In this paper, we introduce a certain subclass of analytic functions associated with q-analogue of p-valent Noor integral operator in the open unit disc. A variety of useful properties for this subclass are investigated including coefficient estimates and the familiar Fekete-Szeg ö type inequalities. Several known sequences of the main results are also highlighted.
Citation: Ibtisam Aldawish, Mohamed Aouf, Basem Frasin, Tariq Al-Hawary. New subclass of analytic functions defined by q-analogue of p-valent Noor integral operator[J]. AIMS Mathematics, 2021, 6(10): 10466-10484. doi: 10.3934/math.2021607
[1] | Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah . New results about fuzzy γ-convex functions connected with the q-analogue multiplier-Noor integral operator. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263 |
[2] | A. A. Azzam, Daniel Breaz, Shujaat Ali Shah, Luminiţa-Ioana Cotîrlă . Study of the fuzzy q−spiral-like functions associated with the generalized linear operator. AIMS Mathematics, 2023, 8(11): 26290-26300. doi: 10.3934/math.20231341 |
[3] | Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi . Applications of fuzzy differential subordination theory on analytic p -valent functions connected with q-calculus operator. AIMS Mathematics, 2024, 9(8): 21239-21254. doi: 10.3934/math.20241031 |
[4] | Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah . Subordinations and superordinations studies using q-difference operator. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886 |
[5] | Shahid Khan, Saqib Hussain, Maslina Darus . Inclusion relations of q-Bessel functions associated with generalized conic domain. AIMS Mathematics, 2021, 6(4): 3624-3640. doi: 10.3934/math.2021216 |
[6] | Alina Alb Lupaş, Shujaat Ali Shah, Loredana Florentina Iambor . Fuzzy differential subordination and superordination results for q -analogue of multiplier transformation. AIMS Mathematics, 2023, 8(7): 15569-15584. doi: 10.3934/math.2023794 |
[7] | Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, R. Sidaoui, Abdelkader Moumen . Inclusion properties for analytic functions of q-analogue multiplier-Ruscheweyh operator. AIMS Mathematics, 2024, 9(3): 6772-6783. doi: 10.3934/math.2024330 |
[8] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[9] | Ebrahim Amini, Mojtaba Fardi, Shrideh Al-Omari, Rania Saadeh . Certain differential subordination results for univalent functions associated with q-Salagean operators. AIMS Mathematics, 2023, 8(7): 15892-15906. doi: 10.3934/math.2023811 |
[10] | Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493 |
In this paper, we introduce a certain subclass of analytic functions associated with q-analogue of p-valent Noor integral operator in the open unit disc. A variety of useful properties for this subclass are investigated including coefficient estimates and the familiar Fekete-Szeg ö type inequalities. Several known sequences of the main results are also highlighted.
Let A(p) denote the class of functions of the form:
f(z)=zp+∞∑n=p+1anzn (p∈N={1,2,⋯}), | (1.1) |
which are p-valent and analytic in the open unit disc U={z:|z|<1}. We note that A(1)=A. For functions f(z) given by (1.1) and g(z) defined by
g(z)=zp+∞∑n=p+1bnzn (p∈N), | (1.2) |
the convolution of f(z) and g(z) is defined by
(f∗g)(z)=zp+∞∑n=p+1anbnzn=(g∗f)(z). | (1.3) |
For f∈A(p) given by (1.1) and 0<q<1, the q -derivative of a function f(z) is given by (see [1,6,7])
Dq,pf(z)={f(z)−f(qz)(1−q)zforz≠0, f′(0)forz=0, | (1.4) |
provided that f′(z) exists. From (1.1) and (1.4), we deduce that
Dq,pf(z)=[p]qzp−1+∞∑n=p+1[n]qanzn−1, | (1.5) |
where
[n]q=1−qn1−q=1+q+⋯+qn−1, [0]q=0, 0<q<1. | (1.6) |
We note that
limq⟶1−Dq,pf(z)=limq⟶1−f(z)−f(qz)(1−q)z=f′(z) |
for a function f which is differentiable in a given subset of C. Further, for p=1, we have Dq,1f(z)=Dqf(z) (see [20]).
The q-number shift factorial for any non-negative integer n is defined by
[n]q!={1forn=0[1]q[2]q⋯[n]qforn∈N. |
The Pochhammer q-generalized symbol for x>0 and n∈N is also
[x,q]n={1forn=0[x]q[x+1]q⋯[x+n−1]qforn∈N, |
and for x>0, the q-gamma function is defined by
Γq(x+1)=[x]qΓq(x)andΓq(1)=1. |
For λ>−p(p∈N), we define the function f−1λ+p−1,q(z) by
fλ+p−1,q(z)∗f−1λ+p−1,q(z)=zp+∞∑n=p+1[p+1,q]n−p[1,q]n−pzn, | (1.7) |
where the function fλ+p−1,q(z) is given by
fλ+p−1,q(z)=zp+∞∑n=p+1[λ+p,q]n−p[1,q]n−pzn. | (1.8) |
It is clear that the function defined in (1.8) converges absolutely in U. Using the idea of convolution we define the q-p-valent Noor integral operator Iλ+p−1q:A(p)⟶A(p) as follows:
Iλ+p−1qf(z)=f−1λ+p−1,q(z)∗f(z)=zp+∞∑n=p+1Φq(λ,p,n)anzn, | (1.9) |
where
Φq(λ,p,n)=[p+1,q]n−p[λ+p,q]n−p (λ>−p,p∈N). | (1.10) |
From (1.9), we can easily get the identity
qλzDq,p(Iλ+pqf(z))=[λ+p]qIλ+p−1qf(z)−[λ]qIλ+pqf(z). | (1.11) |
We note that:
(i) For p=1, we have the q-Noor integral operator Iλqf(z) (f∈A) which was introduced and studied by Arif et al. [4];
(ii) limq⟶1−Iλ+p−1qf(z)=Iλ+p−1f(z) which is the p-valent Noor integral operator (see [11]);
(iii) Taking p=1 and letting q⟶1− in (1.9), we obtain Noor integral operator for univalent functions (see [13,14]);
(iv) For λ=1, we have Ipqf(z)=f(z) and for λ=0, we have
Ip−1qf(z)=zp+∞∑n=p+1[p+1,q]n−p[1,q]n−panzn=zp+∞∑n=p+1[n]q[p]qanzn=zDq,pf(z)[p]q, |
limq⟶1−Ip−1qf(z)=Ip−1f(z)=z+∞∑n=p+1(np)anzn=zf′(z)p. |
By using the operator Iλ+p−1qf(z) we define the subclass STq(λ,p,k,b) of A(p) as follows:
Definition 1.1. Let k≥0,λ>−p,p∈N,b∈C∗=C∖{0} and 0<q<1. A function f∈A(p) is said to be in the class STq(λ,p,k,b) if it satisfies
Re{1+1b(1[p]qzDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)−1)}>k|1b(1[p]qzDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)−1)|,(z∈U). | (1.12) |
We note that: (1) limq⟶1−STq(1,p,k,1−αp)=ST(p,k,α)=
{f∈A(p):Re(zf′(z)f(z)−α)>k|zf′(z)f(z)−p|,0≤α<p,z∈U} (see [19]);
(2) limq⟶1−STq(0,p,k,1−αp)=UST(p,k,α)=
{f∈A(p):Re(1+zf′′(z)f′(z)−α)>k|1+zf′′(z)f′(z)−p|,0≤α<p,z∈U} (see [19]).
A functions f∈A(p) is in the class STq(λ,p,k,b) if
1+1b(1[p]qzDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)−1) |
takes all the values in the conic domain Ωk=pk(U), where
Ωk={u+iv:u>k√(u−1)2+v2}, |
or, equivalently,
1+1b(1[p]qzDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)−1)≺pk(z),Ωk=pk(U). | (2.1) |
The boundary ∂Ωk of the above set when k=0 becomes the imaginary axis, when 0<k<1 a hyperbola, when k=1 a parabola and an ellipse when 1<k<∞. The functions pk(z) are defined by
pk(z)={ 1+z1−z, k=0, 1+2π2log(1+√z1−√z)2, k=1, 1+11−k2cos(2π(cos−1k)ilog1+√z1−√z)−k21−k2, 0<k<1,1+1k2−1sin(π2R(t)u(z)/√t∫0dx√1−x2√1−t2x2)+k2k2−1, 1<k<∞, | (2.2) |
where u(z)=z−√t1−√tz(0<t<1,z∈U),t is chosen such that k=cosh(πR′(t)4R(t)),R(t) is the Legendre's complete elliptic integral of the first kind, and R′(t) is complementary integral of R(t) (see [9,10,18]).
By giving a specific value to the parameters q,λ,p,k, and b in the class STq(λ,p,k,b), we get a lot of new and known subclasses studied by various others, for example,
(1) STq(λ,1,k,b)=STq(λ,k,b)={f∈A:1+1b(zDq(Iλqf(z))Iλqf(z)−1)≺pk(z),z∈U};
(2) STq(λ,1,k,1)=STq(λ,k)={f∈A:zDq(Iλqf(z))Iλqf(z)≺pk(z),z∈U};
(3) STq(λ,p,k,1−α[p]q)=STq(λ,p,k,α)=
{f∈A(p):1([p]q−α)(zDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)−α)≺pk(z),0≤α<[p]q,z∈U};
(4) STq(λ,p,k,(1−α[p]q)cosγe−iγ)=STγq(λ,p,k,α)=
{f∈A(p):eiγzDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)≺([p]q−α)cosγpk(z)+αcosγ+i[p]qsinγ,
0≤α<[p]q,|γ|<π2,z∈U};
(5) STq(1,p,k,b)=STq(p,k,b)={f∈A(p):1+1b(1[p]qzDq,pf(z)f(z)−1)≺pk(z),z∈U};
(6) STq(1,p,k,1−α[p]q)=STq(p,k,α)=
{f∈A(p):1([p]q−α)(zDq,pf(z)f(z)−α)≺pk(z),0≤α<[p]q,z∈U};
(7) STq(1,p,k,(1−α[p]q)cosγe−iγ)=STγq(p,k,α)=
{f∈A(p):eiγzDq,pf(z)f(z)≺([p]q−α)cosγpk(z)+αcosγ+i[p]qsinγ,
0≤α<[p]q,|γ|<π2,z∈U}.
Also we note that:
(8) STq(λ,p,0,b)=Sq(λ,p,b)=
{f∈A(p):Re{[p]q+1b(zDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)−[p]q)}>0,z∈U},
Sq(λ,p,1−α[p]q)=Sq(λ,p,α)=
{f∈A(p):Re{zDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)}>α,0≤α<[p]q,z∈U},
Sq(1,p,α)=Sq(p,α)=
{f∈A(p):Re{zDq,pf(z)f(z)}>α,0≤α<[p]q,z∈U}, Sq(1,α)=Sq(α) (see [20]);
(9) STq(λ,p,0,(1−α[p]q)cosγe−iγ)=Sγq(λ,p,α)=
{f∈A(p):Re{eiγzDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)}>αcosγ,0≤α<[p]q,|γ|<π2,z∈U},
Sγq(1,p,α)=Sγq(p,α)=
{f∈A(p):Re{eiγzDq,pf(z)f(z)}>αcosγ,0≤α<[p]q,|γ|<π2,z∈U};
(10) limq⟶1−STq(λ,p,0,b)=S(λ,p,b)=
{f∈A(p):Re{p+1b(z(Iλ+p−1qf(z))′Iλ+p−1qf(z)−p)}>0,z∈U},
S(λ,p,(1−αp)cosγe−iγ)=Sγ(λ,p,α)=
{f∈A(p):Re{eiγz(Iλ+p−1qf(z))′Iλ+p−1qf(z)}>αcosγ,0≤α<p,|γ|<π2,z∈U},
Sγ(1,p,(1−αp)cosγe−iγ)=Sγ(p,α)=
{f∈A(p):Re{eiγzf′(z)f(z)}>αcosγ,0≤α<p,|γ|<π2,z∈U} (see [22]),
S(1,p,b)=S(p,b)={f∈A(p):Re{p+1b(zf′(z)f(z)−p)}>0,z∈U} (see [23]),
S(0,p,b)=C(p,b)={f∈A(p):Re{p+1b(1+zf′′(z)f′(z)−p)}>0,z∈U} (see [2,3,21,23]), S(1,b)=S(b) and C(1,b)=C(b) (see [15,16,17]);
(11) limq⟶1−STq(1,1,k,1−α)=ST(k,α)=
{f∈A:Re(zf′(z)f(z)−α)>k|zf′(z)f(z)−1|,0≤α<1,z∈U} (see [5]);
(12) limq⟶1−STq(1,p,k,(1−αp)cosγe−iγ)=STγ(p,k,α)=
{f∈A(p):Re(eiγzf′(z)f(z)−αcosγ)>k|zf′(z)f(z)−p|,0≤α<p,|γ|<π2,z∈U},
limq⟶1−STq(0,p,k,(1−αp)cosγe−iγ)=USTγ(p,k,α)=
{f∈A(p):Re{eiγ(1+zf′′(z)f′(z))−αcosγ}>k|1+zf′′(z)f′(z)−p|,
0≤α<p,|γ|<π2,z∈U}.
We need the following lemmas in order to establish our main results.
Lemma 2.1. [8] Let 0≤k<∞ be fixed and let pk be defined by (2.2). If pk(z)=1+Q1z+Q2z2+⋯, then
Q1={2A21−k2,0≤k<1,8π2,k=1,π24√t(k2−1)R2(t)(1+t),1<k<∞, | (2.3) |
and
Q2={(A2+2)3Q1,0≤k<1,23Q1,k=1,4R2(t)(t2+6t+1)−π224√tR2(t)(1+t)Q1,1<k<∞, | (2.4) |
where A=2cos−1kπ, and t∈(0,1) is chosen such that k=cosh(πR′(t)R(t)), where R(t) is the Legendre's complete elliptic integral of the first kind.
Lemma 2.2. [12] Let h(z)=1+∞∑n=1cnzn∈P, i.e., let h be analytic in U and satisfies Re(h(z))>0(z∈U), then
|c2−vc21|≤2max{1,|2v−1|}(v∈C). | (2.5) |
The result is sharp for a function given by
g(z)=1+z21−z2org(z)=1+z1−z. |
Lemma 2.3. [12] If h(z)=1+∞∑n=1cnzn∈P, then
|c2−vc21|≤{2−4vifv≤0,2if0≤v≤1,4v−2ifv≥1, | (2.6) |
where v<0 or v>1, the equality holds iff h(z)=1+z1−z or one of its rotations. If 0<v<1, then he equality holds iff h(z)=1+z21−z2 or one of its rotations. If v=0, then he equality holds iff h(z)=(1+λ2)1+z1−z+(1−λ2)1−z1+z(0≤λ≤1) or one of its rotations. If v=1, then he equality holds if and only if g is reciprocal of one of the function such that the equality holds in the case of v=0.
Also the above upper bound is sharp, and it can improved as follows when 0<v<1:
|c2−vc21|+v|c1|2≤2 (0≤v≤12), |
and
|c2−vc21|+(1−v)|c1|2≤2 (12≤v≤1). |
We shall assume throughout this paper, unless otherwise stated, that 0≤k<∞,p∈N,λ>−p,b∈C∗,0<q<1,Q1 is given by (2.3) and Q2 is given by (2.4), Φq(λ,p,n) is given by (1.10) and z∈U.
Theorem 3.1. Let f∈A(p) be given by (1.1). If the inequality
∞∑n=p+1{(k+1)([n]q−[p]q)+[p]q|b|}Φq(λ,p,n)|an|≤[p]q|b|, | (3.1) |
holds, then f∈STq(λ,p,k,b).
Proof. Assume the inequality (3.1) holds. Let us assume that
H(z)=1+1b(1[p]qzDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)−1). |
We have
|H(z)−1|=1[p]q|b||∞∑n=p+1([n]q−[p]q)Φq(λ,p,n)anzn−p1+∞∑n=p+1Φq(λ,p,n)anzn−p|≤1[p]q|b|∞∑n=p+1([n]q−[p]q)Φq(λ,p,n)|an|1−∞∑n=p+1Φq(λ,p,n)|an|. |
Now consider
k|H(z)−1|−Re(H(z)−1)≤(k+1)|H(z)−1|<(k+1)∞∑n=p+1([n]q−[p]q)Φq(λ,p,n)|an|[p]q|b|(1−∞∑n=p+1Φq(λ,p,n)|an|). |
The last inequality is bounded by 1 if (3.1) holds.
Corollary 3.2. If f∈STq(λ,p,k,b), then
|an|≤[p]q|b|{(k+1)([n]q−[p]q)+[p]q|b|}Φq(λ,p,n)(n≥p+1). | (3.2) |
The inequality (3.2) is sharp for the function
f(z)=zp+[p]q|b|{(k+1)([n]q−[p]q)+[p]q|b|}Φq(λ,p,n)zn(n≥p+1). | (3.3) |
Choosing p=1 and b=1−α,0≤α<1, in Theorem 3.1, we obtain the following corollary.
Corollary 3.3. Let f∈A be given by (1.1) with p=1 and satisfy
∞∑n=2{(k+1)([n]q−1)+(1−α)}Φq(λ,1,n)|an|≤1−α. |
Then f∈STq(λ,k,α).
Taking b=1−α[p]q(0≤α<[p]q) in Theorem 3.1, we obtain the following consequence.
Corollary 3.4. Let f∈A(p) be given by (1.1) and satisfy
∞∑n=p+1{(k+1)([n]q−[p]q)+([p]q−α)}Φq(λ,p,n)|an|≤[p]q−α. |
Then f∈STq(λ,p,k,α).
Letting q⟶1− in Theorem 3.1, we obtain the following corollary.
Corollary 3.5. Let f∈A(p) be given by (1.1) and satisfy
∞∑n=p+1{(k+1)(n−p)+p|b|}Φq(λ,p,n)|an|≤p|b|. |
Then f∈ST(λ,p,k,b).
Putting b=(1−α[p]q)cosγe−iγ(0≤α<[p]q,|γ|<π2) in Theorem 3.1, we obtain the following consequence.
Corollary 3.6. Let f∈A(p) be given by (1.1) and satisfy
∞∑n=p+1{(k+1)([n]q−[p]q)+([p]q−α)cosγ}Φq(λ,p,n)|an|≤([p]q−α)cosγ. |
Then f∈STγq(λ,p,k,α).
Letting q⟶1− and putting b=1−αp(0≤α<p) and λ=1 in Theorem 3.1, we obtain the following corollary (see also [19], Theorem 1, with n=0).
Corollary 3.7. Let f∈A(p) be given by (1.1) and satisfy
∞∑n=p+1{(k+1)(n−p)+(p−α)}|an|≤p−α. |
Then f∈ST(p,k,α).
Letting q⟶1− and putting b=1−αp(0≤α<p) and λ=0 in Theorem 3.1, we obtain the following corollary.
Corollary 3.8. Let f∈A(p) be given by (1.1) and satisfy
∞∑n=p+1(np){(k+1)(n−p)+(p−α)}|an|≤p−α. |
Then f∈UST(p,k,α).
Taking p=1 in Theorem 3.1, we obtain the following corollary.
Corollary 3.9. If a function f∈A has the form (1.1)(with p=1) and satisfy
∞∑n=2{(k+1)([n]q−1)+|b|}Φq(λ,n)|an|≤|b|. |
Then f∈STq(λ,k,b).
Theorem 3.10. If f∈STq(λ,p,k,b). Then
|ap+1|≤[p]q|b|Q1qpΦq(λ,p,p+1)=[p]q|b|Q1[λ+p]qqp[p+1]q, | (3.4) |
and for all n≥3
|an+p−1|≤[p]q|b|Q1qp[n−1]qΦq(λ,p,n+p−1)n−2∏j=1(1+[p]q|b|Q1qp[j]q), | (3.5) |
where Q1 is given by (2.3).
Proof. Let
p(z)=1+1b(1[p]qzDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)−1), |
where p(z)=1+∞∑n=1cnzn is analytic in U and it can be written as
∞∑n=p+1([n]q−[p]q)Φq(λ,p,n)anzn≤[p]qb(Iλ+p−1qf(z))(∞∑n=1cnzn). | (3.6) |
Comparing the coefficients of zn+p−1 on both sides of (3.6), we obtain
([n+p−1]q−[p]q)Φq(λ,p,n+p−1)an+p−1=[p]qb{c1Φq(λ,p,n+p−1)an+p−2+⋯+cn−1}. |
Taking the absolute value on both sides and using |cn|≤Q1(n≥1) (see [18]), we obtain
|an+p−1|≤[p]q|b|Q1qp[n−1]qΦq(λ,p,n+p−1) |
×{1+Φq(λ,p,p+1)|ap+1|+⋯+Φq(λ,p,n+p−2)|an+p−2|}. | (3.7) |
We apply the mathematical induction on (3.7), so for n=2, we have
|ap+1|≤[p]q|b|Q1qpΦq(λ,p,p+1)=[p]q|b|Q1[λ+p]qqp[p+1]q, | (3.8) |
this shows that the result is true for n=2. Now for n=3 we have
|ap+2|≤[p]q|b|Q1qp[2]qΦq(λ,p,p+2)(1+Φq(λ,p,p+1)|ap+1|), |
using (3.8), we obtain
|ap+2|≤[p]q|b|Q1qp[2]qΦq(λ,p,p+2)(1+[p]q|b|Q1qp[1]q), |
which is true for n=3. Let us assume that (3.7) is true for n≤t, that is
|at+p−1|≤[p]q|b|Q1qp[t−1]qΦq(λ,p,t+p−1)t−2∏j=1(1+[p]q|b|Q1qp[j]q). |
Consider
|at+p|≤[p]q|b|Q1qp[t]qΦq(λ,p,t+p)×{1+Φq(λ,p,p+1)|ap+1|+⋯+Φq(λ,p,t+p−1)|at+p−1|}≤[p]q|b|Q1qp[t]qΦq(λ,p,t+p){1+[p]q|b|Q1qp+[p]q|b|Q1qp[2]q(1+[p]q|b|Q1qp[1]q)+[p]q|b|Q1qp[3]q(1+[p]q|b|Q1qp[1]q)(1+[p]q|b|Q1qp[2]q)+⋯+[p]q|b|Q1qp[t−1]qt−2∏j=1(1+[p]q|b|Q1qp[j]q)}=[p]q|b|Q1qp[t]qΦq(λ,p,t+p)t−1∏j=1(1+[p]q|b|Q1qp[j]q). |
So, the result is true for n=t+1. Also, we proved that the result true for all n(n≥2) using mathematical induction.
Taking p=1 in Theorem 3.10, we obtain the following corollary.
Corollary 3.11. Let f∈A be given by (1.1) (with p=1). If f∈STq(λ,k,b), then
|a2|≤[λ+1]q|b|Q1q[2]q, |
and
|an|≤|b|Q1q[n−1]qΦq(λ,1,n)n−2∏j=1(1+|b|Q1q[j]q)(n≥3). |
Taking b=1−α(0≤α<1) and p=1 in Theorem 3.10, we obtain the following consequence.
Corollary 3.12. Let f∈A be given by (1.1) (with p=1). If f∈STq(λ,k,α), then
|a2|≤P1[λ+1]qq[2]q, |
and
|an|≤[p]qP1q[n−1]qΦq(λ,n)n−2∏j=1(1+P1q[j]q)(n≥3), |
where P1=(1−α)Q1 and Q1 is given by (2.3).
Taking b=1−α[p]q(0≤α<[p]q) in Theorem 3.10, we obtain the following result.
Corollary 3.13. Let f∈A(p) be given by (1.1). If f∈STq(λ,p,k,α), then
|ap+1|≤([p]q−α)Q1qpΦq(λ,p,n+p−1), |
and for all n≥3,
|an+p−1|≤([p]q−α)Q1qp[n−1]qΦq(λ,p,n+p−1)n−2∏j=1(1+([p]q−α)Q1qp[j]q). |
Putting b=(1−α[p]q)cosγe−iγ(0≤α<[p]q,|γ|<π2) in Theorem 3.10, we obtain the following consequence.
Corollary 3.14. Let f∈A(p) be given by (1.1). If f∈STq(λ,p,k,α), then
|ap+1|≤([p]q−α)cosγQ1qpΦq(λ,p,p+1), |
and for all n≥3,
|an+p−1|≤([p]q−α)cosγQ1qp[n−1]qΦq(λ,p,n+p−1)n−2∏j=1(j+([p]q−α)cosγQ1qp[j]q). |
Theorem 3.15. Let f∈STq(λ,p,k,b). Then f(U) contains an open disc
r=qp[p+1]qqp(p+1)[p+1]q+[p]q|b|. |
Proof. Let w0∈C and w0≠0 such that f(z)≠w0 for z∈U. Then
f1(z)=w0f(z)w0−f(z)=zp+(ap+1+1w0)zp+1+⋯. |
Since f1 is univalent, so
|ap+1+1w0|≤p+1. |
Now using Theorem 3.10, we have
|1w0|≤p+1+[p]q|b|Q1[λ+p]qqp[p+1]q, |
and hence we have
|w0|≥qp[p+1]qqp(p+1)[p+1]q+[p]q|b|Q1[λ+p]q. |
This completes the proof of Theorem 3.15
Theorem 3.16. Let 0≤k<∞ be fixed and let f∈STq(λ,p,k,b) with the form (1.1). Then for a complex μ, we have
|ap+2−μa2p+1|≤[p]q|b|Q1[λ+p,q]22[2]qqp[p+1,q]2max{1,|2v−1|}, | (3.9) |
where
v=12{1−Q2Q1−[p]qbQ1qp(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)}, |
where Q1 and Q2 are given by (2.3) and (2.4), respectively. The result is sharp.
Proof. Let f∈STq(λ,p,k,b), then there exist a function w, with w(0)=0 and |w(z)|<1 such that
1+1b(1[p]qzDq,p(Iλ+p−1qf(z))Iλ+p−1qf(z)−1)=pk(w(z)) (z∈U). | (3.10) |
Let h∈P be a function defined by
h(z)=1+w(z)1−w(z)=1+c1z+c2z2+⋯ (z∈U). |
This gives
w(z)=c12z+12(c2−c212)z2+⋯, |
and
pk(w(z))=1+12c1Q1z+12{c21Q22+(c2−c212)Q1}z2+⋯. | (3.11) |
Using (3.11) in (3.10) along with (1.9), we obtain
ap+1=[p]qbc1Q1[λ+1]q2qp[p+1]q, |
and
ap+2=[p]qb[λ+p,q]2[2]qqp[p+1,q]2{c21Q24+12(c2−c212)Q1+[p]qbQ21c214qp}. |
For any complex number μ, we have
ap+2−μa2p+1=[p]qb[λ+p,q]22[2]qqp[p+1,q]2{c21Q22+(c2−c212)Q1+[p]qbQ21c214qp}−[p]2qb2c21Q214q2p([λ+1]q[p+1]q)2μ. | (3.12) |
Thus (3.12) can be written as
ap+2−μa2p+1=[p]qbQ1[λ+p,q]22[2]qqp[p+1,q]2{c2−vc21}, | (3.13) |
where
v=12{1−Q2Q1−[p]qbQ1qp(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)}. | (3.14) |
Now, taking absolute value and using Lemma 2.2, we obtain the required result. The sharpness of (3.9) follows from the sharpness of (2.5).
Putting p=1 in Theorem 3.16, we obtain the following consequence.
Corollary 3.17. Let 0≤k<∞ be fixed and let f∈STq(λ,k,b) with the form (1.1) (with p=1). Then for a complex parameter μ, we have
|a3−μa22|≤|b|Q1[λ+1,q]22[2]qq[2,q]2max{1,|2v−1|}, |
where
v=12{1−Q2Q1−bQ1q(1−[λ+1]q[3]q[λ+2]qμ)}, |
where Q1 and Q2 are given by (2.3) and (2.4), respectively. The result is sharp.
Putting p=1 and b=1−α(0≤α<1) in Theorem 3.16, we get the following corollary.
Corollary 3.18. Suppose that the function f(z) given by (1.1) (with p=1) is in the class STq(λ,k,α). Then for a complex parameter μ, we have
|a3−μa22|≤P1[λ+1,q]22q[2]q[2,q]2max{1,P2P1−P1q(1−[λ+1]q[3]q[λ+2]qμ)}, | (3.15) |
where P1=(1−α)Q1 and P2=(1−α)Q2,Q1 and Q2 are given by (2.3) and (2.4), respectively. The result is sharp.
Putting b=1−α[p]q(0≤α<[p]q) in Theorem 3.16, we get the following corollary.
Corollary 3.19. Let 0≤k<∞ be fixed and let f∈STq(λ,p,k,α) with\ the form (1.1). Then for a complex parameter μ, we have
|ap+2−μa2p+1|≤([p]q−α)Q1[λ+p,q]22[2]qqp[p+1,q]2×max{1,|Q2Q1−([p]q−α)Q1qp(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)|}, |
where Q1 and Q2 are given by (2.3) and (2.4), respectively. The result is sharp.
Putting b=(1−α[p]q)cosγe−iγ(0≤α<[p]q,|γ|<π2) in Theorem 3.16, we get the following corollary.
Corollary 3.20. Let 0≤k<∞ be fixed and let f∈STγq(λ,p,k,α). Then for a complex parameter μ, we have
|ap+2−μa2p+1|≤([p]q−α)cosγQ1[λ+p,q]22[2]qqp[p+1,q]2×max{1,|Q2Q1−([p]q−α)cosγQ1qp(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)|}. |
The result is sharp.
Theorem 3.21. Let
σ1=[[p]qbQ21+qp(Q2−Q1)][λ+p+1]q[p+1]q[2]q[p]qbQ21[λ+p]q[p+2]q,σ2=[[p]qbQ21+qp(Q2+Q1)][λ+p+1]q[p+1]q[2]q[p]qbQ21[λ+p]q[p+2]q,σ3=[[p]qbQ21+qpQ2][λ+p+1]q[p+1]q[2]q[p]qbQ21[λ+p]q[p+2]q. |
If f given by (1.1) belong to the class STq(λ,p,k,b)(b>0), then
|ap+2−μa2p+1|≤{[p]qbQ1[λ+p,q]2qp[2]q[p+1,q]2{Q2Q1+[p]qbQ1qp(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)},μ≤σ1,[p]qbQ1[λ+p,q]2qp[2]q[p+1,q]2,σ1≤μ≤σ2,−[p]qbQ1[λ+p,q]2qp[2]q[p+1,q]2{Q2Q1+[p]qbQ1qp(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)},μ≥σ2. |
Further, if σ1≤μ≤σ3, then \newpage
|ap+2−μa2p+1|+qp([p+1]q)2[λ+p,q]2[2]q[p]qbQ1([λ+p]q)2[p+1,q]2×{1−Q2Q1−bQ1qp(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)}|ap+1|2≤[p]qbQ1[λ+p,q]2qp[2]q[p+1,q]2. |
If σ3≤μ≤σ2, then
|ap+2−μa2p+1|+qp([p+1]q)2[λ+p,q]2[2]qbQ1([λ+p]q)2[p+1,q]2×{1+Q2Q1+[p]qbQ1qp(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)}|ap+1|2≤[p]qbQ1[λ+p,q]2qp[2]q[p+1,q]2. |
The result is sharp.
Proof. Applying Lemma 2.3 to (3.12) and (3.13), we can obtain our results asserted by Theorem 3.21.
Putting p=1 in Theorem 3.21, we obtain the following corollary.
Corollary 3.22. Let
ς1=[bQ21+q(Q2−Q1)][λ+2]qbQ21[λ+1]q[3]q,ς2=[bQ21+q(Q2+Q1)][λ+2]qbQ21[λ+1]q[3]q,ς3=[bQ21+qQ2][λ+2]qbQ21[λ+1]q[3]q. |
If f given by (1.1) (with p=1) belong to the class STq(λ,k,b) with b>0, then
|a3−μa22|≤{bQ1[λ+1,q]2q[2]q[2,q]2{Q2Q1+bQ1q(1−[λ+1]q[3]q[λ+2]qμ)},μ≤ς1,bQ1[λ+1,q]2q[2]q[2,q]2,ς1≤μ≤ς2,−bQ1[λ+1,q]2q[2]q[2,q]2{Q2Q1+bQ1q(1−[λ+1]q[3]q[λ+2]qμ)},μ≥ς2. |
Further, if ς1≤μ≤ς3, then
|a3−μa22|+q[2]q[λ+1,q]2bQ1([λ+1]q)2[2,q]2×{1−Q2Q1−bQ1q(1−[λ+1]q[3]q[λ+2]qμ)}|a2|2≤bQ1[λ+1,q]2q[2]q[2,q]2. |
If ς3≤μ≤ς2, then
|ap+2−μa2p+1|+q[2]q[λ+1,q]2qbQ1([λ+1]q)2[2,q]2×{1+Q2Q1+bQ1q(1−[λ+1]q[3]q[λ+2]qμ)}|a2|2≤bQ1[λ+1,q]2q[2]q[2,q]2. |
The result is sharp.
Putting p=1 and b=1−α(0≤α<1) in Theorem 3.21, we obtain the following corollary.
Corollary 3.23. Let
ϑ1=[P21+q(P2−P1)][λ+2]qP21[λ+1]q[3]q,ϑ2=[P21+q(P2+P1)][λ+2]qP21[λ+1]q[3]q,ϑ3=[P21+qP2][λ+2]qP21[λ+1]q[3]q. |
If f given by (1.1) (with p=1) belong to the class STq(λ,k,α), then
|a3−μa22|≤{P1[λ+1,q]2q[2]q[2,q]2{P2P1+P1q(1−[λ+1]q[3]q[λ+2]qμ)},μ≤ϑ1,P1[λ+1,q]2q[2]q[2,q]2,ϑ1≤μ≤ϑ2,−P1[λ+1,q]2q[2]q[2,q]2{P2P1+P1q(1−[λ+1]q[3]q[λ+2]qμ)},μ≥ϑ2. |
Further, if ϑ1≤μ≤ϑ3, then
|a3−μa22|+q[2]q[λ+1,q]2P1([λ+1]q)2[2,q]2×{1−P2P1−P1q(1−[λ+1]q[3]q[λ+2]qμ)}|a2|2≤P1[λ+1,q]2q[2]q[2,q]2. |
If ϑ3≤μ≤ϑ2, then
|a3−μa22|+q[2]q[λ+1,q]2qP1([λ+1]q)2[2,q]2×{1+P2P1+P1q(1−[λ+1]q[3]q[λ+2]qμ)}|a2|2≤P1[λ+1,q]2q[2]q[2,q]2. |
The result is sharp.
Putting b=(1−α[p]q)(0≤α<[p]q) in Theorem 3.21, we obtain the following corollary.
Corollary 3.24. Let
ϵ1=[([p]q−α)Q21+qP(Q2−Q1)][λ+P+1]q[P+1]q[2]q([p]q−α)Q21[λ+P]q[P+2]q,ϵ2=[([p]q−α)Q21+qP(Q2+Q1)][λ+P+1]q[P+1]q[2]q([p]q−α)Q21[λ+P]q[P+2]q,ϵ3=[([p]q−α)Q21+qPQ2][λ+P+1]q[P+1]q[2]q([p]q−α)Q21[λ+P]q[P+2]q. |
If f given by (1.1) belong to the class STq(λ,P,k,b) with b>0, then
|ap+2−μa2p+1|≤{([p]q−α)Q1[λ+p,q]2qp[2]q[p+1,q]2{Q2Q1+([p]q−α)Q1q(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)},μ≤ϵ1,([p]q−α)Q1[λ+p,q]2qp[2]q[p+1,q]2,ϵ1≤μ≤ϵ2,−([p]q−α)Q1[λ+p,q]2qp[2]q[p+1,q]2{Q2Q1+([p]q−α)Q1q(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)},μ≥ϵ2. |
Further, if ϵ1≤μ≤ϵ3, then
|ap+2−μa2p+1|+qp([p+1]q)2[λ+p,q]2[2]q([p]q−α)Q1([λ+p]q)2[p+1,q]2×{1−Q2Q1−([p]q−α)Q1qp(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)}|ap+1|2≤([p]q−α)Q1[λ+p,q]2qp[2]q[p+1,q]2. |
If ϵ3≤μ≤ϵ2, then
|ap+2−μa2p+1|+qp([p+1]q)2[λ+p,q]2[2]q([p]q−α)([λ+p]q)2[p+1,q]2×{1+Q2Q1+([p]q−α)Q1qp(1−[2]q[λ+p]q[p+2]q[λ+p+1]q[p+1]qμ)}|ap+1|2≤([p]q−α)Q1[λ+p,q]2qp[2]q[p+1,q]2. |
The result is sharp.
Studies of the coefficient problems including the Fekete-Szegö problems continue to motivate researchers in Geometric Function Theory of Complex Analysis. In our present investigation, we have introduced and studied a new class STq(λ,p,k,b) of analytic functions associated with q-analogue of p-valent Noor integral operator in the open unit disc U. For functions in this class, we have derived the coefficient estimates of the coefficients |ap+1| and |an+p+1| for n≥3, and Fekete-Szegö functional problems for functions belonging to this new class. Several of new results are shown to follow upon specializing the parameters involved in our main results.
The authors would like to thank the referees for their helpful comments and suggestions.
The authors declare that they have no competing interests.
[1] | M. H. Annaby, Z. Mansour, q-fractional calculus and equation, Springer-Verlag Berlin Heidelberg, 2012. |
[2] | M. K. Aouf, p-valent classes related to convex function of complex order, Rocky Mt. J. Math., 15 (1985), 853–863. |
[3] | M. K. Aouf, T. M. Seoudy, Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by q -analogue of Ruschewegh operator, Constr. Math. Anal., 3 (2020), 36–44. |
[4] | M. Arif, M. Ul Haq, J. Liu, A subfamily of univalent function associated with q-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 1–5. |
[5] |
R. Bharati, R. Paravatham, A. Swaminathan, On subclasses of uniformly convex function and corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17–32. doi: 10.5556/j.tkjm.28.1997.4330
![]() |
[6] | F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburugh, 46 (1908), 253–281. |
[7] | F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[8] | S. Kanas, Coefficient estimates in subclasses of Caratheodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.), 74 (2005), 149–161. |
[9] |
S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. doi: 10.1016/S0377-0427(99)00018-7
![]() |
[10] | S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roum. Math. Pures Appl., 45 (2000), 647–658. |
[11] | J. L. Liu, K. I. Noor, Some properties of Noor integral operator, J. Nat. Geom., 2002 (2002), 81–90. |
[12] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the conference on complex analysis (Tianjin, 1992), Int. Press (Cambridge, MA), 1 (1994), 157–169. |
[13] | K. I. Noor, On new classes of integral operators, J. Nat. Geom., 16 (1999), 71–80. |
[14] |
K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. doi: 10.1006/jmaa.1999.6501
![]() |
[15] | M. A. Nasr, M. K. Aouf, On convex functions of complex order, Mansoura Sci. Bull., 8 (1982), 565–582. |
[16] | M. A. Nasr, M. K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci., 9 (1983), 97–102. |
[17] | M. A. Nasr, M. K. Aouf, Starlike functions of complex order, Nat. Sci. Math., 25 (1985), 1–12. |
[18] | K. I. Noor, M. Arif, W. Ul Haq, On k-uniformly colse-to-convex functions of complex order, Appl. Math. comput., 215 (2009), 629–635. |
[19] | T. Q. Salim, M. S. Marouf, J. M. Shenan, A subclasses of multivalent uniformly convex functions associated with generalized Sǎl ǎgean and Ruscheweyh differential operators, Acta Univ. Apulensis, 26 (2011), 289–300. |
[20] | T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal., 2014 (2014), 1–7. |
[21] |
N. L. Sharma, A note on the coefficient estimates for some classes of p-valent functions, Ukr. Math. J., 70 (2018), 632–648. doi: 10.1007/s11253-018-1521-0
![]() |
[22] | H. M. Srivastava, M. K. Aouf S. Owa, Certain classes of multivalent functions of order α and type β, Bull. Soc. Math. Belg. Ser. B, 42 (1990), 31–66. |
[23] | B. Wongsaijai, N. Sukantamala, Mapping properties of generalized q-integral operator of p-valent functions and the generalized Sǎlǎgean operator, Acta Univ. Apulensis, 41 (2015), 31–50. |
1. | Abdel Moneim Y. Lashin, Abeer O. Badghaish, Badriah Maeed Algethami, A Study on Certain Subclasses of Analytic Functions Involving the Jackson q-Difference Operator, 2022, 14, 2073-8994, 1471, 10.3390/sym14071471 | |
2. | Georgia Irina Oros, Gheorghe Oros, Shigeyoshi Owa, Applications of Certain p-Valently Analytic Functions, 2022, 10, 2227-7390, 910, 10.3390/math10060910 | |
3. | Alaa H. El-Qadeem, Ibrahim S. Elshazly, Hadamard Product Properties for Certain Subclasses of p-Valent Meromorphic Functions, 2022, 11, 2075-1680, 172, 10.3390/axioms11040172 | |
4. | Ekram E. Ali, Hari M. Srivastava, Abdel Moneim Y. Lashin, Abeer M. Albalahi, Applications of Some Subclasses of Meromorphic Functions Associated with the q-Derivatives of the q-Binomials, 2023, 11, 2227-7390, 2496, 10.3390/math11112496 |