Research article Special Issues

Blow-up criteria for the full compressible Navier-Stokes equations involving temperature in Vishik Spaces

  • In this paper, we consider the conditional regularity for the 3D incompressible Navier-Stokes equations in Vishik spaces. These results will be regarded an improvement of the results given by Huang-Li-Xin, (SIAM J. Math. Anal., 2011) and Jiu-Wang-Ye, (J. Evol. Equ., 2021).

    Citation: Jae-Myoung Kim. Blow-up criteria for the full compressible Navier-Stokes equations involving temperature in Vishik Spaces[J]. AIMS Mathematics, 2022, 7(8): 15693-15703. doi: 10.3934/math.2022859

    Related Papers:

    [1] Yina Lin, Qian Zhang, Meng Zhou . Global existence of classical solutions for the 2D chemotaxis-fluid system with logistic source. AIMS Mathematics, 2022, 7(4): 7212-7233. doi: 10.3934/math.2022403
    [2] Kaile Chen, Yunyun Liang, Nengqiu Zhang . Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418
    [3] Qingkun Xiao, Jianzhu Sun, Tong Tang . Uniform regularity of the isentropic Navier-Stokes-Maxwell system. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373
    [4] Jia Jia . Analytical solutions to the 2D compressible Navier-Stokes equations with density-dependent viscosity coefficients. AIMS Mathematics, 2025, 10(5): 10831-10851. doi: 10.3934/math.2025492
    [5] Li Lu . One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810
    [6] Shaoliang Yuan, Lin Cheng, Liangyong Lin . Existence and uniqueness of solutions for the two-dimensional Euler and Navier-Stokes equations with initial data in $ H^1 $. AIMS Mathematics, 2025, 10(4): 9310-9321. doi: 10.3934/math.2025428
    [7] Hui Fang, Yihan Fan, Yanping Zhou . Energy equality for the compressible Navier-Stokes-Korteweg equations. AIMS Mathematics, 2022, 7(4): 5808-5820. doi: 10.3934/math.2022321
    [8] Jianlong Wu . Regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term. AIMS Mathematics, 2024, 9(6): 16250-16259. doi: 10.3934/math.2024786
    [9] Jae-Myoung Kim . Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777
    [10] Yunxi Guo, Ying Wang . The Cauchy problem to a gkCH equation with peakon solutions. AIMS Mathematics, 2022, 7(7): 12781-12801. doi: 10.3934/math.2022707
  • In this paper, we consider the conditional regularity for the 3D incompressible Navier-Stokes equations in Vishik spaces. These results will be regarded an improvement of the results given by Huang-Li-Xin, (SIAM J. Math. Anal., 2011) and Jiu-Wang-Ye, (J. Evol. Equ., 2021).



    We study the following system of Newton heat-conducting compressible fluid in three-dimensional space

    {ρt+(ρu)=0,ρut+ρuu+P(ρ,θ)μΔu(μ+λ)div  u=0,cv[ρθt+ρuθ]+Pdiv  uκΔθ=μ2|u+(u)tr|2+λ(div  u)2,(ρ,u,θ)|t=0=(ρ0,u0,θ0). (1.1)

    Here, ρ,u,θ stand for the flow density, velocity and the absolute temperature, respectively. The scalar function P represents the pressure, the state equation of which is determined by

    P=Rρθ, R>0, (1.2)

    and κ is a positive constant and two constants μ and λ are the coefficients of viscosity satisfying the physical restrictions μ>0, 2μ+3λ0. The initial conditions satisfy

    ρ(x,t)0, u(x,t)0, θ(x,t)0, as |x|, for t0. (1.3)

    Let γ>0. For all (t,x)R×R3, we consider the following scaled functions:

    ρλ=ρ(λ2t,λx),uλ=λu(λ2t,λx),θλ=λ2θ(λ2t,λx). (1.4)

    There are huge literatures on the study of the existence of solutions to compressible Navier-Stokes equations, we only give a brief survey for blow-up criteria rather than the existence of solutions. When the initial data contain vacuums, after Xin's blow-up works [21,22], the various result for blow up critria for strong solutions to the system (1.1) is investigated. In present paper, in particular, we focus on the Serrin type criteria (e.g. [6,7,8,9]) as

    limsupTT(div  uL1(0,T;L(R3))+uLp(0,T;Lq(R3)))=,2p+3q=1,q>3,

    or

    limsupTT(ρL(0,T;L(R3))+uLp(0,T;Lq(R3)))=,2p+3q=1,q>3

    and it is aimed to expand them into Vishik space motivated by the results of two recent papers Kanamaru [10] and Wu [20] (see also [2,3,4,5,11,12,13,14,15,16,18,19] for other criteria containing Beale-Kato-Majda blow-up mechanism).

    We remind the local well-posedness of strong solutions to the equations (1.1) (see [1]).

    Theorem 1.1. Let λ<3μ. Suppose u0,θ0(D1D2)(R3) and ρ0(W1,qH1L1)(R3) for some q(3,6]. If ρ0 isnonnegative and the initial data satisfy the compatibility condition

    μΔu0(μ+λ)divu0+P(ρ0,θ0)=ρ0g1Δθ0+μ2|u0+(u0)tr|2+λ(divu0)2=ρ0g2

    forvector fields g1,g2L2(R3). Then there exist atime T(0,] and unique solution tp the equations (1.1)–(1.3), satisfying

    (ρ,u,θ)C([0,T);(L1H1W1,q))(R3)×C([0,T);(D1D2)(R3))×L2([0,T);D2,q(R3)),
    (ρt,ut,θt)C([0,T);(L2Lq)(R3))×L2([0,T);D1(R3))×L2([0,T);D1(R3)),
    (ρ1/2ut,ρ1/2θt)L([0,T);L2(R3))×L([0,T);L2(R3)).

    If the maximal existence time T is finite, then there holds

    lim supTT(ρL(0,T;L(R3))+θL2q2q3(0,T;˙V0q,σ,1(R3)))=, q>32, (1.5)

    where σ[1,],θ[1,σ].

    Remark 1.1. In the light of the arguments in [7,8], we observe that (1.5) be replaced by

    lim supTT(div  uL1(0,T;L(R3))+θLp(0,T;Lq(R3)))=.

    We note that the condition (1.5) is in scaling invariant norm in the sense of (1.4) for the temperature.

    Remark 1.2. Without the restriction λ<3μ, in the case away from vacuum, through the argument in [9] and our proof, we obtain the similar results [9,Theorem 1.3] of what the authors in [9] says in Vishik space.

    Next, we consider the full compressible Navier-Stokes equations without temperature.

    {tρ+div(ρu)=0,t(ρu)+div(ρuu)μΔu(μ+λ)(divu)+P(ρ)=0,(ρ,u)(x,0)=(ρ0,u0)(x), (1.6)

    where ρ,u, and P are the density, velocity and pressure respectively. The equation of state is given by

    P(ρ)=aργ,(a>0,γ>1). (1.7)

    The constants μ and λ are the shear viscosity and the bulk viscosity coefficients respectively. They satisfy the following physical restrictions: μ>0,3λ+2μ0.

    Through a similar scheme in Theorem 1.1, we also obtain the following result for the equations (1.6).

    Theorem 1.2. Let (ρ,u) be a strongsolution to the Cauchy problem (1.6)–(1.7) with theinitial data (ρ0,u0) satisfy

     0ρ0(L1H1W1,r)(R3),u0(D1D2)(R3),

    for some r(3,) and the compatibility condition:

    μu0(λ+μ)divu0+P(ρ0)=ρ1/20gfor some  gL2(R3).

    If T< is the maximal time of existence, then both

    limTT(divuL1(0,T;L(R3))+uL2pp3(0,T;˙V0q,σ,1R3)))=,

    and

    limTT(ρL(0,T;L(R3))+uL2pp3(0,T;˙V0q,σ,1(R3)))=,3<p.

    where σ[1,],θ[1,σ].

    We follow the notation of [6] and [9]. For 1p, Lp(R3) represents the usual Lebesgue space. The classical Sobolev space Wk,p(R3) is equipped with the norm fWk,p(R3)=kα=0DαfLp(R3). A function f belongs to the homogeneous Sobolev spaces Dk,l if uL1loc(R3):kuLl<. C>0 is an absolute constant which may be different from line to line unless otherwise stated in this paper. We also now introduce a Banach space ˙Vsp,σ,θ(R3) which is larger than the homogeneous Besov space; see [10,17].

    Definition 2.1. Let sR,p,σ[1,],θ[1,σ], the Vishik space ˙Vsp,σ,θ is defined by

    ˙Vsp,σ,θ(R3):={fD(R3):f˙Vsp,σ,θ<},

    with the norm

    f˙Vsp,σ,θ(R3):={supN=1,2,(|j|<N2jsθ˙ΔjfθLp)1θN1θ1σ,θ,f˙B0p,(RN),θ=.

    Here D(R3) is the dual space of D(R3)={fS(R3);Dαˆf(0)=0, αN3}. As mentioned in [20], we remind that the following continuous embeddings hold:

    ˙Bsp,σ(R3)=˙Vsp,σ,σ(R3)˙Vsp,σ,θ1(R3)˙Vsp,σ,θ2(R3)˙Vsp,σ,1(R3)

    for sR, p,σ[1,] and θ1,θ2[1,σ] with θ1θ2.

    In what follows, for simplicity, we write

    Lp=Lp(R3), Hk=Wk,2(R3), Dk=Dk,2(R3), ˙Vsp,σ,θ:=˙Vsp,σ,θ(R3).

    We will prove Theorem 1.1 by a contradiction argument. Therefore, we assume that

    ρL(0,T;L)+θL2q2q3(0,T;˙V0q,σ,1(R3))C, 2p+3q=2, q>32. (3.1)

    Lemma 3.1. Suppose that (3.1) is valid and λ<3μ, then there holds

    sup0tTR3[μ2|u|2+(μ+λ)(div u)2+12μ+λP22Pdiv u+C2ρθ2+C+12μρ|u|4]
    +T0[κR3|θ|2+12ρ|˙u|2+|u|2|u|2]dtC.

    Proof. From Lemma 2.3 and Lemma 3.1 in [9], we know that

    ddt[μ2|u|2+(μ+λ)(div  u)2+12μ+λP22Pdiv  u+C2ρθ2]
    +κ|θ|2+12ρ|˙u|2Cρ|θ|3+Cρ|u|2|θ|2+C|u|2|u|2, (3.2)

    and

    ddt ρ|u|4+R3{|u|>0}|u|2|u|2Cρ|u|2|θ|2. (3.3)

    Multiplying the inequality (3.3) by (C+1) and adding the result to the inequality (3.2), we have

    ddt[μ2|u|2+(μ+λ)(div  u)2+12μ+λP22Pdiv  u+C2ρθ2+C+12μρ|u|4]
    +κ|θ|2+12ρ|˙u|2+|u|2|u|2Cρ|θ|3+Cρ|u|2|θ|2. (3.4)

    For the second term in the right hand side of (3.4), we note that

    ρ|u|2|θ|2=ρ12|θ|ρ12|u|2|j<NΔjθ|+ρ12|θ|ρ12|u|2|j=Nj=NΔjθ| (3.5)
    +ρ12|θ|ρ12|u|2|j>NΔjθ|:=I+II+III.

    Now, let's control each term sequentially by Hölder's inequality, interpolation inequality(for the term II below), Sobolev embedding theorem, Berstein's inequality and Young's inequalities:

    (The term (I)):

    Ij<NΔjθLρ12θL2ρ12|u|2L2Cj<N232jθL2ρ12θL2ρ12|u|2L2
    C23N2θ2L2(ρ12θ2L2+ρ12|u|22L2).

    (The term (II)):

    IIj=Nj=NΔjθLqρ12θL2qq1ρ12|u|2L2qq1j=Nj=NΔjθLqρ12θ132qL2ρ12θ32qL6ρ12|u|2132qL2ρ12|u|232qL6CN11σsupN=1,2,j=Nj=N˙ΔjuLqN11σρ12θ132qL2ρ12|u|2132qL2(θ3qL2+|u|23qL2)Cθ2q2q3˙V0q,σ,1ρ12θL2ρ12|u|2L2+116θ2L2+116|u|22L2Cθ2q2q3˙V0q,σ,1(ρ12θ2L2+ρ12|u|22L2)+116θ2L2+116|u|22L2. (3.6)

    (The term (III)):

    IIIj>NΔjθL3ρ12|u|2L6ρ12θL2Cρ12|u|2L6j>N212jθL2ρ12θL2
    C2N2θL2|u|2L2ρ12θL22N2θ2L2ρ12θ2L2+132|u||u|2L2.

    Summing up the estimates above, we have

    ρ|u|2|θ|2C23N2θ2L2(ρ12θ2L2+ρ12|u|22L2)+Cθ2q2q3˙V0q,σ,1(ρ12θ2L2+ρ12|u|22L2)
    +116θ2L2+116|u|22L2+2N2θ2L2ρ12θ2L2. (3.7)

    By similar above arguments, we get

    ρ|θ|3=ρ12|θ|ρ12θ|θ|C23N2θ2L2ρ12θ2L2+Cθ2q2q3˙V0q,σ,1ρ12θ2L2+116θ2L2+116|u|22L2+2N2θ2L2ρ12θ2L2. (3.8)

    Substituting (3.7) and (3.8) into (3.4), we obtain

    ddt[μ2|u|2+(μ+λ)(div  u)2+12μ+λP22Pdiv  u+C2ρθ2+C+12μρ|u|4]  +κ2|θ|2+12ρ|˙u|2+12R3{|u|>0}|u|2|u|2C23N2θ2L2(ρ12θ2L2+ρ12|u|22L2)+Cθ2q2q3˙V0q,σ,1(ρ12θ2L2+ρ12|u|22L2)+116θ2L2+116|u|22L2+2N2θ2L2ρ12θ2L2C(C23N2+2N2θ2L2θ2L2+θ2q2q3˙V0q,σ,1)([μ2|u|2+(μ+λ)(div  u)2+12μ+λP22Pdiv  u+C2ρθ2+C+12μρ|u|4])+116θ2L2+116|u|22L2, (3.9)

    where we used the fact that

    [(μ+λ)(div  u)2+12μ+λP22Pdiv  u+C2ρθ2]ρθ2,

    for a sufficiently large constant C>0. Now, choosing N>0 sufficiently large such that C2N2θ2L21128, the estimate (3.9) becomes

    ddt[μ2|u|2+(μ+λ)(div  u)2+12μ+λP22Pdiv  u+C2ρθ2+C+12μρ|u|4] (3.10)
    +κ|θ|2+12ρ|˙u|2+|u|2|u|2Cρ|θ|3+Cρ|u|2|θ|2CNu2pp3˙V0q,σ,1u2L2.

    Then, Grönwall's inequality and (3.10) enables us to obtain that the desired results.

    sup0tTR3[μ2|u|2+(μ+λ)(div  u)2+12μ+λP22Pdiv  u+C2ρθ2+C+12μρ|u|4]
    +T0[κR3|θ|2+12ρ|˙u|2+|u|2|u|2]dtC.

    Proof of Theorem 1.1. In the proof in Theorem 1.1 in [9], as long as Lemma 3.2 in [9] is only replaced by Lemma 3.1 in present paper, the proof is completed.

    Let (ρ,u) be a strong solution to the problem (1.6)-(1.7) as described in Theorem 1.2. Then the standard energy estimate yields

    sup0tT(ρ1/2u(t)2L2+ρL1+ργLγ)+T0u2L2dtC,0T<T. (4.1)

    We first prove Theorem 1.2 by a contradiction argument. Otherwise, there exists some constant M0>0 such that

    limTT(ρL(0,T;L)+uL2pp3(0,T;˙V0q,σ,1(R3)))M0. (4.2)

    The first key estimate on u will be given in the following lemma.

    Lemma 4.1. Under the condition (4.2), it holds that

    sup0tTu2L2+T0ρu2tdxdtC,0T<T. (4.3)

    Proof. It follows from the momentum equations in (1.6) that

    G=div(ρ˙u),μω=×(ρ˙u),

    where ˙v:=vt+uv,G:=(2μ+λ)divuP(ρ),ω:=×u are the material derivative of f, the effective viscous flux G and the vorticity ω, respectively. In particular, for the effective viscous flux, it is well-known that

    GLpρ˙uLp, p(1,+),

    and

    GL2+ωL2C(ρutL2+ρuuL2). (4.4)

    Multiplying the momentum equation (1.6)2 by ut and integrating the resulting equation over R3 gives

    12ddt(μ|u|2+(λ+μ)(divu)2)dx+ρu2tdx=Pdivutdxρuuutdx. (4.5)

    From (1.6)1, we note that

    Pt+div(Pu)+(γ1)Pdivu=0.

    For the first term in the right hand side of (4.5), one has

    PdivutdxddtPdivudx+18G2L2+Cu2L2+C. (4.6)

    Substituting (4.6) into (4.5), we have

    ddt(μ2|u|2+λ+μ2(divu)2Pdivu)dx+12ρu2tdxCu2L2+ρ|uuut|dx+C.

    For the second term in the right hand side of (4.5), we have

    |ρ1/2uuρ1/2ut|dx|ρ1/2j<NΔju||u||ρ1/2ut|dx
    +|ρ1/2j=Nj=NΔju||u||ρ1/2ut|dx+|ρ1/2j>NΔju||u||ρ1/2ut|dx:=I+II+III.

    In a similar way to (3.5), we let control each term sequentially.

    (The term (I)):

    IC23N2u2L2u2L2+132ρ1/2ut2L2.

    (The term (II)):

    IICNu2pp3˙V0p,σ,1u2L2+132(ρ1/2utL2+2u2L2).

    (The term (III)):

    IIIC2N2u2L22u2L2+132ρ1/2ut2L2.

    Summing up the estimates IIII, it is bounded by

    C23N2u2L2u2L2+CNu2pp3˙V0p,σ,1u2L2+C2N2u2L22u2L2 (4.7)
    +116(ρ1/2utL2+2u2L2).

    On the other hand, due to (4.4), we note that

    2u2L2(R3)C(ρut2L2(R3)+ρuu2L2(R3)) (4.8)
    Cρut2L2(R3)+C23N2u2L2u2L2+C2N2u2L22u2L2+CNu2pp3˙V0p,σ,1u2L2.

    Collecting (4.7) and (4.8), we have

    ddt(μ2|u|2+λ+μ2(divu)2Pdivu)dx+14ρu2tdx+|G|2dx (4.9)
    Cρut2L2(R3)+C23N2u2L2u2L2+C2N2u2L22u2L2+CNu2pp3˙V0p,σ,1u2L2.

    Now, choosing N>0 sufficiently large such that C2N2u2L21128, (indeed, the constant C>0 is also depending on ρ1/20u02L2) the estimate (4.9) becomes

    ddtR3(μ2|u|2+λ+μ2(divu)2Pdivu+ρ|u|2+ρ+ργ)dx (4.10)
    +R3(|G|2+|u|2+14ρ|ut|2)dxCN(u2pp3˙V0p,σ,1+1)(u2L2+1),

    which, together with (4.2) and Grönwall's inequality, gives (4.3). The proof of Lemma 4.1 is completed.

    Proof of Theorem 1.2. In the proof in Theorem 1.1 in [6], as long as Lemma 3.1 in [6] is only replaced by Lemma 4.1 in our paper, the proof is completed.

    For the convenience of the reader, we give the proof for (4.6), given in [6].

    Pdivutdx=ddtPdivudxPtdivudx=ddtPdivudx+div(Pu)divudx+(γ1)P(divu)2dx=ddtPdivudx(Pu)divudx+(γ1)P(divu)2dx=ddtPdivudx12μ+λPuGdx12(2μ+λ)P2divudx+(γ1)P(divu)2dxddtPdivudx+18G2L2+Cu2L2+C, (5.1)

    Our result is focused on the full compressible Navier-Stokes equationss. However, it is believed that our results can be expanded in various ways for the coupled equations or system. In this regard, we think of it as a future study and intend to produce more meaningful results.

    The current paper results are Blow-up criteria for solutions in Vishik Space which is a weaker space to Besov space and Lebesgue space. It seems to be a meaningful result in this regard, and it is new.

    The authors thank the very knowledgeable referee very much for his/her valuable comments and helpful suggestions. Jae-Myoung Kim was supported by National Research Foundation of Korea Grant funded by the Korean Government (NRF-2020R1C1C1A01006521).

    The authors declare that there are no conflicts of interest in this paper.



    [1] Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations., 228 (2006), 377–411. https://doi.org/10.1016/j.jde.2006.05.001 doi: 10.1016/j.jde.2006.05.001
    [2] L. Du, Y. Wang, Blowup criterion for 3-dimensional compressible Navier-Stokes equations involving velocity divergence, Commun. Math. Sci., 12 (2014), 1427–1435. https://doi.org/10.4310/CMS.2014.v12.n8.a3 doi: 10.4310/CMS.2014.v12.n8.a3
    [3] J. Fan, S. Jiang, Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré, Anal. Non Linéaire., 27 (2010), 337–350. https://doi.org/10.1016/j.anihpc.2009.09.012 doi: 10.1016/j.anihpc.2009.09.012
    [4] S. Gala, M. A. Ragusa, Y. Sawano, H. Tanaka, Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces, Appl. Anal., 93 (2014), 356–368. https://doi.org/10.1080/00036811.2013.772582 doi: 10.1080/00036811.2013.772582
    [5] X. Huang, J. Li, On breakdown of solutions to the full compressible Navier-Stokes equations, Meth. Appl. Anal., 16 (2009), 479–490. https://doi.org/10.4310/MAA.2009.v16.n4.a4 doi: 10.4310/MAA.2009.v16.n4.a4
    [6] X. Huang, J. Li, Z. Xin, Serrin-type criterion for the three-dimensional viscous compressible flows, SIAM J. Math. Anal., 43 (2011), 1872–1886. https://doi.org/10.1137/100814639 doi: 10.1137/100814639
    [7] X. Huang, J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147–171. https://doi.org/10.1007/s00220-013-1791-1 doi: 10.1007/s00220-013-1791-1
    [8] X. Huang, J. Li, Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 207 (2013), 303–316. https://doi.org/10.1007/s00205-012-0577-5 doi: 10.1007/s00205-012-0577-5
    [9] Q. Jiu, Y. Wang, Y. Ye, Refined blow-up criteria for the full compressible Navier-Stokes equations involving temperature, J. Evol. Equ., 21 (2021), 1895–1916.
    [10] R. Kanamaru, Optimality of logarithmic interpolation inequalities and extension criteria to the Navier-Stokes and Euler equations in Vishik spaces. J. Evol. Equ., (2020), 1–17.
    [11] J. M. Kim, Regularity for 3D inhomogeneous Naiver-Stokes equations in Vishik spaces, J. Funct. Spaces, 2022, Article ID 7061004, 4 pp. https://doi.org/10.1155/2022/7061004
    [12] Y. Li, J. Xu, S. Zhu, Blow-up criterion for the 3D compressible non-isentropic Navier-Stokes equations without thermal conductivity, J. Math. Anal. Appl., 431 (2015), 822–840.
    [13] Q. Li, M.L. Zou, A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows, AIMS Math., 7 (2022), 9278–9287. https://doi.org/10.3934/math.2022514 doi: 10.3934/math.2022514
    [14] Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36–47. https://doi.org/10.1016/j.matpur.2010.08.001 doi: 10.1016/j.matpur.2010.08.001
    [15] Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Ration. Mech. Anal., 201 (2011), 727–742.
    [16] Y. Sun, Z. Zhang, Blow-up criteria of strong solutions and conditional regularity of weak solutions for the compressible Navier-Stokes equations, Handbook of mathematical analysis in mechanics of viscous fluids, 2263–2324, Springer, Cham, 2018.
    [17] M. Vishik, Incompressible flows of an ideal fluid with unbounded vorticity, Comm. Math. Phys., 213 (2000), 697–731. https://doi.org/10.1007/s002200000255 doi: 10.1007/s002200000255
    [18] H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534–572.
    [19] H. Wen, C. Zhu, Global solutions to the three-dimensional full compressible Navier-Stokes equations with vacuum at infinity in some classes of large data, SIAM J. Math. Anal., 49 (2017), 162–221. https://doi.org/10.1137/16M1055414 doi: 10.1137/16M1055414
    [20] F. Wu, Navier-Stokes regularity criteria in Vishik spaces, Appl. Math. Optim., 84 (2021), suppl. 1, S39–S53. https://doi.org/10.1007/s00245-021-09757-9 doi: 10.1007/s00245-021-09757-9
    [21] Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229–240. https://doi.org/10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
    [22] Z. Xin, W. Yan, On blow up of classical solutions to the compressible Navier-Stokes equations. Comm. Math. Phys., 321 (2013), 529–541. https://doi.org/10.1007/s00220-012-1610-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2110) PDF downloads(64) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog