This study is focused on the numerical solutions of the nonlinear Volterra-Fredholm integral equations (NV-FIEs) of the second kind, which have several applications in physical mathematics and contact problems. Herein, we develop a new technique that combines the modified Adomian decomposition method and the quadrature (trapezoidal and Weddle) rules that used when the definite integral could be extremely difficult, for approximating the solutions of the NV-FIEs of second kind with a phase lag. Foremost, Picard's method and Banach's fixed point theorem are implemented to discuss the existence and uniqueness of the solution. Furthermore, numerical examples are presented to highlight the proposed method's effectiveness, wherein the results are displayed in group of tables and figures to illustrate the applicability of the theoretical results.
Citation: Gamal A. Mosa, Mohamed A. Abdou, Ahmed S. Rahby. Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag[J]. AIMS Mathematics, 2021, 6(8): 8525-8543. doi: 10.3934/math.2021495
[1] | Fengrong Zhang, Ruining Chen . Spatiotemporal patterns of a delayed diffusive prey-predator model with prey-taxis. Electronic Research Archive, 2024, 32(7): 4723-4740. doi: 10.3934/era.2024215 |
[2] | Xin Du, Quansheng Liu, Yuanhong Bi . Bifurcation analysis of a two–dimensional p53 gene regulatory network without and with time delay. Electronic Research Archive, 2024, 32(1): 293-316. doi: 10.3934/era.2024014 |
[3] | Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150 |
[4] | Rui Ma, Xin-You Meng . Dynamics of an eco-epidemiological model with toxicity, treatment, time-varying incubation. Electronic Research Archive, 2025, 33(5): 3074-3110. doi: 10.3934/era.2025135 |
[5] | Rina Su . Dynamic analysis for a class of hydrological model with time delay under fire disturbance. Electronic Research Archive, 2022, 30(9): 3290-3319. doi: 10.3934/era.2022167 |
[6] | Mengting Sui, Yanfei Du . Bifurcations, stability switches and chaos in a diffusive predator-prey model with fear response delay. Electronic Research Archive, 2023, 31(9): 5124-5150. doi: 10.3934/era.2023262 |
[7] | Yujia Xiang, Yuqi Jiao, Xin Wang, Ruizhi Yang . Dynamics of a delayed diffusive predator-prey model with Allee effect and nonlocal competition in prey and hunting cooperation in predator. Electronic Research Archive, 2023, 31(4): 2120-2138. doi: 10.3934/era.2023109 |
[8] | Yuan Xue, Jinli Xu, Yuting Ding . Dynamics analysis of a diffusional immunosuppressive infection model with Beddington-DeAngelis functional response. Electronic Research Archive, 2023, 31(10): 6071-6088. doi: 10.3934/era.2023309 |
[9] | Wenbin Zhong, Yuting Ding . Spatiotemporal dynamics of a predator-prey model with a gestation delay and nonlocal competition. Electronic Research Archive, 2025, 33(4): 2601-2617. doi: 10.3934/era.2025116 |
[10] | Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang . Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior. Electronic Research Archive, 2022, 30(7): 2510-2523. doi: 10.3934/era.2022128 |
This study is focused on the numerical solutions of the nonlinear Volterra-Fredholm integral equations (NV-FIEs) of the second kind, which have several applications in physical mathematics and contact problems. Herein, we develop a new technique that combines the modified Adomian decomposition method and the quadrature (trapezoidal and Weddle) rules that used when the definite integral could be extremely difficult, for approximating the solutions of the NV-FIEs of second kind with a phase lag. Foremost, Picard's method and Banach's fixed point theorem are implemented to discuss the existence and uniqueness of the solution. Furthermore, numerical examples are presented to highlight the proposed method's effectiveness, wherein the results are displayed in group of tables and figures to illustrate the applicability of the theoretical results.
Fractional difference calculus is a tool used to explain many phenomena in physics, control problems, modeling, chaotic dynamical systems, and various fields of engineering and applied mathematics. In this direction, different kinds of methods and techniques, including numerical and analytical methods, have been utilized by researchers to discuss given fractional discrete and continuous mathematical models and boundary value problems (BVPs) [1,2,3,4]. For some recent developments on the existence, uniqueness, and stability of solutions for fractional differential equations, see, for example, [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] and the references therein.
Discrete fractional calculus and difference equations open a new study context for mathematicians. For this reason, they have received increasing attention in recent years. Some real-world processes and phenomena are analyzed with the aid of discrete fractional operators, since such operators provide an accurate tool to describe memory. A large number of research articles dealing with difference equations and discrete fractional boundary value problems (FBVPs) can be found in [24,25,26,27,28,29,30,31,32].
In 2020, Selvam et al. [33] proved the existence of a solution to a discrete fractional difference equation formulated as
{cΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),1<ϱ≤2,Δχ(ϱ−2)=M1,χ(ϱ+T)=M2, | (1.1) |
for ξ∈[0,T]N0=[0,1,2,…,T], T∈N, η∈[ϱ−1,T+ϱ−1]Nϱ−1, M1 and M2 constants, Φ:[ϱ−2,ϱ+T]Nϱ−2×R⟶R continuous, and where cΔϱξ denotes the ϱth-Caputo difference. Here, motivated by the discrete model (1.1), we shall consider two generalized discrete problems.
Our first goal consists to study existence and uniqueness of solutions to the following discrete fractional equation that involves Caputo discrete derivatives:
{cΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2, | (1.2) |
for 0<β≤1, ξ∈[0,T]N0=[0,1,2,…,T], T∈N, η∈[ϱ−1,T+ϱ−1]Nϱ−1, λ, A1 and A2 constants, and where Φ:[ϱ−3,ϱ+T]Nϱ−3×R⟶R is continuous.
The second goal is to study the stability of solutions to the discrete Riemann-Liouville fractional problem
{RLΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2, | (1.3) |
for 0<β≤1, ξ∈[0,T]N0=[0,1,2,…,T] and η∈[ϱ−1,T+ϱ−1]Nϱ−1, where RLΔϱξ is the Riemann-Liouville difference operator.
The organization of the paper is as follows. In Section 2, we collect some fundamental definitions available from the literature. In Section 3, we prove the existence and uniqueness results for the discrete FBVP (1.2). Hyers-Ulam and Hyers-Ulam-Rassias stability of the solution for the FBVP (1.3) is established in Section 4. In Section 5, two examples are given to illustrate the obtained results. We end with Section 6 of conclusions.
We begin by recalling some necessary definitions and essential lemmas that will be used throughout the paper.
Definition 2.1. (See [27]) Let ϱ>0. The ϱ-order fractional sum of Φ is defined by
Δ−ϱξΦ(ξ)=1Γ(ϱ)ξ−ϱ∑l=a(ξ−l−1)(ϱ−1)Φ(l), | (2.1) |
where ξ∈Na+ϱ:={a+ϱ,a+ϱ+1,…} and ξ(ϱ):=Γ(ξ+1)Γ(ξ+1−ϱ).
Definition 2.2. (See [27]) Let ϱ>0 and Φ be defined on Na. The ϱ-order Caputo fractional difference of Φ is defined by
CaΔϱξΦ(ξ)=Δ−(n−ϱ)(ΔnΦ(ξ))=1Γ(n−ϱ)ξ−(n−ϱ)∑l=a(ξ−l−1)(n−ϱ−1)ΔnΦ(l), | (2.2) |
while the Riemann-Liouville fractional difference of Φ is defined by
RLaΔϱξΦ(ξ)=ΔnΔ−(n−ϱ)Φ(ξ), | (2.3) |
where ξ∈Na+n−ϱ and n−1<ϱ≤n.
Lemma 2.1. (See [24,27]) For ϱ>0,
Δ−ϱCaΔϱξΦ(ξ)=Φ(ξ)+C0+C1ξ+⋯+CN−1ξ(N−1), | (2.4) |
where Ci∈R, i=1,2,…,N−1, Φ is defined on Na, and 0≤N−1<ϱ≤N.
Lemma 2.2. (See ([32]) Let 0≤N−1<ϱ≤N and Φ be defined on Na. Then,
Δ−ϱRL0ΔϱξΦ(ξ)=Φ(ξ)+B1ξϱ−1+B2ξ(ϱ−2)+⋯+BNξ(ϱ−N), | (2.5) |
for B1,…,BN∈R.
Lemma 2.3. (See [31]) Let ϱ and ξ be any arbitrary real numbers. Then,
(1)ξ−ϱ∑l=0(ξ−l−1)(ϱ−1)=Γ(ξ+1)ϱΓ(ξ−ϱ+1),(2)L∑l=0(ξ−L−l−1)(ϱ−1)=Γ(ϱ+L+1)ϱΓ(L+1). |
Lemma 2.4. (See [31]) For ζ∈R∖(Z−∖{0}), we have
Δ−ϱξ(ζ)=Γ(ζ+1)Γ(ζ+ϱ+1)ξ(ζ+ϱ). |
In this section, we prove the existence and uniqueness of solution for the Caputo three-point discrete fractional problem (1.2). To accomplish this, we denote by C(Nϱ−3,ϱ+T,R) the collection of all continuous functions χ with the norm
‖χ‖=max{|χ(ξ)|:ξ∈Nϱ−3,ϱ+T}. |
Lemma 3.1. Let 2<ϱ≤3 and Φ:[ϱ−3,ϱ+T]Nϱ−3⟶R. A function χ(ξ) (ξ∈[ϱ−3,ϱ+T]Nϱ−3) that satisfies the discrete FBVP
{cΔϱξχ(ξ)=Φ(ξ+ϱ−1),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2,0<β≤1, | (3.1) |
is given by
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)−λK1Γ(ϱ)η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1)+Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+K2+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2), | (3.2) |
with
K1=λη∑l=ϱ−3(η+β−ρ(l))(β−1)−Γ(β), | (3.3) |
and
K2=λK1[A2(ϱ−3)−A1]η∑l=ϱ−3(η+β−ρ(l))(β−1)l(1)−A22K1λη∑l=ϱ−3(η+β−ρ(l))(β−1)l(2)+Γ(β)K1(ϱ+T)[A1−A2(ϱ−3)+A22(ϱ+T−1)]. | (3.4) |
Proof. Let χ(ξ) be a solution to (3.1). Applying Lemma 2.1 and Definition 2.1, we find that
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+C0+C1ξ(1)+C2ξ(2), | (3.5) |
for ξ∈[ϱ−3,ϱ+T]Nϱ−3, where C0,C1,C2∈R. By using the difference of order 1 for (3.5), we have
Δχ(ξ)=1Γ(ϱ−1)ξ−ϱ+1∑l=0(ξ−ρ(l))(ϱ−2)Φ(l+ϱ−1)+C1+2C2ξ(1), |
and
Δ2χ(ξ)=1Γ(ϱ−2)ξ−ϱ+2∑l=0(ξ−ρ(l))(ϱ−3)Φ(l+ϱ−1)+2C2. |
Now, from conditions Δχ(ϱ−3)=A1 and Δ2χ(ϱ−3)=A2, we obtain that
C1=A1−A2(ϱ−3),C2=A22. |
Therefore,
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+C0+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2), | (3.6) |
for ξ∈[ϱ−3,ϱ+T]Nϱ−3. By using formula (3.5), one has
Δ−βχ(ξ)=C1Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(1)+C2Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(2)+C0Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)+1Γ(ϱ)Γ(β)ξ−β∑l=ϱl−ϱ∑ξ=0(ξ−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1). | (3.7) |
The other condition of (3.1) gives
λΔ−βχ(η+β)=λ[A1−A2(ϱ−3)]Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(1) +λA22Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(2)+λC0Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1) +λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1)=1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+C0 +[A1−A2(ϱ−3)](ϱ+T)(1)+A22(ϱ+T)(2). |
We have
C0=Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+K2−λK1Γ(ϱ)η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1), |
where K1 and K2 are defined by (3.3) and (3.4), and one obtains (3.2) by substituting the value of C0 into (3.6).
Now, let us consider the operator H:C(Nϱ−3,ϱ+T,R)→C(Nϱ−3,ϱ+T,R) defined by
(Hχ)(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))−λK1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+K2+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2). |
Theorem 3.1. Assume that:
(H1) Function Φ satisfies |Φ(ξ,χ1)−Φ(ξ,χ2)|≤K|χ1−χ2|, where K>0, ∀ξ∈Nϱ−3,ϱ+T and χ1,χ2∈C(Nϱ−3,ϱ+T,R). The discrete FBVP (3.1) has a unique solution on C(Nϱ−3,ϱ+T,R) provided
Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)(1+Γ(β)K1)+MλK1Γ(ϱ)≤1K | (3.8) |
with
M=|η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)|. | (3.9) |
Proof. Let χ1,χ2∈C(Nϱ−3,ϱ+T,R). Then, for each ξ∈Nϱ−3,ϱ+T, we have
|(Hχ1)(ξ)−(Hχ2)(ξ)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)×|Φ(l+ϱ−1,χ1(l+ϱ−1))−Φ(l+ϱ−1,χ2(l+ϱ−1))|+λK1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)×|Φ(l+ϱ−1,χ1(l+ϱ−1))−Φ(l+ϱ−1,χ2(l+ϱ−1))|+Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)×|Φ(l+ϱ−1,χ1(l+ϱ−1))−Φ(l+ϱ−1,χ2(l+ϱ−1))|. |
It follows that
‖(Hχ1)(ξ)−(Hχ2)(ξ)‖≤K‖χ1−χ2‖Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)+λK‖χ1−χ2‖K1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)+Γ(β)K‖χ1−χ2‖K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)≤K‖χ1−χ2‖Γ(ϱ)Γ(ϱ+T+1)ϱΓ(T+1)+λK‖χ1−χ2‖K1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)+Γ(β)K‖χ1−χ2‖K1Γ(ϱ)Γ(ϱ+T+1)ϱΓ(T+1)≤K‖χ1−χ2‖[Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+MλK1Γ(ϱ)+Γ(β)Γ(ϱ+T+1)K1Γ(ϱ+1)Γ(T+1)]. |
From (3.8), we conclude that H is a contraction. Then, by the Banach contraction principle, the discrete problem (3.1) has a unique solution on C(Nϱ−3,ϱ+T,R).
Theorem 3.2. Suppose that Φ:[ϱ−3,ϱ+T]Nϱ−3×R⟶R is a continuous function and
R=max{|Φ(l+ϱ−1,χ(l+ϱ−1))|,ξ∈Nϱ−3,ϱ+T,χ∈C(Nϱ−3,ϱ+T,R);‖χ‖≤2|K2|}. |
The discrete problem (3.1) has a solution provided that
R≤|K2|−|[A1−A2(ϱ−3)]|(ϱ+T)(1)−|A22|(ϱ+T)(2)Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)(1+Γ(β)|K1|)+M|λ|Γ(ϱ)|K1|. | (3.10) |
Proof. Let G={χ∈C(Nϱ−3,ϱ+T,R);‖χ‖≤2|K2|}. For χ(ξ)∈G, we get
|(Hχ)(ξ)|=|1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+λK1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))−Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+K2+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))|+|λ||K1|Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))|+Γ(β)|K1|Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))|+|K2|+|[A1−A2(ϱ−3)]ξ(1)|+|A22ξ(2)|≤RΓ(ϱ)[ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)+|λ||K1|η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)+Γ(β)|K1|T∑l=0(ϱ+T−ρ(l))(ϱ−1)]+|K2|+|[A1−A2(ϱ−3)]|(ϱ+T)(1)+|A22|(ϱ+T)(2)≤RΓ(ϱ)[Γ(ϱ+T+1)ϱΓ(T+1)(1+Γ(β)|K1|)+M|λ||K1|]+|K2|+|[A1−A2(ϱ−3)]|(ϱ+T)(1)+|A22|(ϱ+T)(2). |
From (3.10), we have ‖Hχ‖≤2|K2|, which implies that H:G→G. By Brouwer's fixed point theorem, we know that the discrete problem (3.1) has a solution.
In this section, we study the Hyers-Ulam and Hyers-Ulam-Rassias stability for the solutions of the discrete Riemann-Liouville (RL) FBVP
{RLΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2,0<β≤1, | (4.1) |
for ξ∈[0,1,2,…,T]=[0,T]N0 and η∈[ϱ−1,T+ϱ−1]Nϱ−1, where RLΔϱξ is the RL fractional difference operator. We begin by proving the following lemma.
Lemma 4.1. Suppose that 2<ϱ≤3 and Φ:[ϱ−3,ϱ+T]Nϱ−3⟶R. A function χ satisfies the discrete problem
{RLΔϱξχ(ξ)=Φ(ξ+ϱ−1),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2,0<β≤1, | (4.2) |
if, and only if, χ(ξ), ξ∈[ϱ−3,ϱ+T]Nϱ−3, has the form
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+{[A2−A1(ϱ−3)]Γ(ϱ)+fΦ+dϱhϱ(ϱ−3)2(ϱ−1)}ξ(ϱ−1)+[A1−1hϱ[fΦ+dϱ](ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+fΦ+dϱhϱξ(ϱ−3), | (4.3) |
where
hϱ=ϱ−3ϱ−2(ϱ+T)(ϱ−2)−ϱ−32(ϱ−1)(ϱ+T)(ϱ−1)−(ϱ+T)(ϱ−3) | (4.4) |
+λ(ϱ−3)Γ(β)2(ϱ−1)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−1)−λ(ϱ−3)Γ(β)(ϱ−2)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−2)+λΓ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−3),dϱ=A1(ϱ+T)(ϱ−2)Γ(ϱ−1)−[A2−A1(ϱ−3)]λΓ(ϱ)Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−1) | (4.5) |
−A1λΓ(ϱ−1)Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−2)+[A2−A1(ϱ−3)]Γ(ϱ)(ϱ+T)(ϱ−1),fΦ=−λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1) | (4.6) |
+1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1). |
Proof. Let χ(ξ) be a solution to (4.2). Applying Lemma 2.2 and Definition 2.1, we obtain that the general solution of (4.2) is given by
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+B1ξ(ϱ−1)+B2ξ(ϱ−2)+B3ξ(ϱ−3), | (4.7) |
ξ∈[ϱ−3,ϱ+T]Nϱ−3, where B1,B2,B3∈R. The first order difference of (4.7) is
Δχ(ξ)=1Γ(ϱ−1)ξ−ϱ+1∑l=0(ξ−ρ(l))(ϱ−2)Φ(l+ϱ−1)+B1(ϱ−1)ξ(ϱ−2)+B2(ϱ−2)ξ(ϱ−3)+B3(ϱ−3)ξ(ϱ−4), |
while
Δ2χ(ξ)=1Γ(ϱ−2)ξ−ϱ+2∑l=0(ξ−ρ(l))(ϱ−3)Φ(l+ϱ−1)+B1(ϱ−1)(ϱ−2)ξ(ϱ−3)+B2(ϱ−2)(ϱ−3)ξ(ϱ−4)+B3(ϱ−3)(ϱ−4)ξ(ϱ−5). |
From the conditions Δχ(ϱ−3)=A1 and Δ2χ(ϱ−3)=A2, we obtain that
B2=1Γ(ϱ−1)[A1−B3(ϱ−3)Γ(ϱ−2)], |
and
B1=1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1). |
Now, by using the difference of order β for (4.7), it follows that
Δ−βχ(ξ)=1Γ(β){1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1)}ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(ϱ−1)+B3Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(ϱ−3)+[A1−B3(ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(ϱ−2)+1Γ(ϱ)Γ(β)ξ−β∑l=ϱl−ϱ∑τ=0(ξ−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1). | (4.8) |
Based on condition (4.1), we have
λΔ−βχ(η+β)=λΓ(β){1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1)}η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−1)+λΓ(ϱ−1)Γ(β)[A1−B3(ϱ−3)Γ(ϱ−2)]η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−2)+B3λΓ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−3)+λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1)=1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+1Γ(ϱ−1)[A1−B3(ϱ−3)Γ(ϱ−2)](ϱ+T)(ϱ−2)+{1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1)}(ϱ+T)(ϱ−1)+B3(ϱ+T)(ϱ−3). |
Then,
B3=1hϱ[fΦ+dϱ],B2=1Γ(ϱ−1)[A1−1hϱ[fΦ+dϱ](ϱ−3)Γ(ϱ−2)],B1=1Γ(ϱ)[A2−A1(ϱ−3)]+1hϱ[fΦ+dϱ](ϱ−3)2(ϱ−1), |
where hϱ, dϱ and fΦ are defined by (4.4)-(4.6), respectively. Substituting the values of the constants B1, B2 and B3 into (4.7), we obtain (4.3) and our proof is complete.
From Lemma 4.1, the solution of the discrete RL problem (4.1) is given by the formula
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+{[A2−A1(ϱ−3)]Γ(ϱ)+fχ+dϱhϱ(ϱ−3)2(ϱ−1)}ξ(ϱ−1)+[A1−1hϱ[fΦ+dϱ](ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+fχ+dϱhϱξ(ϱ−3), | (4.9) |
where dρ and hρ are defined by (4.4) and (4.5), respectively, and
fχ=−λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1,χ(τ+ϱ−1))+1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1)). | (4.10) |
Lemma 4.2. If χ is a solution of (4.3), then
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+Q(ξ)+fχK(ξ), | (4.11) |
where
Q(ξ)={[A2−A1(ϱ−3)]Γ(ϱ)+dϱ(ϱ−3)2hϱ(ϱ−1)}ξ(ϱ−1)+[A1−dϱhϱ(ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+dϱhϱξ(ϱ−3), |
and
K(ξ)=(ϱ−3)2hϱ(ϱ−1)ξ(ϱ−1)−(ϱ−3)hϱ(ϱ−2)ξ(ϱ−2)+ξ(ϱ−3)hϱ. |
Proof. Take χ as a solution of (4.2). For ξ∈[ϱ−3,ϱ+T]Nϱ−3, then
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+{[A2−A1(ϱ−3)]Γ(ϱ)+fχ+dϱhϱ(ϱ−3)2(ϱ−1)}ξ(ϱ−1)+[A1−1hϱ[fχ+dϱ](ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+fχ+dϱhϱξ(ϱ−3)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+{[A2−A1(ϱ−3)]Γ(ϱ)+dϱ(ϱ−3)2hϱ(ϱ−1)}ξ(ϱ−1)+[A1−dϱhϱ(ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+dϱhϱξ(ϱ−3)+fχ[(ϱ−3)2hϱ(ϱ−1)ξ(ϱ−1)−(ϱ−3)hϱ(ϱ−2)ξ(ϱ−2)+ξ(ϱ−1)hϱ]=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+Q(ξ)+fχK(ξ). |
The proof is complete.
Definition 4.1. We say that the discrete RL problem (4.1) is Hyers-Ulam stable if for each function ν∈C(Nϱ−3,ϱ+T,R) of
|RLΔϱξν(ξ)−Φ(ξ+ϱ−1,ν(ξ+ϱ−1))|≤ϵ,ξ∈[0,T]N0, | (4.12) |
and ϵ>0, there exists χ∈C(Nϱ−3,ϱ+T,R) solution of (4.1) and δ>0 such that
|ν(ξ)−χ(ξ)|≤δϵ,ξ∈[ϱ−3,ϱ+T]Nϱ−3. | (4.13) |
Definition 4.2. We say that the discrete RL problem (4.1) is Hyers-Ulam–Rassias stable if for each function ν∈C(Nϱ−3,ϱ+T,R) of
|RLΔϱξν(ξ)−Φ(ξ+ϱ−1,ν(ξ+ϱ−1))|≤ϵθ(ξ+ϱ−1),ξ∈[0,T]N0, | (4.14) |
and ϵ>0, there exists χ∈C(Nϱ−3,ϱ+T,R) solution of (4.1) and δ2>0 such that
|ν(ξ)−χ(ξ)|≤δ2ϵθ(ξ+ϱ−1),ξ∈[ϱ−3,ϱ+T]Nϱ−3. | (4.15) |
Remark 4.1. A function χ(ξ)∈C(Nϱ−3,ϱ+T,R) is a solution of (4.12) if, and only if, there exists μ:[ϱ−3,ϱ+T]Nϱ−3⟶R satisfying:
(H2) |μ(ξ+ϱ−1)|≤ϵ,ξ∈[0,T]N0;
(H3) RLΔϱξν(ξ)=Φ(ξ+ϱ−1,ν(ξ+ϱ−1))+μ(ξ+ϱ−1),ξ∈[0,T]N0.
Remark 4.2. A function χ(ξ)∈C(Nϱ−3,ϱ+T,R) is a solution of (4.14) if, and only if, there exists μ:[ϱ−3,ϱ+T]Nϱ−3⟶R satisfying
(H4) |μ(ξ+ϱ−1)|≤ϵθ(ξ+ϱ−1),ξ∈[0,T]N0,
(H5) RLΔϱξν(ξ)=Φ(ξ+ϱ−1,ν(ξ+ϱ−1))+μ(ξ+ϱ−1),ξ∈[0,T]N0.
Lemma 4.3. If ν satisfies (4.12), then
|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fνK(ξ)|≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1). |
Proof. Using our hypothesis, and based on Remark 4.1, the solution to (H3) satisfies
ν(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))+Q(ξ)+fνK(ξ)+1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)μ(l+ϱ−1). |
Hence,
|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fνK(ξ)|=|1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)μ(l+ϱ−1)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|μ(l+ϱ−1)|≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1), |
and the desired inequality is derived.
Theorem 4.1. If condition (H1) holds and (4.13) is satisfied, then the discrete RL problem (4.1) is Hyers-Ulam stable under the condition
K≤Γ(β)Γ(T+1)Γ(ϱ+1)2M1Γ(ϱ+T+1)Γ(β)+MM1λϱΓ(T+1), | (4.16) |
where M1=max(1,|K(ξ)|).
Proof. Let ξ∈[ϱ−3,ϱ+T]Nϱ−3. From Lemma 8, we have
|ν(ξ)−χ(ξ)|≤|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))−Q(ξ)−fχK(ξ)|≤|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fνK(ξ)|+1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))−Φ(l+ϱ−1,ν(l+ϱ−1))|+|K(ξ)||fν−fχ|. |
It follows that
|ν(ξ)−χ(ξ)|≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+KΓ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|χ(l+ϱ−1)−ν(l+ϱ−1)|+|K(ξ)|K{λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)|ν(l+ϱ−1)−χ(l+ϱ−1)|+1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)|χ(l+ϱ−1)−ν(l+ϱ−1)|}≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+K‖χ−ν‖Γ(ϱ)Γ(ξ+1)ϱΓ(ξ+1−ϱ)+|K(ξ)|K‖χ−ν‖[MλΓ(ϱ)Γ(β)+1Γ(ϱ)Γ(ϱ+T+1)ϱΓ(T+1)]≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+2KM1Γ(ϱ+1)Γ(ϱ+T+1)Γ(T+1)‖χ−ν‖+‖χ−ν‖KMM1λΓ(ϱ)Γ(β). |
Therefore,
‖ν−χ‖≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+‖ν−χ‖[2KM1Γ(ϱ+1)Γ(ϱ+T+1)Γ(T+1)+KMM1λΓ(ϱ)Γ(β)]. |
Moreover, ‖ν−χ‖≤ϵδ, where
δ=Γ(β)Γ(ϱ+T+1)Γ(β)Γ(T+1)Γ(ϱ+1)−2KM1Γ(ϱ+T+1)Γ(β)−KMM1λϱΓ(T+1)>0. |
Thus, the discrete RL problem (4.1) is Hyers-Ulam stable.
Lemma 4.4. If v solves (4.14) under the condition:
(H6) The function θ:[ϱ−3,ϱ+T]Nϱ−3⟶R is increasing and there exists a constant γ>0 such that
1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)θ(l+ϱ−1)≤γθ(ξ+ϱ−1),ξ∈[0,T]N0, |
then
|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fϕνK(ξ)|≤γθ(ξ+ϱ−1). |
Proof. Let ν satisfy (4.14). From Remark 4.2, the solution to (H5) satisfies
ν(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))+Q(ξ)+fνK(ξ)+1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)μ(l+ϱ−1). |
Hence,
|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fνK(ξ)|=|1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)μ(l+ϱ−1)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|μ(l+ϱ−1)|≤ϵΓ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|θ(l+ϱ−1)|≤γϵθ(l+ϱ−1), |
and the desired inequality is derived.
Remark 4.3. About the restrictiveness of hypotheses (H1)–(H6), and the bounds imposed on the family of discrete systems that satisfy them, one should note that such hypotheses are the usual conditions for proving existence, uniqueness or stability of solutions. In fact, the conditions (H2)–(H6) are considered as the fundamental conditions in the definition of Hyers-Ulam-Rassias stability. Condition (H1) is a standard Lipschitz condition while other constants are computed based on the given fractional system. Therefore, these conditions are natural and, in real systems, with specified numerical data, their expressions are reduced to numerical bounds.
Theorem 4.2. If the inequality (4.16) and the hypotheses (H1) and (H6) are satisfied, then the discrete RL problem (4.1) is Hyers-Ulam-Rassias stable.
Proof. From Lemmas 4.4 and 2.3, we obtain that
‖ν−χ‖≤δ2ϵθ(ξ+ϱ−1), |
where
δ2=Γ(ϱ+1)Γ(β)Γ(T+1)Γ(ϱ+1)Γ(β)Γ(T+1)−2KM1Γ(β)Γ(ϱ+T+1)−KMM1λϱΓ(T+1)>0. |
Thus, the discrete RL problem (4.1) is Hyers-Ulam-Rassias stable.
In this section, we consider two examples to illustrate the obtained results.
Example 5.1. Let
{∗Δϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),ξ∈N0,4,Δχ(ϱ−3)=1,χ(ϱ+4)=0.3Δ−0.5χ(η+0.5),Δ2χ(ϱ−3)=0, | (5.1) |
where ∗Δϱξ denotes the operator cΔϱξ or RLΔϱξ. Set β=0.5, T=4, λ=0.7, A1=1, A2=0, and
Φ(ξ+1.5,χ(ξ+1.5))=137105sin(χ(ξ+1.5)). |
∙ If ∗Δϱξχ(ξ)=cΔ52ξχ(ξ) and η=52, then we obtain that
K1=λη∑l=ϱ−3(η+β−ρ(l))(β−1)−Γ(β)=λΓ(η+β−ϱ+4)βΓ(η−ϱ+4)−Γ(β)=0.9416, |
M=|η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)|=2.3562. | (5.2) |
Hence, the inequality (3.8) takes the form
Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)(1+Γ(β)K1)+MλK1Γ(ϱ)≈68.9403≤1K≈729.9270, |
such that
K=137105. |
From Theorem 3.1, the discrete problem (5.1) has a unique solution.
∙ In the case ∗Δϱξχ(ξ)=RLΔ3ξχ(ξ) and η=3, we obtain
M=3.5449,M1=1.8824,hϱ=λΓ(η+β−ϱ+4)Γ(β+1)Γ(η−ϱ+4)−1=0.5313,K1=λΓ(η+β−ϱ+4)βΓ(η−ϱ+4)−Γ(β)=0.9416. |
Also,
Γ(β)Γ(T+1)Γ(ϱ+1)2M1Γ(ϱ+T+1)Γ(β)+MM1λϱΓ(T+1)≈0.0075. | (5.3) |
If K=0.0014<0.0075 and
|RLΔ3ξν(ξ)−Φ(ξ+2,v(ξ+2))|≤ϵ,ξ∈[0,4]N0, | (5.4) |
holds, then, by Theorem 4.1, the discrete RL problem (5.1) is Hyers-Ulam stable.
Example 5.2. Let
{cΔ2.4ξχ(ξ)=1107χ4(ξ+1.4),ξ∈N0,2,Δχ(−0.4)=2,χ(3.4)=0.8Δ−1/3χ(1/3+2.4),Δ2χ(−0.6)=0. | (5.5) |
After some calculations, we find that
M=3.277,K1=λη∑l=ϱ−3(η+β−ρ(l))(β−1)−Γ(β)=1.0253,K2=A1Γ(β)K1(ϱ+T)−λA1K1(η−β(3−ϱ))Γ(η−ϱ+β+4)β(β+1)Γ(η−ϱ+4)=16.2963. |
We define the following Banach space:
C(Nϱ−3,ϱ+T,R)={χ(t)|[−0.5,6.5]N−0.5→R,‖χ‖≤2|K2|=32.5927}. |
Note that
|K2|−|[A1−A2(ϱ−3)]|(ϱ+T)(1)−|A22|(ϱ+T)(2)Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)(1+Γ(β)|K1|)+M|λ|Γ(ϱ)|K1|=0.3262. |
It is clear that |Φ(t,χ)|≤0.0586≤0.3262 whenever χ∈[−32.5927,32.5927]. Therefore, by Theorem 3.2, we find out that the discrete FBVP (5.5) has a solution.
We proved existence and uniqueness of solution to discrete fractional boundary value problems (FBVPs) involving fractional difference operators via the Brouwer fixed point theorem and the Banach contraction principle. Different versions of stability criteria were obtained for a discrete FBVP involving Riemann-Liouville difference operators. The results were illustrated by suitable examples. The approach of this paper is new and can be a beginning method for discussing different real-world models in the context of discrete behavior structures. In particular, our results can contribute for the development of discrete fractional boundary value problems describing discrete dynamics of some physical applications. In future works, we plan to extend our approach to other types of discrete differential inclusions or fully-hybrid discrete fractional differential equations.
The third and fourth authors would like to thank Azarbaijan Shahid Madani University. The fifth author was supported by the Portuguese Foundation for Science and Technology (FCT) and CIDMA through project UIDB/04106/2020. This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (Grant number B05F650018).
The authors declare no conflict of interest.
[1] |
S. Abbasbandy, E. Shivanian, A new analytical technique to solve Fredholm's integral equations, Numer. Algorithms, 56 (2011), 27–43. doi: 10.1007/s11075-010-9372-2
![]() |
[2] | M. A. Abdou, M. M. El-Kojok, Numerical method for the two-dimensional mixed nonlinear integral equation in time and position, Univers. J. Integr. Equations, 4 (2016), 42–53. |
[3] |
M. A. Abdou, S. A. Raad, New numerical approach for the nonlinear quadratic integral equations, J. Comput. Theor. Nanosci., 13 (2016), 6435–6439. doi: 10.1166/jctn.2016.5582
![]() |
[4] |
A. Akbarzadeh, J. Fu, Z. Chen, Three-phase-lag heat conduction in a functionally graded hollow cylinder, Trans. Can. Soc. Mech. Eng., 38 (2014), 155–171. doi: 10.1139/tcsme-2014-0010
![]() |
[5] | H. Almasieh, J. Meleh, Hybrid functions method based on radial basis functions for solving nonlinear Fredholm integral equations, J. Math. Ext., 7 (2014), 29–38. |
[6] |
P. Assari, H. Adibi, M. Dehghan, A meshless method based on the moving least squares (mls) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains, Numer. Algorithms, 67 (2014), 423–455. doi: 10.1007/s11075-013-9800-1
![]() |
[7] | K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge: Cambridge University Press, 1997. |
[8] |
I. Aziz, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math., 239 (2013), 333–345. doi: 10.1016/j.cam.2012.08.031
![]() |
[9] | C. Brezinski, M. Redivo-Zaglia, Extrapolation methods for the numerical solution of nonlinear Fredholm integral equations, J. Integr. Equations Appl., 31 (2019), 29–57. |
[10] |
H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods, SIAM J. Numer. Anal., 27 (1990), 987–1000. doi: 10.1137/0727057
![]() |
[11] |
P. Cheng, J. Huang, Extrapolation algorithms for solving nonlinear boundary integral equations by mechanical quadrature methods, Numer. Algorithms, 58 (2011), 545–554. doi: 10.1007/s11075-011-9469-2
![]() |
[12] |
S. Chiriţă, On the time differential dual-phase-lag thermoelastic model, Meccanica, 52 (2017), 349–361. doi: 10.1007/s11012-016-0414-2
![]() |
[13] | C. Constanda, M. E. Pérez, Integral Methods in Science and Engineering, Springer, 2010. |
[14] | M. M. El-Borai, M. A. Abdou, M. M. El-Kojok, On a discussion of nonlinear integral equation of type Volterra-Fredholm, J. Korean Soc. Ind. Appl. Math., 10 (2006), 59–83. |
[15] |
J. A. Ezquerro, M. A. Hernández-Verón, Nonlinear Fredholm integral equations and majorant functions, Numer. Algorithms, 82 (2019), 1303–1323. doi: 10.1007/s11075-019-00656-3
![]() |
[16] |
J. Gao, M. Condon, A. Iserles, Spectral computation of highly oscillatory integral equations in laser theory, J. Comput. Phys., 395 (2019), 351–381. doi: 10.1016/j.jcp.2019.06.045
![]() |
[17] |
F. Ghoreishi, M. Hadizadeh, Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations, Numer. Algorithms, 52 (2009), 541. doi: 10.1007/s11075-009-9297-9
![]() |
[18] |
A. Hadjadj, J. Dussauge, Shock wave boundary layer interaction, Shock Waves, 19 (2009), 449–452. doi: 10.1007/s00193-009-0238-2
![]() |
[19] | A. Jerri, Introduction to Integral Equations with Applications, John Wiley & Sons, 1999. |
[20] |
R. Katani, Numerical solution of the Fredholm integral equations with a quadrature method, SeMA J., 76 (2019), 271–276. doi: 10.1007/s40324-018-0175-z
![]() |
[21] |
F. R. Lin, Preconditioned iterative methods for the numerical solution of Fredholm equations of the second kind, Calcolo, 40 (2003), 231–248. doi: 10.1007/s10092-003-0078-x
![]() |
[22] | K. Maleknejad, M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl., 37 (1999), 1–8. |
[23] |
S. Noeiaghdam, M. A. F. Araghi, S. Abbasbandy, Optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic, Numer. Algorithms, 81 (2019), 237–267. doi: 10.1007/s11075-018-0546-7
![]() |
[24] |
S. Pishbin, Numerical solution and structural analysis of two-dimensional integral-algebraic equations, Numer. Algorithms, 73 (2016), 305–322. doi: 10.1007/s11075-016-0096-9
![]() |
[25] | A. B. Sawaoka, Shock Waves in Materials Science, Springer Science & Business Media, 2012. |
[26] |
H. Song, Z. Yang, H. Brunner, Analysis of collocation methods for nonlinear Volterra integral equations of the third kind, Calcolo, 56 (2019), 7. doi: 10.1007/s10092-019-0304-9
![]() |
[27] | K. Takayama, Shock Waves: Proceedings of the 18th International Symposium on Shock Waves, Held at Sendai, Japan 21–26 July 1991, Springer Science & Business Media, 2012. |
[28] | A. Wazwaz, A reliable treatment for mixed Volterra-Fredholm integral equations, Appl. Math. Comput., 127 (2002), 405–414. |
[29] | A. Wazwaz, Linear and Nonlinear Integral Equations, Vol. 639, Berlin: Springer, 2011. |
[30] | A. Wazwaz, S. M. El-Sayed, A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. Math. Comput., 122 (2001), 393–405. |
[31] |
J. Xie, X. Gong, W. Shi, R. Li, W. Zhao, T. Wang, Applying the three-dimensional block-pulse functions to solve system of Volterra-Hammerstein integral equations, Numer. Methods Partial Differ. Equations, 36 (2020), 1648–1661. doi: 10.1002/num.22496
![]() |
[32] |
J. Xie, Q. Huang, F. Zhao, Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations in two-dimensional spaces based on block pulse functions, J. Comput. Appl. Math., 317 (2017), 565–572. doi: 10.1016/j.cam.2016.12.028
![]() |
[33] |
J. Xie, Z. Ren, Y. Li, X. Wang, T. Wang, Numerical scheme for solving system of fractional partial differential equations with Volterra-type integral term through two-dimensional block-pulse functions, Numer. Methods Partial Differ. Equations, 35 (2019), 1890–1903. doi: 10.1002/num.22383
![]() |
[34] | J. Xie, M. Yi, Numerical research of nonlinear system of fractional Volterra-Fredholm integral-differential equations via block-pulse functions and error analysis, J. Comput. Appl. Math., 34 (2019), 159–167. |
[35] | S. M. Zemyan, The Classical Theory of Integral Equations: A Concise Treatment, Springer Science & Business Media, 2012. |
[36] | F. Zhang, Shock Waves Science and Technology Library, Detonation Dynamics, Springer Science & Business Media, 2012. |
1. | Zimeng Lv, Xinyu Liu, Yuting Ding, Dynamic behavior analysis of an SVIR epidemic model with two time delays associated with the COVID-19 booster vaccination time, 2023, 20, 1551-0018, 6030, 10.3934/mbe.2023261 | |
2. | Zhiliang Li, Lijun Pei, Guangcai Duan, Shuaiyin Chen, A non-autonomous time-delayed SIR model for COVID-19 epidemics prediction in China during the transmission of Omicron variant, 2024, 32, 2688-1594, 2203, 10.3934/era.2024100 | |
3. | Liping Wang, Xinyu Wang, Dajun Liu, Xuekang Zhang, Peng Wu, Dynamical analysis of a heterogeneous spatial diffusion Zika model with vector-bias and environmental transmission, 2024, 32, 2688-1594, 1308, 10.3934/era.2024061 | |
4. | Chen Wang, Ruizhi Yang, Hopf bifurcation analysis of a pine wilt disease model with both time delay and an alternative food source, 2025, 33, 2688-1594, 2815, 10.3934/era.2025124 |