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1. Introduction

Integral equations (IEs) form the common core in the foundations of several science and
engineering principles. Thus, several computational approaches have been developed to approximate
their solutions [1, 3, 6–8, 12, 14, 17, 18, 20, 22, 24, 25, 27, 30, 36].

The approximate solutions of IEs and the error behavior accompanying these solutions have been
investigated in abundance. Brunner [11] and Maleknejad and Hadizadeh [23], for instance, employed
the collocation methods and the Adomian decomposition method (ADM), respectively, to approach
the numerical solution of the nonlinear Volterra-Fredholm integral equations (NVFIEs) of the second
kind. Wazwaz [29] demonstrated the use of the modified ADM (MADM) for mixed NVFIEs of the
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second kind. El-Borai et al. [15] examined the existence and uniqueness of the solution for the NV-
FIE of the second kind and discussed the normality and continuity of the integral operator. Aziz [9]
investigated new algorithms for the numerical solution of nonlinear FIEs of the second kind using Haar
wavelets. Abdou and Elkojok [2] investigated a numerical method for solving two-dimensional mixed
nonlinear IEs with respect to time and position and discussed the existence of a unique solution of
nonlinear quadratic IEs of the second kind. Furthermore, Abdou and Raad [4] demonstrated the ADM
and its new modifications. In addition, numerical schemes are utilized by Xie et al. [32–35] to solve
many types of nonlinear systems of fractional integro and partial differential equations. Brezinski and
Redivo-Zaglia [10] explored the extrapolation methods for the numerical solution of nonlinear FIEs
of the second kind. Katani [21] applied the quadrature methods to study the numerical solutions of
FIEs. Ezquerro and Hernández-Verón [16] demonstrated an approach for obtaining the domains of
the existence and uniqueness of the solution for FIEs, including the numerical solutions and assigning
priori and posteriori error estimates for these approximations.

The phase lag is extremely important in real-life applications of IEs. Currently, there are single,
dual, and three phases, with each phase tied to different applications [5, 13]. In this study, we develop
a new technique that combines the MADM and quadrature rules for describing the solution behavior
of NV-FIE with the phase lag parameter.

Assuming an NV-FIE of the second kind,

µφ(x, t) = f (x, t) + λ

∫ t

0

∫ b

a
F(t, τ)K(x, y)G(y, τ,φ(y, τ))dydτ, (1.1)

tied with an initial condition
φ(x, 0) =

f (x, 0)
µ

= ϕ(x),

where x = x (x1, x2, . . . , xn) , y = y (y1, y2, . . . , yn) , and both µ , 0 and λ , 0 are constans. Eq (1.1)
will be discussed in the space L2[a, b] ×C[0,T ], T < 1, where [a, b] is the domain of integration with
respect to position while the time t ∈ [0,T ]. Here, the Fredholm integral term is considered in the
space L2[a, b] and the Volterra term is considered in the class C[0,T ]. Moreover, Eq (1.1) possesses a
unique solution under the following conditions:

1. The kernel of position K(x, y) is continuous in L2[a, b] and satisfies |K(x, y)| ≤ A1, whereas the
kernel of time F(t, τ) is continuous in C[0,T ] and satisfies |F(t, τ)| ≤ B1, ∀t, τ ∈ [0,T ], and
0 ≤ τ ≤ t ≤ T < 1.

2. The given function f (x, t) is continuous in the space L2[a, b] × C[0,T ], and its norm is defined

as ‖ f ‖L2[a,b]×C[0,T ] = max
0≤t≤T

∣∣∣∣∣∣∫ t

0

(∫ b

a
f 2(x, τ)dx

) 1
2

dτ

∣∣∣∣∣∣ ≤ C1, whereas the unknown function φ(x, t)

exhibits the same behavior as the given function with ‖φ‖ ≤ C2.
3. (a) The known continuous function G(x, t, φ(x, t)) satisfies the Lipschitz condition

|G(x, t, φ2(x, t)) −G(x, t, φ1(x, t))| ≤ N(x, t) |φ2(x, t) − φ1(x, t)|, where

‖N‖ = max
0≤t≤T

∣∣∣∣∣∣∫ t

0

(∫ b

a
N2(x, τ)dx

) 1
2

dτ

∣∣∣∣∣∣ ≤ D1.

(b) Furthermore, the function G(x, t, φ(x, t)) satisfies the inequality

max
0≤t≤T

∣∣∣∣∣∣∫ t

0

(∫ b

a
G2(x, τ, φ(x, τ))dx

) 1
2

dτ

∣∣∣∣∣∣ ≤ D2‖φ‖,
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where A1, B1,C1,C2,D1, and D2 are positive constants.

Theorem 1. (without proof) [15] If conditions (1), (2), and (3.a) are satisfied, then Eq (1.1) has a
unique solution φ(x, t) in the space L2[a, b] ×C[0,T ], 0 ≤ t ≤ T < 1, under the condition

|λ| <
|µ|

A1B1D1T
. (1.2)

A shock wave [19, 26, 28, 37] is a strong pressure wave in an elastic medium, such as air, water, or
a solid substance, produced by any phenomenon that drastically changes the pressure. Shock waves
differ from sound waves in that the wavefront where compression occurs is a region of violent and
sudden changes in the stress, density, and temperature. Therefore, shock waves travel faster than
sound, and their speed increases as the amplitude is raised; however, the intensity of a shock wave
decreases faster than that of a sound wave because some of its energy is expended to heat the medium
in which it travels. Moreover, shock waves change the electrical, mechanical, and thermal properties
of solids; therefore, they can be used to study the equation of the state of any material. The following
NV-FIE of the second kind with a phase lag is obtained after the shock wave:

µφ(x, t + q) = f (x, t + q) + λ

∫ t+q

0

∫ b

a
F(t + q, τ)K(x, y)G(y, τ,φ(y, τ))dydτ,

0 < q << 1.
(1.3)

This study aims to discuss the stability of the solution for Eq (1.3), which has many physical
implications in the fields of engineering, mathematical physics, and biology [14, 20, 30].

2. Mixed integral equation

Applying Taylor’s expansion formula and ignoring the second derivatives in Eq (1.3) results in

µφ(x, t) + qµ
∂φ(x, t)
∂t

= f (x, t) + q
∂ f (x, t)
∂t

+ λ

∫ t+q

0

∫ b

a

(
F(t, τ) + q

∂F(t, τ)
∂t

)
K(x, y)G(y, τ, φ(y, τ))dydτ.

(2.1)

Accordingly, integrating Eq (2.1) w.r.t. time t under the initial condition yields

φ(x, t) = H(x, t) −
1
q

∫ t

0
φ(x, z)dz

+
λ

qµ

∫ t

0

∫ z+q

0

∫ b

a
(F(z, τ) + qP(z, τ)) K(x, y)G(y, τ, φ(y, τ))dydτdz,

(2.2)

where

H(x, t) = ϕ(x) +
1
µ

( f (x, t) − f (x, 0)) +
1

qµ

∫ t

0
f (x, z)dz

and P(z, τ) =
∂F(z, τ)
∂z

.
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By interchanging the integral in the plane τz and the plane zy, Eq (2.2) can be expressed as

φ(x, t) = H(x, t) −
1
q

∫ t

0
φ(x, z)dz

+
λ

qµ

∫ q

0

∫ b

a
Θ(t, τ)K(x, y)G(y, τ, φ(y, τ))dydτ

+
λ

qµ

∫ t+q

q

∫ b

a
Ψ(t, τ)K(x, y)G(y, τ, φ(y, τ))dydτ,

(2.3)

where

Θ(t, τ) =

∫ t

0
(F(z, τ) + qP(z, τ)) dz and Ψ(t, τ) =

∫ t

τ−q
(F(z, τ) + qP(z, τ)) dz.

Applying conditions (1) and (2), the following statements can be generalized:

1́. The continuous functions Θ(t, τ) and Ψ(t, τ) ∈ C[0,T ] satisfy the conditions
|Θ(t, τ)| ≤ B2 and |Ψ(t, τ)| ≤ B3, ∀ t, τ ∈ [0,T ], and 0 ≤ τ ≤ t ≤ T < 1.

2́. The given function H(x, t) is continuous in L2[a, b] ×C[0,T ], and its norm is

defined as ‖H(x, t)‖ = max
0<t≤T

∣∣∣∣∣∣∣∣
∫ t

0

(∫ b

a
H2(x, τ)dx

) 1
2

dτ

∣∣∣∣∣∣∣∣ ≤ C3,

where B2, B3, and C3 are positive constants.

2.1. Stability of the solution for the mixed integral equation

This section discusses the stability of the solution for the nonlinear mixed IE represented in Eq (2.3).

Theorem 2. If conditions (1), (1́), (2́), and (3.a) are satisfied, then Eq (2.3) has a unique and stable
solution φ(x, t) in the space L2[a, b] ×C[0,T ], 0 ≤ t ≤ T < 1, under the condition

|λ| <
|µ|(2q − T 2)

A1D1
(
2qB2T + B3T 2) . (2.4)

Proof. Applying Picard’s method, a solution for Eq (2.3) can be constructed as a sequence of functions
{φn(x, t)} as n→ ∞; thus,

φ(x, t) = lim
n→∞

φn(x, t), (2.5)

where

φn(x, t) =

n∑
i=0

ui(x, t), n = 1, 2, 3, ... (2.6)

and the functions un(x, t), n = 0, 1, 2, ..., are continuous functions defined as

un(x, t) = φn(x, t) − φn−1(x, t), and u0(x, t) = H(x, t). (2.7)

Lemma 1. If the series
∞∑

i=0
ui(x, t) is uniformly convergent, then φ(x, t) represents a solution of

Eq (2.3).
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Proof. We construct a sequence φm(x, t) based on

φm(x, t) = H(x, t) −
1
q

∫ t

0
φm−1(x, z)dz

+
λ

qµ

∫ q

0

∫ b

a
Θ(t, τ)K(x, y)G(y, τ, φm−1(y, τ))dydτ

+
λ

qµ

∫ t+q

q

∫ b

a
Ψ(t, τ)K(x, y)G(y, τ, φm−1(y, τ))dydτ.

(2.8)

Employing Eq (2.8) to Eq (2.7) using the norm properties,

‖um(x, t)‖ ≤
1
q

∥∥∥∥∥∥
∫ t

0
|um−1(x, z)|dz

∥∥∥∥∥∥
+

∥∥∥∥∥∥ λ

q|µ|

∫ q

0

∫ b

a
|Θ(t, τ)||K(x, y)|N(y, τ)||um−1(y, τ)dydτ

∥∥∥∥∥∥
+

∥∥∥∥∥∥ λ

q|µ|

∫ t+q

q

∫ b

a
|Ψ(t, τ)||K(x, y)|N(y, τ)||um−1(y, τ)dydτ

∥∥∥∥∥∥ .
(2.9)

Subsequently, the mathematical induction and conditions (1), (3.a), (1́), and (2́) are applied to obtain

‖um(x, t)‖ ≤ ηm
1 C3, η1=

T 2

2q
+
|λ|

q|µ|
A1D1

(
qB2T + B3

T 2

2

)
<1. (2.10)

Therefore,

|λ| <
|µ|(2q − T 2)

A1D1
(
2qB2T + B3T 2) . (2.11)

which implies the sequence φn(x, t) has a convergent solution. Thus, for n → ∞, φ(x, t) =
∞∑

i=0
ui(x, t)

represents a solution of Eq (2.3). �

Lemma 2. The function φ(x, t) of the series (2.6) represents a unique solution of Eq (2.3).

Proof. Suppose there exists another continuous solution φ̃(x, t) of Eq (2.3), then

‖φ(x, t) − φ̃(x, t)‖ ≤

∥∥∥∥∥∥−1
q

∫ t

0
(φ(x, z) − φ̃(x, z))dz

∥∥∥∥∥∥
+

∥∥∥∥∥∥ λqµ
∫ q

0

∫ b

a
Θ(t, τ)K(x, y)(G(y, τ, φ(y, τ)) −G(y, τ, φ̃(y, τ)))dydτ

∥∥∥∥∥∥
+

∥∥∥∥∥∥ λqµ
∫ t+q

q

∫ b

a
Ψ(t, τ)K(x, y)(G(y, τ, φ(y, τ)) −G(y, τ, φ̃(y, τ)))dydτ

∥∥∥∥∥∥ .
(2.12)

Note that under the given conditions, inequality (2.12) yields

‖φ(x, t) − φ̃(x, t)‖ ≤ η1‖φ(x, t) − φ̃(x, t)‖. (2.13)

As η1 < 1, it is implied that φ(x, t) = φ̃(x, t). �

�
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2.2. Normality and continuity of an integral operator

To prove the normality and continuity of the reduced mixed IE (2.3), it will be first expressed in its
integral operator form

Wφ = qµH(x, t) + Wφ and Wφ = qµφ, (2.14)

where

Wφ = −W1φ + W2φ + W3φ, W1φ = µ

∫ t

0
φ(x, z)dz,

W2φ =λ

∫ q

0

∫ b

a
Θ(t, τ)K(x, y)G(y, τ, φ(y, τ))dydτ,

and

W3φ =λ

∫ t+q

q

∫ b

a
Ψ(t, τ)K(x, y)G(y, τ, φ(y, τ))dydτ.

2.2.1. Normality of the integral operator

Form the norm properties,

‖Wφ‖ ≤

∥∥∥∥∥∥µ
∫ t

0
φ(x, z)dz

∥∥∥∥∥∥
+

∥∥∥∥∥∥λ
∫ q

0

∫ b

a
Θ(t, τ) K(x, y)G(y, τ, φ(y, τ))dy dτ

∥∥∥∥∥∥
+

∥∥∥∥∥∥λ
∫ t+q

q

∫ b

a
Ψ(t, τ)K(x, y)G(y, τ, φ(y, τ))dy dτ

∥∥∥∥∥∥ .
(2.15)

Using the norm properties in L2[a, b],C[0,T ] with the conditions (1), (1́), and (3.b), inequality (2.15)
can be expressed as

‖Wφ‖ ≤ η2‖φ‖, η2 = |µ|
T 2

2
+|λ|A1D2(qT B2+B3

T 2

2
)<1 (2.16)

to obtain

|λ| <
2 − |µ|T 2(

2qT B2 + B3T 2) A1D2
.

Therefore, the integral operator W has a normality that leads directly, after using condition (2́), to the
normality of the operator W.

2.2.2. Continuity of the integral operator

Assume two potential functions φ1(x, t) and φ2(x, t) in the space L2[a, b] × C[0,T ]. Applying the
conditions,
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‖Wφ1 −Wφ2‖ = ‖Wφ1 −Wφ2‖ ≤ η3‖φ1 − φ2‖,

η3 = |µ|
T 2

2
+ |λ|A1D1(qT B2 + B3

T 2

2
) < 1.

(2.17)

and thus,

|λ| <
2 − |µ|T 2(

2qT B2 + B3T 2) A1D1
.

Inequality (2.17) leads to the continuity of the integral operator W. Furthermore, W is a contraction
operator in the space L2[a, b] × C[0,T ]. According to the Banach’s fixed point theorem, W contains
a unique fixed point. If the normality and continuity of the integral operator is employed, then the
existence and uniqueness of the reduced mixed IE (2.3) are approved.

3. Modified Adomian decomposition method for NV-FIEs

Several numerical techniques can be applied to solve the NV-FIEs of the second kind [20, 29–31].
However, herein we seek to develop a new approach that combines MADM and quadrature rules.
Therefore, the solution of Eq (2.3) can be expressed as

φ(x, t) =

∞∑
n=0

un(x, t) (3.1)

and its approximate solution can be expressed as

φN(x, t) =

N∑
n=0

un(x, t). (3.2)

Accordingly, the nonlinear term of Eq (2.3) can be decomposed into an infinite series of Adomian
polynomials as

G(y, τ, φ(y, τ)) =

∞∑
n=0

An(y, τ), (3.3)

where the traditional formula of An(y, τ) is

An(y, τ) =
1
n!

 dn

dηn G

y, τ, ∞∑
l=0

ηlul(y, τ)


η=0

,

and the free term can be modified into the form

H(x, t) =

∞∑
n=0

Hn(x, t). (3.4)

Consequently,

u0(x, t) = H0(x, t)

un(x, t) = Hn(x, t) − 1
q

∫ t

0
un−1(x, z)dz

+ λ
qµ

∫ q

0

∫ b

a
Θ(t, τ) K(x, y)An−1(y, τ)dy dτ

+ λ
qµ

∫ t+q

q

∫ b

a
Ψ(t, τ)K(x, y)An−1(y, τ)dy dτ, n = 1, 2, ...,N.

(3.5)
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To obtain a more accurate solution for the definite integral when it could be extremely difficult in (3.5),
any of these quadrature rules can be applied instead.

3.1. Trapezoidal rule (TR)

Suppose the interval [a, b] is divided into M subintervals of equal width ht = b−a
M . Then, using the

equally spaced sample points xk = htk + x0, k = 0, 1, 2, ...,M, yields

Tn−1(x, τ) =

∫ b

a
K(x, y)An−1(y, τ)dy

=
ht

2

K(x, y0)An−1(y0, τ) + 2
M−1∑
k=1

K(x, yk)An−1(yk, τ) + K(x, yM)An−1(yM, τ)

 . (3.6)

Hence, (3.5) becomes

u0(x, t) = H0(x, t)

un(x, t) = Hn(x, t) − 1
q

∫ t

0
un−1(x, z)dz

+ λ
qµ

∫ q

0
Θ(t, τ) Tn−1(x, τ) dτ

+ λ
qµ

∫ t+q

q
Ψ(t, τ)Tn−1(x, τ) dτ, n = 1, 2, ...,N.

(3.7)

3.2. Weddle’s rule (WR)

If the interval [a, b] is divided into 6m subintervals of equal width hw = b−a
6m , then applying the

equally spaced sample points yk = hwk + y0, k = 0, 1, 2, ..., 6m, yields

Wn−1(x, τ) =

∫ b

a
K(x, y)An−1(y, τ)dy

=
3hw

10

m∑
k=1

K(x, y6k−6)An−1(y6k−6, τ)

+
3hw

10

m∑
k=1

5K(x, y6k−5)An−1(x6k−5, τ)

+
3hw

10

m∑
k=1

(K(x, y6k−4)An−1(y6k−4, τ) + 6K(x, y6k−3)An−1(y6k−3, τ))

+
3hw

10

m∑
k=1

(K(x, y6k−2)An−1(y6k−2, τ))

+
3hw

10

m∑
k=1

(5K(x, y6k−1)An−1(y6k−1, τ) + K(x, y6k)An−1(y6k, τ)) .

(3.8)
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So, (3.5) becomes

u0(x, t) = H0(x, t)

un(x, t) = Hn(x, t) − 1
q

∫ t

0
un−1(x, z)dz

+ λ
qµ

∫ q

0
Θ(t, τ) )Wn−1(x, τ) dτ

+ λ
qµ

∫ t+q

q
Ψ(t, τ)Wn−1(x, τ) dτ, n = 1, 2, ...,N.

(3.9)

3.3. Convergence analysis

Now, we shall present the sufficient condition for convergence of considered series.

Theorem 3. If their exists constants α ∈ (0, 1) and k0 ∈ N such that for each k ≥ k0, the following
inequality

‖uk+1‖ ≤ α ‖uk‖ . (3.10)

is satisfied, then the series solution (3.1) of Eq (2.3) is uniformly convergent in I = [a, b] × [0,T ].

Proof. Denoting E = (C[I], ‖ · ‖) is the Banach space of all continuous functions on I with the norm
‖φ(x, t)‖ = max

∀x,t∈I
|φ(x, t)|. Let, φn and φm be arbitrary partial sums with n ≥ m. We are going to prove

that {φn} is a Cauchy sequence in E, so we estimate the following norm

‖φn+1 − φn‖ = ‖un+1‖ ≤ α‖un‖ ≤ α
2‖un−1‖ ≤ ... ≤ α

n−k0+1‖uk0‖ (3.11)

Now for any n, k ∈ N, n ≥ k ≥ k0, we have

‖φn − φk‖ ≤ ‖φn − φn−1‖ + . . . + ‖φk+1 − φk‖

≤ αn−k0
∥∥∥uk0

∥∥∥ + . . . + αk+1−k0
∥∥∥uk0

∥∥∥
= αk+1−k0

1 − αn−k

1 − α

∥∥∥uk0

∥∥∥ . (3.12)

Since α ∈ (0, 1), therefore it implies that 1 − αn−k ≤ 1 and

‖φn − φk‖ ≤
αk+1−k0

1 − α

∥∥∥uk0

∥∥∥ . (3.13)

So, ‖φn − φk‖ → 0 as k → ∞, therefore it implies {φn} is a Cauchy sequence in E and we can deduce
that the series

∑∞
i=0 ui(x, t) is convergent. �

3.4. Error estimate

Next theorem concerns the estimation of error of the approximate solution φN(x, t).

Theorem 4. If assumptions of Theorem 3 are satisfied, N ∈ N and N ≥ k0, then we obtain the
estimation of error of the approximate solution such that

‖φ(x, t) − φN(x, t)‖ ≤
αN+1−k0

1 − α

∥∥∥uk0

∥∥∥ . (3.14)
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Proof. Let N ∈ N and N ≥ k0, we get

‖φ(x, t) − φN(x, t)‖ = sup
(x,t)∈I

∣∣∣∣∣∣∣φ(x, t) −
N∑

n=0

un(x, t)

∣∣∣∣∣∣∣
≤ sup

(x,t)∈I

 ∞∑
n=N+1

|un(x, t)|


≤

∞∑
n=N+1

sup
(x,t)∈I

(|un(x, t)|)

≤

∞∑
n=N+1

αn−k0
∥∥∥uk0

∥∥∥
=
αN+1−k0

1 − α

∥∥∥uk0

∥∥∥ .

(3.15)

In particular case, at k0 = 0, we get

‖φ(x, t) − φN(x, t)‖ ≤
αN+1

1 − α
‖u0‖ . (3.16)

�

4. Numerical results and discussion

In this section, the methods presented above will be utilized in some applications to explain the
behavior of the solution error for some NV–FIEs of the second kind.

Application 1. Consider the NV-FIE of the second kind,

φ(x, t + 0.0001) = f (x, t + 0.0001) +

∫ t+0.0001

0

∫ 1

0
(t + 0.0001)τ2xy2φ2(y, τ) dy dτ, (4.1)

“ φ(x, t) = t ln(1 + x)”.

For this application, Table 1 presents the absolute values of error using MADM, MADM–TR, and
MADM–WR for Eq (4.1) in the interval x ∈ [0, 1], using different values of ti ∈ [0, 0.6], i = 0, 1, 2 with
N = 3. Here, the results were plotted in a group of Figures 1–3 to display the error behavior for each
method. In addition, Table 2 lists the maximum error Emax(t) = max

i
|φ(xi, t) − φN(xi, t)| ∀ xi ∈ [0, 1]

for some t ∈ [0, 0.6].
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Table 1. Absolute error of the solution of Eq (4.1) using the previously presented methods at
0 ≤ T ≤ 0.6.

t0 = 0 t1 = 0.3 t2 = 0.6
xi MADM MADM-TR MADM-WR MADM MADM-TR MADM-WR MADM MADM-TR MADM-WR
0 0 0 0 0 0 0 0 0 0
0.1 0 4.59E-48 2.27E-56 3.68E-11 6E-08 3.68E-11 1.88E-08 7.68E-06 1.88E-08
0.2 0 9.18E-48 4.53E-56 7.37E-11 1.2E-07 7.37E-11 3.77E-08 1.54E-05 3.76E-08
0.3 0 1.38E-47 6.8E-56 1.1E-10 1.8E-07 1.1E-10 5.65E-08 2.31E-05 5.65E-08
0.4 0 1.84E-47 9.06E-56 1.47E-10 2.4E-07 1.47E-10 7.54E-08 3.07E-05 7.53E-08
0.5 0 2.29E-47 1.13E-55 1.84E-10 3E-07 1.84E-10 9.42E-08 3.84E-05 9.41E-08
0.6 0 2.75E-47 1.36E-55 2.21E-10 3.6E-07 2.21E-10 1.13E-07 4.61E-05 1.13E-07
0.7 0 3.21E-47 1.59E-55 2.58E-10 4.2E-07 2.58E-10 1.32E-07 5.38E-05 1.32E-07
0.8 0 3.67E-47 1.81E-55 2.95E-10 4.8E-07 2.95E-10 1.51E-07 6.15E-05 1.51E-07
0.9 0 4.13E-47 2.04E-55 3.31E-10 5.4E-07 3.31E-10 1.7E-07 6.92E-05 1.69E-07
1 0 4.59E-47 2.27E-55 3.68E-10 6E-07 3.68E-10 1.88E-07 7.68E-05 1.88E-07

0

1E-47

2E-47

3E-47

4E-47

5E-47

0

5E-56

1E-55

1.5E-55

2E-55

2.5E-55

0 0.2 0.4 0.6 0.8 1

MADM MADM-WR MADM-TR

MADM-WR
MADM

MADM-TR𝑡0 = 0

𝑥

Figure 1. Comparison of the errors obtained using the previously presented methods at t = 0
for Eq (4.1).
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Figure 2. Comparison of the errors obtained using the previously presented methods at
t = 0.3 for Eq (4.1).
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Figure 3. Comparison of the errors obtained using the previously presented methods at
t = 0.6 for Eq (4.1).

Table 2. The maximum error Emax(t) for different values of t for Eq (4.1).

t MADM MADM-TR MADM-WR
0 0 4.59 × 10−47 2.27 × 10−55

0.3 3.68 × 10−10 5.99 × 10−7 3.68 × 10−10

0.6 1.88 × 10−7 7.68 × 10−5 1.88 × 10−7

Application 2. Consider the NV-FIE of the second kind,

φ(x, t + 0.003) = f (x, t + 0.0003) +

∫ t+0.0003

0

∫ π

0
(t+0.0003)τ cos x sin y φ2(y, τ) dy, dτ,

“φ(x, t) = t(sin x + cos x)”.
(4.2)

Table 3 lists the absolute error values obtained using MADM, MADM–TR and MADM–WR for Eq
(4.2) in the interval x ∈ [0, π] at different values of ti ∈ [0, 0.4], i = 0, 1, 2 with N = 3. Figures 4–6
show the graphically display the results that can be used to investigate the error behavior for each
method. Moreover, Table 4 indicates the maximum error Emax(t) ∀ xi ∈ [0, π] for some t ∈ [0, 0.4].
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Table 3. Absolute error of the solution of Eq (4.2) using the previously presented methods at
0 ≤ T ≤ 0.4.

t0 = 0 t1 = 0.2 t2 = 0.4

xi MADM MADM-TR MADM-WR MADM MADM-TR MADM-WR MADM MADM-TR MADM-WR

0 0 4.39E-39 2.94E-47 5.41E-11 1.02E-06 5.41E-11 1.38E-08 6.53E-05 1.38E-08
π
10 0 4.17E-39 2.8E-47 5.14E-11 9.74E-07 5.14E-11 1.31E-08 6.21E-05 1.31E-08
π
5 0 3.55E-39 2.38E-47 4.37E-11 8.29E-07 4.37E-11 1.12E-08 5.28E-05 1.12E-08
3π
10 0 2.58E-39 1.73E-47 3.18E-11 6.02E-07 3.18E-11 8.11E-09 3.84E-05 8.11E-09
2π
5 0 1.36E-39 9.1E-48 1.67E-11 3.17E-07 1.67E-11 4.26E-09 2.02E-05 4.26E-09
π
2 0 0 0 0 0 0 0 0 0
3π
5 0 1.36E-39 9.1E-48 1.67E-11 3.17E-07 1.67E-11 4.26E-09 2.02E-05 4.26E-09

7π
10 0 2.58E-39 1.73E-47 3.18E-11 6.02E-07 3.18E-11 8.11E-09 3.84E-05 8.11E-09
4π
5 0 3.55E-39 2.38E-47 4.37E-11 8.29E-07 4.37E-11 1.12E-08 5.28E-05 1.12E-08

9π
10 0 4.17E-39 2.8E-47 5.14E-11 9.74E-07 5.14E-11 1.31E-08 6.21E-05 1.31E-08

π 0 4.39E-39 2.94E-47 5.41E-11 1.02E-06 5.41E-11 1.38E-08 6.53E-05 1.38E-08
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1E-39
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5E-39
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𝑥

Figure 4. Comparison of the errors obtained using the previously presented methods at t = 0
for Eq (4.2).
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Figure 5. Comparison of the errors obtained using the previously presented methods at
t = 0.2 for Eq (4.2).
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Figure 6. Comparison of the errors obtained using the previously presented methods at
t = 0.4 for Eq (4.2).

Table 4. The maximum error Emax(t) for different values of t for Eq (4.2).

t MADM MADM-TR MADM-WR
0 0 4.39 × 10−39 2.94 × 10−47

0.2 5.41 × 10−11 1.02 × 10−6 5.41 × 10−11

0.4 1.38 × 10−8 6.53 × 10−5 1.38 × 10−8

Application 3. Consider the NV-FIE of the second kind,

φ(x, t + 0.0002) = f (x, t + 0.0002) +

∫ t+0.0002

0

∫ 1

0
(t + 0.0002)2τ2x2eyφ

1
2 (y, τ) dy dτ, (4.3)

“φ(x, t) = te−x”.
Table 5 can be used to investigate the absolute value of the errors obtained using MADM, MADM–TR,
and MADM–WR for Eq (4.3) in the interval x ∈ [0, 1]. The error behavior for each method at different
values of ti ∈ [0, 0.2], i = 0, 1, 2 with N = 3 is displayed in Figues 7–9. Furthermore, Table 6 shows
the maximum error Emax(t) ∀ xi ∈ [0, 1] for some t ∈ [0, 0.2].
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Table 5. Absolute error of the solution of Eq (4.3) using the previously presented methods at
0 ≤ T ≤ 0.2.

t0 = 0 t1 = 0.1 t2 = 0.2
xi MADM-TR MADM-WR MADM-TR MADM-WR MADM-TR MADM-WR
0 0 0 1.13371 × 10−15 1.42 × 10−15 2.83 × 10−15 2.83 × 10−15

0.1 1.94 × 10−40 1.94 × 10−40 1.32 × 10−12 5.55 × 10−17 1.19 × 10−10 4.31 × 10−15

0.2 7.77 × 10−40 7.77 × 10−40 5.28 × 10−12 5.29 × 10−15 4.75 × 10−10 2.22 × 10−14

0.3 1.75 × 10−39 1.75 × 10−39 1.19 × 10−11 5.38 × 10−16 1.07 × 10−09 3.64 × 10−15

0.4 3.11 × 10−39 3.11 × 10−39 2.11 × 10−11 1.51 × 10−15 1.91 × 10−09 8.05 × 10−16

0.5 4.86 × 10−17 4.86 × 10−17 3.29 × 10−11 1.01 × 10−15 2.97 × 10−09 3.48 × 10−15

0.6 6.99 × 10−17 6.99 × 10−17 4.76 × 10−11 1.11 × 10−15 4.28 × 10−09 8.19 × 10−16

0.7 9.52 × 10−16 9.52 × 10−16 6.48 × 10−11 1.44 × 10−15 5.82 × 10−09 1.01 × 10−14

0.8 1.24 × 10−38 1.24 × 10−38 8.46 × 10−11 5.13 × 10−16 7.61 × 10−09 9.05 × 10−15

0.9 1.57 × 10−38 1.57 × 10−38 1.07 × 10−10 1.47 × 10−15 9.63 × 10−09 1.05 × 10−14

1 1.94 × 10−38 1.94 × 10−38 1.32 × 10−10 2.82 × 10−15 1.19 × 10−08 7.97 × 10−15
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Figure 7. Comparison of the errors obtained using the previously presented methods at t = 0
for Eq (4.3).
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Figure 8. Comparison of the errors obtained using the previously presented methods at
t = 0.1 for Eq (4.3).
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Figure 9. Comparison of the errors obtained using the previously presented methods at
t = 0.2 for Eq (4.3).

Table 6. The maximum error Emax(t) for different values of t for Eq (4.3).

t MADM-TR MADM-WR
0 1.94 × 10−38 5.55 × 10−38

0.1 1.32 × 10−10 5.29 × 10−15

0.2 1.19 × 10−8 2.22 × 10−14

5. Conclusions

In this paper, we focused on studying the solution of Eq (1.1), which can be interpreted with different
implications in mathematical physics and in contact problems where it can be defined as

µφ(x, t) = f (x, t) + λ

∫ t

0

∫ 1

0
F(t, τ)K(x, y)G(y, τ,φ(y, τ))dydτ (5.1)

under the dynamic conditions∫ 1

0
φ(x, t)dx = N1(t), and

∫ 1

0
xφ(x, t)dx = N2(t), (5.2)

and where the following expression can be considered in the mathematical physics problems

f (x, t) =
π

θ1 + θ2

[
γ(t) + β(t)x − h1(x) − h2(x)

]
, x ∈ [0, 1], t ∈ [0,T ],T < 1

and θi =
1 − µi

πEi
, i = 1, 2.
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Here, µ and λ were constants; however, they could be complex and their physical implications may
vary. Moreover, µi is the Poisson’s ration and Ei is the Young’s coefficient of each material. IE (5.1)
under conditions (5.2) was investigated throught the contact problem in the theory of elasticity of two
rigid surfaces Gi, i = 1, 2 having two elastic materials occupying the contact domain [0, 1] where the
two functions hi(x) ∈ L2[0, 1] represent and describe the equations of the upper and lower surfaces. The
upper surface was impressed by a given variable force in timeN1(t), 0 ≤ t ≤ T < 1,with an eccentricity
of application e(t) and a given momentN2(t) in consideration of the rigid displacements γ(t) and xβ(t),
respectively, through time t ∈ [0,T ] and position x ∈ [0, 1]. From the above discussions, the unknown
function φ(x, t) represented the difference in the normal stresses between the two layers. Moreover,
the kernel of position K(x, y) depended on the properties of materials of the contact domain, whereas
the known positive function F(t, τ) represented the characteristic function of the material resistance
through time t with F(0, 0) = constant , 0.

Furthermore, the normality and continuity of NV-FIEs with phase lag in the space L2[a, b]×C[0,T ]
were presented to investigate the uniqueness and existence of the solution using the Banach’s fixed
point theorem which is used in case of failure of Picard’s method. Moreover, A new MADM based
on quadrature rules, which is used in case the definite integral is extremely hard, was proposed to
obtain the best approximate solutions of NV–FIEs with a phase lag. Illustrative plots of the method’s
applications were provided to prove the validity and accuracy of the proposed methods and to calculate
the error for each method. Based on the results, the accuracy of MADM with quadrature formulas can
be assigned in the order of MADM–Weddle’s rule > MADM–Trapezoidal rule. Thus, compared to
other rules, MADM–Weddle’s rule, having the same relative accuracy of MADM, is the best approach
to approximate the solution of NV–FIEs.
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