2023.103211
    62. J. Madhu, J.K. Madhukesh, I. Sarris, B.C. Prasannakumara, G.K. Ramesh, Nehad Ali Shah, Bagh Ali, C.S.K. Raju, Abderrahim Wakif, Noor Muhammad, H. Ashraf, Influence of quadratic thermal radiation and activation energy impacts over oblique stagnation point hybrid nanofluid flow across a cylinder, 2024, 60, 2214157X, 104624, 10.1016/j.csite.2024.104624
    63. P. Priyadharshini, M. Vanitha Archana, Nehad Ali Shah, Mansoor H. Alshehri, Ternary Hybrid Nanofluid Flow Emerging on a Symmetrically Stretching Sheet Optimization with Machine Learning Prediction Scheme, 2023, 15, 2073-8994, 1225, 10.3390/sym15061225
    64. Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui, Numerical simulation of hybrid nanofluid flow consisting of polymer–CNT matrix nanocomposites subject to Lorentz force and heat source/sink across coaxial cylinders, 2024, 0217-9849, 10.1142/S021798492450386X
    65. Wenjie Lu, Umar Farooq, Muhammad Imran, Wathek Chammam, Sayed M. El Din, Ali Akgül, Comparative investigations of Ag/H2O nanofluid and Ag-CuO/H2O hybrid nanofluid with Darcy-Forchheimer flow over a curved surface, 2023, 12, 2191-9097, 10.1515/ntrev-2023-0136
    66. Mohamed Boujelbene, Essam R. El-Zahar, Laila F. Seddek, Zia Ullah, O. D. Makinde, Viscous dissipation and variable viscosity impacts on oscillatory heat and mass transfer of gravity-driven reactive flow along heated plate, 2023, 35, 1070-6631, 10.1063/5.0157974
    67. P. Sudarsana Reddy, P. Sreedevi, Unsteady gyrotactic microorganisms and magnetic nanofluid heat and mass transfer analysis inside a chamber with thermal radiation, 2024, 45, 0143-0750, 10.1080/01430750.2023.2277301
    68. Amjad Salamah M Aljaloud, Physical interference of magnetic dipole for retardation type nanofluid with bioconvection phenomenon, 2023, 37, 0217-9792, 10.1142/S0217979223503101
    69. Maddina Dinesh Kumar, Chakravarthula Siva Krishnam Raju, Essam R. El‐Zahar, Nehad Ali Shah, Se‐Jin Yook, Artificial neural network of thermal Buoyancy and Fourier flux impact on suction/injection‐based Darcy medium surface filled with hybrid and ternary nanoparticles, 2024, 104, 0044-2267, 10.1002/zamm.202300618
    70. Lioua Kolsi, Ahmed Mir, Taseer Muhammad, Muhammad Bilal, Zubair Ahmad, Numerical simulation of heat and mass transfer through hybrid nanofluid flow consists of polymer/CNT matrix nanocomposites across parallel sheets, 2024, 108, 11100168, 319, 10.1016/j.aej.2024.07.084
    71. Talha Anwar, Poom Kumam, Essam R. El-Zahar, Shah Muhammad, Laila F. Seddek, Thermal analysis of mineral oil-based hybrid nanofluid subject to time-dependent energy and flow conditions and multishaped nanoparticles, 2024, 149, 1388-6150, 6813, 10.1007/s10973-023-12622-2
    72. Xianglong Liu, Zhaohui Wang, Quanjie Gao, Xiao Sun, Qianwen Yang, Haonan Yang, Field synergy analysis of heat transfer characteristics of mixed nanofluid flow in self-excited oscillating heat exchanger tubes, 2024, 149, 1388-6150, 4893, 10.1007/s10973-024-13032-8
    73. Naveed Imran, Maryiam Javed, Muhammad Sohail, Mubashir Qayyum, Raja Mehmood Khan, Multi-objective study using entropy generation for Ellis fluid with slip conditions in a flexible channel, 2023, 37, 0217-9792, 10.1142/S0217979223503162
    74. Sana Ullah Saqib, Umar Farooq, Nahid Fatima, Yin-Tzer Shih, Ahmed Mir, Lioua Kolsi, Novel Recurrent Neural Networks for Efficient Heat Transfer Analysis in Radiative Moving Porous Triangular Fin with Heat Generation, 2024, 2214157X, 105516, 10.1016/j.csite.2024.105516
    75. S. Bilal, M.Z.A. Qureshi, M. Awais, Muhammad Farooq, Evaluating Formation of Interfacial Nanolayer of Au/Cu with Graphene Nanoparticles along with Magnetic-Morphologies by Considering Cattaneo-Christov heat flux Dynamics, 2024, 26668181, 101020, 10.1016/j.padiff.2024.101020
    76. Sharanayya Swami, Suresh Biradar, Mohammed Qader Gubari, S. P. Samrat, Jagadish V. Tawade, Nitiraj Kulkarni, Mohammed Jameel, Dilsora Abduvalieva, R. Naveen Kumar, M. Ijaz Khan, Heat transfer mechanism for Newtonian and non-Newtonian casson hybrid nanofluid subject to thermophoresis and Brownian motion over a movable wedge surface, 2025, 8, 2520-8160, 10.1007/s41939-024-00704-z
    77. Yoon-Ji Yim, Young-Hoon Yoon, Seong-Hwang Kim, Jeong-Hoon Lee, Dong-Chul Chung, Byung-Joo Kim, Carbon Nanotube/Polymer Composites for Functional Applications, 2025, 17, 2073-4360, 119, 10.3390/polym17010119
    78. Muhammad Faisal, Muhammad Zubair Akbar Qureshi, Nehad Ali Shah, Thermal performance of DispersedInorganic magnetic hybrid nanomaterials into mixed convective flow through flexible porous disks, 2025, 105, 0044-2267, 10.1002/zamm.202301049
    79. Aroosa Ramzan, Moeed Ahmad, Waseem Abbas, Exploring the impact of morphological nanolayers on mixed convection in MHD nanofluids through a neurocomputational approach, 2025, 0961-5539, 10.1108/HFF-11-2024-0833
    80. Sakeena Bibi, Taoufik Saidani, Aaqib Majeed, Nouman Ijaz, Thermal energy of paraffin based MHD rotating flow with molybdenum oxide and silver nanoparticles: applications in renewable energy systems, 2025, 8, 2520-8160, 10.1007/s41939-025-00777-4
    81. Hafiz Muhammad Shahbaz, Iftikhar Ahmad, Intelligent predictive networks for MHD nanofluid with carbon nanotubes and thermal conductivity along a porous medium, 2025, 22113797, 108175, 10.1016/j.rinp.2025.108175
    82. Qadeer Raza, Xiaodong Wang, Tahir Mushtaq, Bagh Ali, Nehad Ali Shah, Finite element analysis of nanolayer thermal conductivity in Boger nanofluid flow with radius of nanoparticle and motile microorganisms under time-dependent conditions, 2025, 194, 09600779, 116205, 10.1016/j.chaos.2025.116205
    83. Thirupathi Thumma, Surender Ontela, Devarsu Radha Pyari, S.R. Mishra, Subhajit Panda, Heat Transfer Optimization in Magnetohydrodynamic Buoyancy-Driven Convective Hybrid Nanofluid with Carbon Nanotubes over a Slippery Rotating Porous Surface, 2025, 2666934X, 100132, 10.1016/j.jciso.2025.100132
    84. Sharanayya Swami, Suresh Biradar, Jagadish V Tawade, Vediyappan Govindan, Haewon Byeon, Busayamas Pimpunchat, Brownian motion effects and thermophoresis on heat transmission mechanism of hybrid nano liquid flow over a stretched wedge surface, 2025, 14, 26668181, 101157, 10.1016/j.padiff.2025.101157
    85. P. K. Ratha, S. R. Mishra, Subhajit Panda, Kottakkaran Sooppy Nisar, Time-dependent squeezing flow analysis of trihybrid nanofluid within two parallel plates: Targeted drug delivery system, 2025, 1388-6150, 10.1007/s10973-025-14190-z
    86. Kainat Yasin, M. Zubair Akbar Qureshi, Ali Ovais, Muhammad Waheed Rasheed, Abdu Alameri, Modeling magnetohydrodynamic ternary nanofluid flow over rotating porous discs with interfacial morphology effects, 2025, 7, 3004-9261, 10.1007/s42452-025-06862-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2870) PDF downloads(145) Cited by(86)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog