Citation: Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi. Applications of fuzzy differential subordination theory on analytic p -valent functions connected with q-calculus operator[J]. AIMS Mathematics, 2024, 9(8): 21239-21254. doi: 10.3934/math.20241031
[1] | Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015 |
[2] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[3] | Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248 |
[4] | Hari Mohan Srivastava, Muhammad Arif, Mohsan Raza . Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Mathematics, 2021, 6(6): 5869-5885. doi: 10.3934/math.2021347 |
[5] | Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang . Closure properties of generalized λ-Hadamard product for a class of meromorphic Janowski functions. AIMS Mathematics, 2021, 6(2): 1715-1726. doi: 10.3934/math.2021102 |
[6] | Zhuo Wang, Weichuan Lin . The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations. AIMS Mathematics, 2024, 9(3): 5501-5522. doi: 10.3934/math.2024267 |
[7] | Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357 |
[8] | Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah . Subordinations and superordinations studies using q-difference operator. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886 |
[9] | Erhan Deniz, Hatice Tuǧba Yolcu . Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043 |
[10] | Huo Tang, Muhammad Arif, Khalil Ullah, Nazar Khan, Bilal Khan . Majorization results for non vanishing analytic functions in different domains. AIMS Mathematics, 2022, 7(11): 19727-19738. doi: 10.3934/math.20221081 |
Let ∑ denote the class of meromorphic function of the form:
λ(ω)=1ω+∞∑t=0atωt, | (1.1) |
which are analytic in the punctured open unit disc U∗={ω:ω∈C and 0<|ω|<1}=U−{0}, where U=U∗∪{0}. Let δ(ω)∈∑, be given by
δ(ω)=1ω+∞∑t=0btωt, | (1.2) |
then the Convolution (Hadamard product) of λ(ω) and δ(ω) is denoted and defined as:
(λ∗δ)(ω)=1ω+∞∑t=0atbtωt. |
In 1967, MacGregor [17] introduced the concept of majorization as follows.
Definition 1. Let λ and δ be analytic in U∗. We say that λ is majorized by δ in U∗ and written as λ(ω)≪δ(ω)ω∈U∗, if there exists a function φ(ω), analytic in U∗, satisfying
|φ(ω)|≤1, and λ(ω)=φ(ω)δ(ω), ω∈U∗. | (1.3) |
In 1970, Robertson [19] gave the idea of quasi-subordination as:
Definition 2. A function λ(ω) is subordinate to δ(ω) in U and written as: λ(ω)≺δ(ω), if there exists a Schwarz function k(ω), which is holomorphic in U∗ with |k(ω)|<1, such that λ(ω)=δ(k(ω)). Furthermore, if the function δ(ω) is univalent in U∗, then we have the following equivalence (see [16]):
λ(ω)≺δ(ω)andλ(U)⊂δ(U). | (1.4) |
Further, λ(ω) is quasi-subordinate to δ(ω) in U∗ and written is
λ(ω)≺qδ(ω) ( ω∈U∗), |
if there exist two analytic functions φ(ω) and k(ω) in U∗ such that λ(ω)φ(ω) is analytic in U∗ and
|φ(ω)|≤1 and k(ω)≤|ω|<1 ω∈U∗, |
satisfying
λ(ω)=φ(ω)δ(k(ω)) ω∈U∗. | (1.5) |
(ⅰ) For φ(ω)=1 in (1.5), we have
λ(ω)=δ(k(ω)) ω∈U∗, |
and we say that the λ function is subordinate to δ in U∗, denoted by (see [20])
λ(ω)≺δ(ω) ( ω∈U∗). |
(ⅱ) If k(ω)=ω, the quasi-subordination (1.5) becomes the majorization given in (1.3). For related work on majorization see [1,4,9,21].
Let us consider the second order linear homogenous differential equation (see, Baricz [6]):
ω2k′′(ω)+αωk′(ω)+[βω2−ν2+(1−α)]k(ω)=0. | (1.6) |
The function kν,α,β(ω), is known as generalized Bessel's function of first kind and is the solution of differential equation given in (1.6)
kν,α,β(ω)=∞∑t=0(−β)tΓ(t+1)Γ(t+ν+1+α+12)(ω2)2t+ν. | (1.7) |
Let us denote
Lν,α,βλ(ω)=2νΓ(ν+α+12)ων2+1kν,α,β(ω12), =1ω+∞∑t=0(−β)t+1Γ(ν+α+12)4t+1Γ(t+2)Γ(t+ν+1+α+12)(ω)t, |
where ν,α and β are positive real numbers. The operator Lν,α,β is a variation of the operator introduced by Deniz [7] (see also Baricz et al. [5]) for analytic functions. By using the convolution, we define the operator Lν,α,β as follows:
( Lν,α,βλ)(ω)=Lν,α,β(ω)∗λ(ω),=1ω+∞∑t=0(−β)t+1Γ(ν+α+12)4t+1Γ(t+2)Γ(t+ν+1+α+12)at(ω)t. | (1.8) |
The operator Lν,α,β was introduced and studied by Mostafa et al. [15] (see also [2]). From (1.8), we have
ω(Lν,α,βλ(ω))j+1=(ν−1+α+12)(Lν−1,α,βλ(ω))j−(ν+α+12)(Lν,α,βλ(ω))j. | (1.9) |
By taking α=β=1, the above operator reduces to ( Lνλ)(ω) studied by Aouf et al. [2].
Definition 3. Let −1≤B<A≤1,η∈C−{0},j∈W and ν,α,β>0. A function λ∈∑ is said to be in the class Mν,jα,β(η,ϰ;A,B) of meromorphic functions of complex order η≠0 in U∗ if and only if
1−1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)−ϰ|−1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)|≺1+Aω1+Bω. | (1.10) |
Remark 1.
(i). For A=1,B=−1 and ϰ=0, we denote the class
Mν,jα,β(η,0;1,−1)=Mν,jα,β(η). |
So, λ∈Mν,jα,β(η,ϰ;A,B) if and only if
ℜ[1−1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)]>0. |
(ii). For α=1,β=1, Mν,j1,1(η,0;1,−1) reduces to the class Mν,j(η).
ℜ[1−1η(ω(Lνλ(ω))j+1(Lνλ(ω))j+ν+j)]>0. |
Definition 4. A function λ∈∑ is said to be in the class Nν,jα,β(θ,b;A,B) of meromorphic spirllike functions of complex order b≠0 in U∗, if and only if
1−eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)≺1+Aω1+Bω, | (1.11) |
where,
(−π2<θ<π2, −1≤β<A≤1,η∈C−{0}, j∈W, ν,α,β>0andω∈U∗ ). |
(i). For A=1 and B=−1, we set
Nν,jα,β(θ,b;1,−1)=Nν,jα,β(θ,b), |
where Nν,jα,β(θ,b) denote the class of functions λ∈∑ satisfying the following inequality:
ℜ[eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)]<1. |
(ii). For θ=0 and α=β=1 we write
Nν,j1,1(0,b;1,−1)=Nν,j(b), |
where Nν,j(b) denote the class of functions λ∈∑ satisfying the following inequality:
ℜ[1b(ω(Lνλ(ω))j+1(Lνλ(ω))j+j+1)]<1. |
A majorization problem for the normalized class of starlike functions has been examined by MacGregor [17] and Altintas et al. [3,4]. Recently, Eljamal et al. [8], Goyal et al. [12,13], Goswami et al. [10,11], Li et al. [14], Tang et al. [21,22] and Prajapat and Aouf [18] generalized these results for different classes of analytic functions.
The objective of this paper is to examined the problems of majorization for the classes Mν,jα,β(η,ϰ;A,B) and Nν,jα,β(θ,b;A,B).
In Theorem 1, we prove majorization property for the class Mν,jα,β(η,ϰ;A,B).
Theorem 1. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r0), | (2.1) |
where r0=r0(η,ϰ,ν,α,β,A,B) is the smallest positive roots of the equation
−ρ(ν−1+α+12)[(A−B)|η|1−ϰ−(α+12)|B|]r3−(ν−1+α+12)[ρ(α+12)+ρ2|B|−|B|]r2−(ν−1+α+12)[(A−B)|η|1−ϰ−(α+12)|B|+ρ2|B|−1]r+ρ(ν−1+α+12)(α+12)=0. | (2.2) |
Proof. Since δ∈Mν,jα,β(η,ϰ;A,B), we have
1−1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j)−ϰ|−1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j)|=1+Ak(ω)1+Bk(ω), | (2.3) |
where k(ω)=c1ω+c2ω2+..., is analytic and bounded functions in U∗ with
|k(ω)|≤|ω| (ω∈U∗). | (2.4) |
Taking
§(ω)=1−1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j), | (2.5) |
In (2.3), we have
§(ω)−ϰ|§(ω)−1|=1+Ak(ω)1+Bk(ω), |
which implies
§(ω)=1+(A−Bϰe−iθ1−ϰe−iθ)k(ω)1+Bk(ω). | (2.6) |
Using (2.6) in (2.5), we get
ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j=−ν+j+[(A−B)η1−ϰe−iθ+(ν+j)B]k(ω)1+Bk(ω). | (2.7) |
Application of Leibnitz's Theorem on (1.9) gives
ω(Lν,α,βδ(ω))j+1=(ν−1+α+12)(Lν−1,α,βδ(ω))j−(ν+j+α+12)(Lν,α,βδ(ω))j. | (2.8) |
By using (2.8) in (2.7) and making simple calculations, we have
(Lν−1,α,βδ(ω))j(Lν,α,βδ(ω))j=α+12−[(A−B)η1−ϰe−iθ−(α+12)B]k(ω)(1+Bk(ω))(ν−1+α+12). | (2.9) |
Or, equivalently
(Lν,α,βδ(ω))j=(1+Bk(ω))(ν−1+α+12)α+12−[(A−B)η1−ϰe−iθ−(α+12)B]k(ω)(Lν−1,α,βδ(ω))j. | (2.10) |
Since |k(ω)|≤|ω|, (2.10) gives us
|(Lν,α,βδ(ω))j|≤[1+|B||ω|](ν−1+α+12)α+12−|(A−B)η1−ϰe−iθ−(α+12)B||ω||(Lν−1,α,βδ(ω))j|≤[1+|B||ω|](ν−1+α+12)α+12−[(A−B)|η|1−ϰ−(α+12)|B|]|ω||(Lν−1,α,βδ(ω))j| | (2.11) |
Since (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗. So from (1.3), we have
(Lν,α,βλ(ω))j=φ(ω)(Lν,α,βδ(ω))j. | (2.12) |
Differentiating (2.12) with respect to ω then multiplying with ω, we get
(Lν,α,βλ(ω))j=ωφ′(ω)(Lν,α,βδ(ω))j+ωφ(ω)(Lν,α,βδ(ω))j+1. | (2.13) |
By using (2.8), (2.12) and (2.13), we have
(Lν,α,βλ(ω))j+1=1(ν−1+α+12)ωφ′(ω)(Lν,α,βδ(ω))j+φ(ω)(Lν−1,α,βδ(ω))j+1. | (2.14) |
On the other hand, noticing that the Schwarz function φ satisfies the inequality
|φ′(ω)|≤1−|φ(ω)|21−|ω|2 (ω∈U∗). | (2.15) |
Using (2.8) and (2.15) in (2.14), we get
|(Lν,α,βλ(ω))j|≤[|φ(ω)|+ω(1−|φ(ω)|2)[1+|B||ω|](ν−1+α+12)(ν−1+α+12)(1−|ω|2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]|ω|)]×|(Lν−1,α,βδ(ω))j|, |
By taking
|ω|=r, |φ(ω)|=ρ (0≤ρ≤1), |
reduces to the inequality
|(Lν,α,βλ(ω))j|≤Φ1(ρ)(ν−1+α+12)(1−r2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]r)|(Lν−1,α,βδ(ω))j|, |
where
Φ1(ρ)=[ρ(ν−1+α+12)(1−r2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]r)+r(1−ρ2)[1+|B|r](ν−1+α+12)]=−r[1+|B|r](ν−1+α+12)ρ2+ρ(ν−1+α+12)(1−r2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]r)+r[1+|B|r](ν−1+α+12), | (2.16) |
takes in maximum value at ρ=1 with r0=r0(η,ϰ,ν,α,β,A,B) where r0 is the least positive root of the (2.2). Furthermore, if 0≤ξ0≤r0(η,ϰ,ν,α,β,A,B), then the function ψ1(ρ) defined by
ψ1(ρ)=−ξ0[1+|B|ξ0](ν−1+α+12)ρ2+ρ(ν−1+α+12)(1−ξ20)(α+12−[(A−B)|η|1−ϰ−(α+12)B]ξ0)+ξ0[1+|B|ξ0](ν−1+α+12), | (2.17) |
is an increasing function on the interval (0≤ρ≤1), so that
ψ1(ρ)≤ψ1(1)=(ν−1+α+12)(1−ξ20)[α+12−((A−B)|η|1−ϰ−(α+12)B)ξ0](0≤ρ≤1, 0≤ξ0≤r0(η,ϰ,A,B)). |
Hence, upon setting ρ=1 in (2.17), we achieve (2.1).
Special Cases: Let A=1 and B=−1 in Theorem 1, we obtain the following corollary.
Corollary 1. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r1), |
where r1=r1(η,ϰ,ν,α,β) is the least positive roots of the equation
ρ(ν−1+α+12)[2|η|1−ϰ−(α+12)]r3−(ν−1+α+12)[ρ(α+12)+ρ2−1]r2−(ν−1+α+12)[ρ{2|η|1−ϰ−(α+12)}+ρ2−1]r+ρ(ν−1+α+12)(α+12)=0. | (2.18) |
Here, r=−1 is one of the roots (2.18) and the other roots are given by
r1=k0−√k20−4ρ2(ν−1+α+12)[2|η|1−ϰ−(α+12)](ν−1+α+12)(α+12)2ρ(ν−1+α+12)[2|η|1−ϰ−(α+12)], |
where
k0=(ν−1+α+12)[ρ{2|η|1−ϰ−2(α+12)}+ρ2−1]. |
Taking ϰ=0 in corollary 1, we state the following:
Corollary 2. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lv,α,βλ(ω))j+1|≤|(Lv,α,βδ(ω))j+1|,(|ω|<r2), |
where r2=r2(η,ν,α,β) is the lowest positive roots of the equation
ρ(ν−1+α+12)[2|η|−(α+12)]r3−(ν−1+α+12)[ρ(α+12)+ρ2−1]r2−(ν−1+α+12)[ρ{2|η|−(α+12)}+ρ2−1]r+ρ(ν−1+α+12)(α+12)=0, | (2.19) |
given by
r2=k1−√k21−4ρ2(ν−1+α+12)[2|η|−(α+12)](ν−1+α+12)(α+12)2ρ(ν−1+α+12)[2|η|−(α+12)], |
where
k1=(ν−1+α+12)[ρ{2|η|−2(α+12)}+ρ2−1]. |
Taking α=β=1 in corollary 2, we get the following:
Corollary 3. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r3), |
where r3=r3(η,ν) is the lowest positive roots of the equation
ρν[2|η|−1]r3−ν[ρ+ρ2−1]r2−ν[ρ(2|η|−1)+ρ2−1]r+ρν=0, | (2.20) |
given by
r3=k2−√k22−4ρ2ν[2|η|−1]ν2ρν[2|η|−1], |
where
k2=ν[ρ{2|η|−2}+ρ2−1]. |
Secondly, we exam majorization property for the class Nν,jα,β(θ,b;A,B).
Theorem 2. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r4), | (3.1) |
where r4=r4(θ,b,ν,α,β,A,B) is the smallest positive roots of the equation
−ρ[|(B−A)bcosθ+(ν+α+12−1)|B||]r3−[ρ{ν+α+12−1}−|B|(1−ρ2)(ν−1+α+12)]r2+[ρ{|(B−A)bcosθ+(ν+α+12−1)|B||}+(1−ρ2)(ν−1+α+12)]r+ρ[ν+α+12−1]=0,(−π2<θ<π2,−1≤β<A≤1,η∈C−{0},ν,α,β>0,andω∈U∗). | (3.2) |
Proof. Since δ∈Nν,jα,β(θ,b;A,B), so
1−eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)=1+Aω1+Bω, | (3.3) |
where, k(ω) is defined as (2.4).
From (3.3), we have
ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j=[(B−A)bcosθ−(j+1)Beiθ]k(ω)−(j+1)eiθeiθ(1+Bk(ω)). | (3.4) |
Now, using (2.8) in (3.4) and making simple calculations, we obtain
(Lν−1,α,βδ(ω))j(Lν,α,βδ(ω))j=[(B−A)bcosθ+(ν+α+12−1)Beiθ]k(ω)+[(ν+j+α+12)−1]eiθeiθ(1+Bk(ω))(ν−1+α+12), | (3.5) |
which, in view of |k(ω)|≤|ω| (ω∈U∗), immediately yields the following inequality
|(Lν,α,βδ(ω))j|≤|eiθ|(1+|B||k(ω)|)(ν−1+α+12)[|(B−A)bcosθ+(ν+α+12−1)Beiθ|]|k(ω)|+[(ν+α+12)−1]|eiθ|×|(Lν−1,α,βδ(ω))j|. | (3.6) |
Now, using (2.15) and (3.6) in (2.14) and working on the similar lines as in Theorem 1, we have
|(Lν−1,α,βλ(ω))j|≤[|φ(ω)|+|ω|(1−|φ(ω)|2)(1+|B||ω|)(ν−1+α+12)(1−|ω|2)[{|(B−A)bcosθ+(ν+α+12−1)B|}|ω|+[(ν+α+12)−1]]]×|(Lν−1,α,βδ(ω))j|. |
By setting |ω|=r,|φ(ω)|=ρ(0≤ρ≤1), leads us to the inequality
|(Lν−1,α,βλ(ω))j|≤[Φ2(ρ)(1−r2)[{|(B−A)bcosθ+(ν+α+12−1)B|}r+(ν+α+12)−1]]×|(Lν−1,α,βδ(ω))j|, | (3.7) |
where the function Φ2(ρ) is given by
Φ2(ρ)=ρ(1−r2)[{|(B−A)bcosθ+(ν+α+12−1)B|}r+(ν+α+12)−1]+r(1−ρ2)(1+Br)(ν−1+α+12). |
Φ2(ρ) its maximum value at ρ=1 with r4=r4(θ,b,ν,α,β,A,B) given in (3.2). Moreover if 0≤ξ1≤r4(θ,b,ν,α,β,A,B), then the function.
ψ2(ρ)=ρ(1−ξ21)[{|(B−A)bcosθ+(ν+α+12−1)B|}ξ1+(ν+α+12)−1]+ξ1(1−ρ2)(1+Bξ1)(ν−1+α+12), |
increasing on the interval 0≤ρ≤1, so that ψ2(ρ) does not exceed
ψ2(1)=(1−ξ21)[{|(B−A)bcosθ+(ν+α+12−1)B|}ξ1+(ν+α+12)−1]. |
Therefore, from this fact (3.7) gives the inequality (3.1). We complete the proof.
Special Cases: Let A=1 and B=−1 in Theorem 2, we obtain the following corollary.
Corollary 4. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2,...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r5), |
where r5=r5(θ,b,ν,α,β) is the lowest positive roots of the equation
−ρ[|−2bcosθ+(ν+α+12−1)|]r3−[ρ{ν+α+12−1}−(1−ρ2)(ν−1+α+12)]r2+[ρ{|−2bcosθ+(ν+α+12−1)|}+(1−ρ2)(ν−1+α+12)]r+ρ[ν+α+12−1]=0. | (3.8) |
Where r=−1 is first roots and the other two roots are given by
r5=κ0−√κ20+4ρ2[|−2bcosθ+(ν+α+12−1)|][ν+α+12−1]−2ρ[|−2bcosθ+(ν+α+12−1)|], |
and
κ0=[(1−ρ2)(ν−1+α+12)−ρ{|−2bcosθ+2(ν+α+12−1)|}]. |
Which reduces to Corollary 4 for θ=0.
Corollary 5. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2,...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r6), |
where r6=r6(b,ν,α,β) is the least positive roots of the equation
−ρ[|−2b+(ν+α+12−1)|]r3−[ρ{ν+α+12−1}−(1−ρ2)(ν−1+α+12)]r2+[ρ{|−2b+(ν+α+12−1)|}+(1−ρ2)(ν−1+α+12)]r+ρ[ν+α+12−1]=0, | (3.9) |
given by
r6=κ1−√κ21+4ρ2[|−2b+(ν+α+12−1)|][ν+α+12−1]−2ρ[|−2b+(ν+α+12−1)|], |
and
κ1=[(1−ρ2)(ν−1+α+12)−ρ{|−2b+2(ν+α+12−1)|}]. |
Taking α=β=1 in corollary 5, we get.
Corollary 6. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2,...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r7), |
where r7=r7(b,ν) is the lowest positive roots of the equation
−ρ|−2b+ν|r3−[ρν−(1−ρ2)ν]r2+[ρ|−2b+ν|+(1−ρ2)ν]r+ρ[ν]=0, | (3.10) |
given by
r7=κ2−√κ22+4ρ2[|−2b+ν|][ν]−2ρ[|−2b+ν|], |
and
κ2=[(1−ρ2)ν−ρ{|−2b+2ν|}]. |
In this paper, we explore the problems of majorization for the classes Mν,jα,β(η,ϰ;A,B) and Nν,jα,β(θ,b;A,B) by using a convolution operator Lν,α,β. These results generalizes and unify the theory of majorization which is an active part of current ongoing research in Geometric Function Theory. By specializing different parameters like ν,η,ϰ,θ and b, we obtain a number of important corollaries in Geometric Function Theory.
The work here is supported by GUP-2019-032.
The authors agree with the contents of the manuscript, and there is no conflict of interest among the authors.
[1] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[2] | G. I. Oros, G. Oros, The notion of subordination in fuzzy sets theory, General Mathematics, 19 (2011), 97–103. |
[3] |
S. S. Miller, P. T. Mocanu, Second order-differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305. https://doi.org/10.1016/0022-247X(78)90181-6 doi: 10.1016/0022-247X(78)90181-6
![]() |
[4] |
S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–172. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507
![]() |
[5] | G. I. Oros, G. Oros, Fuzzy differential subordination, Acta Universitatis Apulensis, 30 (2012), 55–64. |
[6] |
I. Dzitac, F. G. Filip, M. J. Manolescu, Fuzzy logic is not fuzzy: world-renowned computer scientist Lotfi A. Zadeh, Int. J. Comput. Commun., 12 (2017), 748–789. https://doi.org/10.15837/ijccc.2017.6.3111 doi: 10.15837/ijccc.2017.6.3111
![]() |
[7] | G. I. Oros, G. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2012), 239–248. |
[8] |
E. E. Ali, M. Vivas-Cortez, R. M. El-Ashwah, New results about fuzzy γ-convex functions connected with the q-analogue multiplier-Noor integral operator, AIMS Mathematics, 9 (2024), 5451–5465. https://doi.org/10.3934/math.2024263 doi: 10.3934/math.2024263
![]() |
[9] |
E. E. Ali, M. Vivas-Cortez, R. M. El-Ashwah, A. M. Albalahi, Fuzzy subordination results for meromorphic functions connected with a linear operator, Fractal Fract., 8 (2024), 308. https://doi.org/10.3390/fractalfract8060308 doi: 10.3390/fractalfract8060308
![]() |
[10] | G. I. Oros, Briot-Bouquet fuzzy differential subordination, Analele Universitatii Oradea Fasc. Matematica, 2 (2012), 83–97. |
[11] |
F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
![]() |
[12] | F. H. Jackson, On q-definite integrals, The Quarterly Journal of Pure and Applied Mathematics, 41 (1910), 193–203. |
[13] | R. D. Carmichael, The general theory of linear q-difference equations, Am. J. Math., 34 (1912), 147–168. |
[14] |
T. E. Mason, On properties of the solution of linear q-difference equations with entire function coefficients, Am. J. Math., 37 (1915), 439–444. https://doi.org/10.2307/2370216 doi: 10.2307/2370216
![]() |
[15] |
W. J. Trjitzinsky, Analytic theory of linear difference equations, Acta Math., 61 (1933), 1–38. https://doi.org/10.1007/BF02547785 doi: 10.1007/BF02547785
![]() |
[16] |
M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application, 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
![]() |
[17] |
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
![]() |
[18] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex A., 22 (2021), 1501–1520. |
[19] |
H. M. Srivastava, An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the q-Bessel polynomials, Symmetry, 15 (2023), 822. https://doi.org/10.3390/sym15040822 doi: 10.3390/sym15040822
![]() |
[20] |
E. E. Ali, T. Bulboaca, Subclasses of multivalent analytic functions associated with a q-difference operator, Mathematics, 8 (2020), 2184. https://doi.org/10.3390/math8122184 doi: 10.3390/math8122184
![]() |
[21] |
E. E. Ali, A. M. Lashin, A. M. Albalahi, Coefficient estimates for some classes of biunivalent function associated with Jackson q-difference operator, J. Funct. Space., 2022 (2022), 2365918. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918
![]() |
[22] |
E. E. Ali, H. M. Srivastava, A. M. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the q-derivatives of the q-binomials, Mathematics, 11 (2023), 2496. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918
![]() |
[23] |
E. E. Ali, H. M. Srivastava, A. M. Albalahi, Subclasses of p-valent k-uniformly convex and starlike functions defined by the q-derivative operator, Mathematics, 11 (2023), 2578. https://doi.org/10.3390/math11112578 doi: 10.3390/math11112578
![]() |
[24] |
E. E. Ali, G. I. Oros, S. A. Shah, A. M. Albalahi, Applications of q-calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705
![]() |
[25] |
W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional q-calculus operator, Math. Bohem., 148 (2023), 131–148. http://doi.org/10.21136/MB.2022.0047-21 doi: 10.21136/MB.2022.0047-21
![]() |
[26] |
B. Wang, R. Srivastava, J. L. Liu, A certain subclass of multivalent analytic functions defined by the q-difference operator related to the Janowski functions, Mathematics, 9 (2021), 1706. https://doi.org/10.3390/math9141706 doi: 10.3390/math9141706
![]() |
[27] |
S. Kanas, D. Raducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
![]() |
[28] | K. I. Noor, S. Riaz, M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. |
[29] |
M. K. Aouf, S. M. Madian, Inclusion and properties neighbourhood for certain p-valent functions associated with complex order and q-p-valent Cătaş operator, J. Taibah Univ. Sci., 14 (2020), 1226–1232. https://doi.org/10.1080/16583655.2020.1812923 doi: 10.1080/16583655.2020.1812923
![]() |
[30] |
M. Arif, H. M. Srivastava, S. Umar, Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211–1221. https://doi.org/10.1007/s13398-018-0539-3 doi: 10.1007/s13398-018-0539-3
![]() |
[31] |
R. M. Goel, N. S. Sohi, A new criterion for p-valent functions, P. Am. Math. Soc., 78 (1980), 353–357. https://doi.org/10.2307/2042324 doi: 10.2307/2042324
![]() |
[32] |
S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. https://doi.org/10.2307/2039801 doi: 10.2307/2039801
![]() |
[33] |
K. I. Noor, M. Arif, On some applications of Ruscheweyh derivative, Comput. Math. Appl., 62 (2011), 4726–4732. https://doi.org/10.1016/j.camwa.2011.10.063 doi: 10.1016/j.camwa.2011.10.063
![]() |
[34] |
I. Aldawish, M. Darus, Starlikeness of q-differential operator involving quantum calculus, Korean J. Math., 22 (2014), 699–709. https://doi.org/10.11568/kjm.2014.22.4.699 doi: 10.11568/kjm.2014.22.4.699
![]() |
[35] |
H. Aldweby, M. Darus, A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator, ISRN Mathematical Analysis, 2013 (2013), 382312. https://doi.org/10.1155/2013/382312 doi: 10.1155/2013/382312
![]() |
[36] |
M. K. Aouf, R. M. El-Ashwah, Inclusion properties of certain subclass of analytic functions defined by multiplier transformations, Annales Universitatis Mariae Curie-Sklodowska Sectio A–Mathematica, 63 (2009), 29–38. https://doi.org/10.2478/v10062-009-0003-0 doi: 10.2478/v10062-009-0003-0
![]() |
[37] | R. M. El-Ashwah, M. K. Aouf, Some properties of new integral operator, Acta Universitatis Apulensis, 24 (2010), 51–61. |
[38] |
T. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204
![]() |
[39] | G. S. Sălăgean, Subclasses of univalent functions, In: Complex analysis—Fifth Romanian-Finnish seminar, Berlin: Springer, 1983,362–372. https://doi.org/10.1007/BFb0066543 |
[40] |
S. A. Shah, K. I. Noor, Study on q-analogue of certain family of linear operators, Turk. J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41
![]() |
[41] |
H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transf. Spec. F., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577
![]() |
[42] | H. M. Srivastava, J. Choi, Series associated with the Zeta and related functions, Dordrecht: Springer, 2001. |
[43] | S. G. Gal, A. I. Ban, Elemente de matematică fuzzy, Romania: Editura Universităţii din Oradea, 1996. |
[44] | S. S. Miller, P. T. Mocanu, Differential subordinations theory and applications, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817 |
[45] |
S. A. Shah, E. E. Ali, A. A. Maitlo, T. Abdeljawad, A. M. Albalahi, Inclusion results for the class of fuzzy α-convex functions, AIMS Mathematics, 8 (2023), 1375–1383. https://doi.org/10.3934/math.2023069 doi: 10.3934/math.2023069
![]() |
[46] |
B. Kanwal, S. Hussain, A. Saliu, Fuzzy differential subordination related to strongly Janowski functions, Appl. Math. Sci. Eng., 31 (2023), 2170371. https://doi.org/10.1080/27690911.2023.2170371 doi: 10.1080/27690911.2023.2170371
![]() |
[47] |
S. A. Shah, E. E. Ali, A. Catas, A. M. Albalahi, On fuzzy differential subordination associated with q-difference operator, AIMS Mathematics, 8 (2023), 6642–6650. https://doi.org/10.3934/math.2023336 doi: 10.3934/math.2023336
![]() |
[48] |
B. Kanwal, K. Sarfaraz, M. Naz, A. Saliu, Fuzzy differential subordination associated with generalized Mittag-Leffler type Poisson distribution, Arab Journal of Basic and Applied Sciences, 31 (2024), 206–212. https://doi.org/10.1080/25765299.2024.2319366 doi: 10.1080/25765299.2024.2319366
![]() |
[49] |
S. H. Hadi, M. Darus, A class of harmonic (p,q)-starlike functions involving a generalized (p,q)-Bernardi integral operator, Probl. Anal. Issues Anal., 12 (2023), 17–36. https://doi.org/10.15393/j3.art.2023.12850 doi: 10.15393/j3.art.2023.12850
![]() |
[50] |
P. H. Long, H. Tang, W. S. Wang, Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator, AIMS Mathematics, 6 (2021), 1191–1208. https://doi.org/10.3934/math.2021073 doi: 10.3934/math.2021073
![]() |
[51] |
O. A. Arqub, J. Singh, M. Alhodaly, Adaptation of kernel functions-based approach with Atangana-Baleanu-Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations, Math. Method. Appl. Sci., 46 (2023), 7807–7834. https://doi.org/10.1002/mma.7228 doi: 10.1002/mma.7228
![]() |
[52] |
O. A. Arqub, J. Singh, B. Maayah, M. Alhodaly, Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator, Math. Method. Appl. Sci., 46 (2023), 7965–7986. https://doi.org/10.1002/mma.7305 doi: 10.1002/mma.7305
![]() |
[53] |
O. A. Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Comput. & Applic., 28 (2017), 1591–1610. https://doi.org/10.1007/s00521-015-2110-x doi: 10.1007/s00521-015-2110-x
![]() |
[54] |
O. A. Arqub, S. Momani, S. Al-Mezel, M. Kutbi, Existence, Uniqueness, and characterization theorems for nonlinear fuzzy integrodifferential equations of Volterra type, Math. Probl. Eng., 2015 (2015), 835891. http://doi.org/10.1155/2015/835891 doi: 10.1155/2015/835891
![]() |
1. | Syed Ghoos Ali Shah, Saqib Hussain, Akhter Rasheed, Zahid Shareef, Maslina Darus, Fanglei Wang, Application of Quasisubordination to Certain Classes of Meromorphic Functions, 2020, 2020, 2314-8888, 1, 10.1155/2020/4581926 | |
2. | Syed Ghoos Ali Shah, Saima Noor, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Maslina Darus, Rashad Asharabi, Analytic Functions Related with Starlikeness, 2021, 2021, 1563-5147, 1, 10.1155/2021/9924434 | |
3. | Syed Ghoos Ali Shah, Saqib Hussain, Saima Noor, Maslina Darus, Ibrar Ahmad, Teodor Bulboaca, Multivalent Functions Related with an Integral Operator, 2021, 2021, 1687-0425, 1, 10.1155/2021/5882343 | |
4. | Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus, q-Noor integral operator associated with starlike functions and q-conic domains, 2022, 7, 2473-6988, 10842, 10.3934/math.2022606 | |
5. | Neelam Khan, Muhammad Arif, Maslina Darus, Abdellatif Ben Makhlouf, Majorization Properties for Certain Subclasses of Meromorphic Function of Complex Order, 2022, 2022, 1099-0526, 1, 10.1155/2022/2385739 | |
6. | Ibrar Ahmad, Syed Ghoos Ali Shah, Saqib Hussain, Maslina Darus, Babar Ahmad, Firdous A. Shah, Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials, 2022, 2022, 2314-4785, 1, 10.1155/2022/2705203 | |
7. | F. Müge SAKAR, Syed Ghoos Ali SHAH, Saqib HUSSAİN, Akhter RASHEED, Muhammad NAEEM, q-Meromorphic closed-to-convex functions related with Janowski function, 2022, 71, 1303-5991, 25, 10.31801/cfsuasmas.883970 | |
8. | Syed Ghoos Ali Shah, Sa’ud Al-Sa’di, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Imran Zulfiqar Cheema, Maslina Darus, Fekete-Szegö functional for a class of non-Bazilevic functions related to quasi-subordination, 2023, 56, 2391-4661, 10.1515/dema-2022-0232 | |
9. | Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Saowaluck Chasreechai, Thanin Sitthiwirattham, Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory, 2023, 12, 2075-1680, 885, 10.3390/axioms12090885 | |
10. | Shatha S. Alhily, Alina Alb Lupas, Certain Class of Close-to-Convex Univalent Functions, 2023, 15, 2073-8994, 1789, 10.3390/sym15091789 |