The aim of this paper is to establish a representation formula for the solutions of the Lamé-Navier system in linear elasticity theory. We also study boundary value problems for such a system in a bounded domain $ \Omega\subset {\mathbb R}^3 $, allowing a very general geometric behavior of its boundary. Our method exploits the connections between this system and some classes of second order partial differential equations arising in Clifford analysis.
Citation: Ricardo Abreu Blaya, J. A. Mendez-Bermudez, Arsenio Moreno García, José M. Sigarreta. Boundary value problems for the Lamé-Navier system in fractal domains[J]. AIMS Mathematics, 2021, 6(10): 10449-10465. doi: 10.3934/math.2021606
The aim of this paper is to establish a representation formula for the solutions of the Lamé-Navier system in linear elasticity theory. We also study boundary value problems for such a system in a bounded domain $ \Omega\subset {\mathbb R}^3 $, allowing a very general geometric behavior of its boundary. Our method exploits the connections between this system and some classes of second order partial differential equations arising in Clifford analysis.
[1] | R. M. Brown, I. Mitrea, The mixed problem for the Lamé system in a class of Lipschitz domains, J. Differential Equations, 246 (200), 2577. |
[2] | S. Mayboroda, M. Mitrea, The Poisson Problem for the Lamé System on Low-dimensional Lipschitz Domains, Constanda C, Nashed Z, Rollins D, Eds, Integral Methods in Science and Engineering, Birkhäuser Boston, 2006. |
[3] | J. R. Barber, Solid mechanics and its applications, Springer, 2003. |
[4] | Y. C. Fung, Foundations of solid mechanics, Prentice-Hall, 1965. |
[5] | L. E. Malvern, Introduction to the mechanics of a continuous medium, Prentice-Hall, 1969. |
[6] | M. H. Sadd, Elasticity: Theory, applications and numerics, Elsevier, 2005. |
[7] | I. S. Sokolnikoff, Mathematical theory of elasticity, MacGraw-Hill, 1958. |
[8] | A. Moreno García, T. Moreno García, R. Abreu Blaya, J. Bory Reyes, Inframonogenic functions and their applications in three dimensional elasticity theory, Math. Meth. Appl. Sci., 41 (2018), 3622. |
[9] | F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, Research Notes in Mathematics, Pitman 76, 1982. |
[10] | K. Güerlebeck, K. Habetha, W. Sprössig, Holomorphic functions in the plane and n-dimensional space, Birkhäuser Verlag, 2008. |
[11] | S. Bock, K. Gürlebeck, D. Legatiuk, H. M. Nguyen, $\psi$-Hyperholomorphic functions and a Kolosov-Muskhelishvili formula, Math. Methods Appl. Sci., 38 (2015), 5114. doi: 10.1002/mma.3431 |
[12] | S. Bock, K. Gürlebec, On a spatial generalization of the Kolosov-Muskhelishvili formulae, Math. Methods Appl. Sci., 32 (2009), 223. doi: 10.1002/mma.1033 |
[13] | K. Gürlebeck, H. M. Nguyen, $\psi$-hyperholomorphic functions and an application to elasticity problems, AIP Conf. Proc., 1648 (2015), 440005. doi: 10.1063/1.4912656 |
[14] | Y. Grigoriev, Regular quaternionic functions and their applications in three-dimensional elasticity, Proc. XXIV ICTAM, (2016), 21–26. |
[15] | Y. Grigoriev, Three-dimensional Quaternionic Analogue of the Kolosov Muskhelishvili Formulae, In: S. Bernstein, U. Kähler, I. Sabadini, F. Sommen, Eds, Hypercomplex Analysis: New Perspectives and Applications, Trends in Mathematics, Birkhäuser, 2014. |
[16] | H. M. Nguyen, $\psi$-Hyperholomorphic function theory in $ {\mathbb R}^3$: Geometric mapping properties and applications, (Habilitation Thesis) Fakultat Bauingenieurwesen der Bauhaus-Universitat, Weimar (e-pub.uni-weimar.de) 2015. |
[17] | D. Weisz-Patrault, S. Bock, D. Gürlebeck, Three-dimensional elasticity based on quaternion-valued potentials, Int. J. Solids Structures, 51 (2014), 3422. doi: 10.1016/j.ijsolstr.2014.06.002 |
[18] | L. W. Liu, H. K. Hong, Clifford algebra valued boundary integral equations for three-dimensional elasticity, Appl. Math. Model., 54 (2018), 246. doi: 10.1016/j.apm.2017.09.031 |
[19] | K. Gürlebeck, W. Sprössig, Quaternionic snalysis and elliptic boundary value problems, Birkhäuser AG, 1990. |
[20] | K. Güerlebeck, K. Habetha, W. Sprössig, Application of Holomorphic Functions in Two and Higher Dimensions, Birkhäuser Verlag, Basel, 2016. |
[21] | J. Aguirre, R. Viana, M. A. F. Sanjuán, Fractal structures in nonlinear dynamics, Rev. Mod. Phys., 81 (2009), 333. doi: 10.1103/RevModPhys.81.333 |
[22] | D. Bolmatov, D. Zav'yalov, J. M. Carrillo, J. Katsaras, Fractal boundaries underpin the 2D melting of biomimetic rafts, Biochimica et Biophysica Acta (BBA)- Biomembranes, 1862 (2020), 183249. doi: 10.1016/j.bbamem.2020.183249 |
[23] | N. Pippa, A. Dokoumetzidis, C. Demetzos, P. Macheras, On the ubiquitous presence of fractals and fractal concepts in pharmaceutical sciences: A review, Int. J. Pharm., 456 (2013), 340–352. doi: 10.1016/j.ijpharm.2013.08.087 |
[24] | I. D. Young, J. S. Fraser, Biomaterials in non-integer dimensions, Nat. Chem., 11 (2019), 599–600. doi: 10.1038/s41557-019-0286-x |
[25] | B. B. Mandelbrot, The Fractal Geometry of Nature, Free-man, San Francisco, 1982. |
[26] | A. Moreno García, T. Moreno García, R. Abreu Blaya, J. Bory Reyes, A Cauchy integral formula for inframonogenic functions in Clifford analysis, Adv. Appl. Clifford Algebras, 27 (2017), 1147. |
[27] | A. Moreno García, T. Moreno García, R. Abreu Blaya, J. Bory Reyes, Decomposition of inframonogenic functions with applications in elasticity theory, Math Meth Appl Sci., 43 (2020), 1915–1924. |
[28] | D. E. G. Valencia, R. A. Blaya, M. P. R. Alejandre, A. M. García, On the plane Lamé-Navier system in fractal domains, Complex Anal. Oper. Theory, 15 (2021), 15. doi: 10.1007/s11785-020-01062-7 |
[29] | H. Malonek, D. Peña-Peña, F. Sommen, A Cauchy-Kowalevski theorem for inframonogenic functions, Math. J. Okayama Univ., 53 (2011), 167. |
[30] | H. Malonek, D. Peña-Peña, F. Sommen, Fischer decomposition by inframonogenic functions, CUBO A Math. J., 12 (2010), 189. doi: 10.4067/S0719-06462010000200012 |
[31] | L. E. Andersson, T. Elfving, G. H. Golub, Solution of biharmonic equations with application to radar imaging, J. Comput. Appl. Math., 94 (1998), 153. doi: 10.1016/S0377-0427(98)00079-X |
[32] | M. C. Lai, H. C. Liu, Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows, Appl. Math. Comput., 164 (2005), 679. |
[33] | R. Abreu-Blaya, J. Bory-Reyes, M. A. Herrera-Peláez, J. M. Sigarreta-Almira, Integral Representation Formulas Related to the Lamé-Navier System, Acta Mathematica Sinica, English Series, 36 (2020), 1341–1356. doi: 10.1007/s10114-020-9332-2 |
[34] | I. E. Niyozov, O. I. Makhmudov, The Cauchy Problem of the Moment Elasticity Theory in $ {\mathbb R}^m$, Russian Math. (Iz. VUZ), 58 (2014), 240. |
[35] | E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser. 30, Princeton Univ. Press, 1970. |
[36] | H. Begehr, Integral representations in complex, hypercomplex and Clifford analysis, Integral Transforms Special Functions, 13 (2002), 223–241. doi: 10.1080/10652460213518 |
[37] | H. Begehr, Iterated integral operators in Clifford analysis, J. Anal. Appl., 18 (1999), 361. |
[38] | J. Harrison, A. Norton, The Gauss-Green theorem for fractal boundaries, Duke Math. J., 67 (1992), 575. |
[39] | R. Abreu Blaya, R. Ávila Ávila, J. Bory Reyes, Boundary value problems with higher order Lipschitz boundary data for polymonogenic functions in fractal domains, Appl. Math. Comput., 269 (2015), 802. |
[40] | R. Abreu-Blaya, J. Bory-Reyes, D. Peña-Peña, Jump problem and removable singularities for monogenic functions, J. Geom. Anal., 17 (2007), 1. |