Research article

Multiple entire solutions of fractional Laplacian Schrödinger equations

  • Received: 19 February 2021 Accepted: 19 May 2021 Published: 04 June 2021
  • MSC : 35A01, 35B08, 35J61

  • We consider the semi-linear fractional Schrödinger equation

    {(Δ)su+V(x)u=f(x,u),xRN,uHs(RN),

    where both V(x) and f(x,u) are periodic in x, 0 belongs to a spectral gap of the operator (Δ)s+V and f(x,u) is subcritical in u. We obtain the existence of nontrivial solutions by using a generalized linking theorem, and based on this existence we further establish infinitely many geometrically distinct solutions. We weaken the super-quadratic condition of f, which is usually assumed even in the standard Laplacian case so as to obtain the existence of solutions.

    Citation: Jian Wang, Zhuoran Du. Multiple entire solutions of fractional Laplacian Schrödinger equations[J]. AIMS Mathematics, 2021, 6(8): 8509-8524. doi: 10.3934/math.2021494

    Related Papers:

    [1] Hamed Karami, Pejman Sanaei, Alexandra Smirnova . Balancing mitigation strategies for viral outbreaks. Mathematical Biosciences and Engineering, 2024, 21(12): 7650-7687. doi: 10.3934/mbe.2024337
    [2] Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298
    [3] Holly Gaff, Elsa Schaefer . Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6(3): 469-492. doi: 10.3934/mbe.2009.6.469
    [4] Stefanie Fuderer, Christina Kuttler, Michael Hoelscher, Ludwig Christian Hinske, Noemi Castelletti . Data suggested hospitalization as critical indicator of the severity of the COVID-19 pandemic, even at its early stages. Mathematical Biosciences and Engineering, 2023, 20(6): 10304-10338. doi: 10.3934/mbe.2023452
    [5] Vinicius Piccirillo . COVID-19 pandemic control using restrictions and vaccination. Mathematical Biosciences and Engineering, 2022, 19(2): 1355-1372. doi: 10.3934/mbe.2022062
    [6] ZongWang, Qimin Zhang, Xining Li . Markovian switching for near-optimal control of a stochastic SIV epidemic model. Mathematical Biosciences and Engineering, 2019, 16(3): 1348-1375. doi: 10.3934/mbe.2019066
    [7] Zi Sang, Zhipeng Qiu, Xiefei Yan, Yun Zou . Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Mathematical Biosciences and Engineering, 2012, 9(1): 147-164. doi: 10.3934/mbe.2012.9.147
    [8] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [9] Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925
    [10] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
  • We consider the semi-linear fractional Schrödinger equation

    {(Δ)su+V(x)u=f(x,u),xRN,uHs(RN),

    where both V(x) and f(x,u) are periodic in x, 0 belongs to a spectral gap of the operator (Δ)s+V and f(x,u) is subcritical in u. We obtain the existence of nontrivial solutions by using a generalized linking theorem, and based on this existence we further establish infinitely many geometrically distinct solutions. We weaken the super-quadratic condition of f, which is usually assumed even in the standard Laplacian case so as to obtain the existence of solutions.





    [1] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. doi: 10.1016/0022-1236(73)90051-7
    [2] T. Bartsch, Y. H. Ding, On a nonlinear Schrödinger equation with periodic potential, Math. Ann., 313 (1999), 15–37. doi: 10.1007/s002080050248
    [3] T. Bartsch, Z. Q. Wang, Existence and muitipliticity results for some superlinear elliptic problem on RN, Commun. Part. Diff. Eq., 20 (1995), 1725–1741. doi: 10.1080/03605309508821149
    [4] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. doi: 10.1080/03605300600987306
    [5] G. W. Chen, S. W. Ma, Asymptotically or super linear cooperative elliptic systems in the whole space, Sci. China Math., 56 (2013), 1181–1194. doi: 10.1007/s11425-013-4567-3
    [6] V. Coti. Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693–727. doi: 10.1090/S0894-0347-1991-1119200-3
    [7] V. C. Zelati, P. H. Rabinowitz, Homoniclinic type solutions for a semilinear elliptic PDE on RN, Commun. Pure Appl. Math., 45 (1992), 1217–1269. doi: 10.1002/cpa.3160451002
    [8] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhikeri's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004
    [9] Y. H. Ding, C. Lee, Multiple solutions of Schrödinger equations with infinite linear part and super or asymptotially linear terms, J. Differ. Equations., 222 (2006), 137–163. doi: 10.1016/j.jde.2005.03.011
    [10] Z. R. Du, C. F. Gui, Further study on periodic solutions of elliptic equations with a fractional Laplacian, Nonlinear Anal., 193 (2020), 111417. doi: 10.1016/j.na.2019.01.007
    [11] F. Fang, C. Ji, On a fractional Schrödinger equation with periodic potential, Comput. Math. Appl., 78 (2019), 1517–1530. doi: 10.1016/j.camwa.2019.03.044
    [12] Z. P. Feng, Z. R. Du, Periodic solutions of Non-autonomous Allen-Cahn Equations involving fractional Laplacian, Adv. Nonlinear Stud., 20 (2020), 725–737. doi: 10.1515/ans-2020-2075
    [13] F. S. Gao, M. B. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math., 20 (2018), 1750037. doi: 10.1142/S0219199717500377
    [14] C. F. Gui, J. Zhang, Z. R. Du, Periodic solutions of a semilinear elliptic equation with a fractional Laplacian, J. Fixed Point Theory Appl., 19 (2017), 363–373. doi: 10.1007/s11784-016-0357-1
    [15] W. Kryszewski, A. Szulkin, Generalized linking theorem with application semilinear Schrödinger equation, Adv. Differ, Equations, 3 (1998), 441–472.
    [16] N. Laskin, Fractional quantum mechsnics and Lévy path integrals, Phys. Lett. A., 268 (2002), 298–305.
    [17] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108
    [18] G. B. Li, A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763–776. doi: 10.1142/S0219199702000853
    [19] S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Dif., 45 (2012), 1–9. doi: 10.1007/s00526-011-0447-2
    [20] Y. Li, Z. Wang, J. Zeng, Ground States of nonlinear Schrödinger equations with potentials, Annales de l'I.H.P. Analyse Non Linéaire, 23 (2006), 829–837.
    [21] Z. L. Liu, Z. Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004), 563–574.
    [22] A. Pankov, Peridic nonlinear Schrödinger equation with application to photonic crystals, Milian J. Math., 73 (2005), 259–287. doi: 10.1007/s00032-005-0047-8
    [23] P. H. Rabinowitz, On a class of nonliear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270–291. doi: 10.1007/BF00946631
    [24] M. Schechter, Superlinear Schrödinger operators, J. Funct. Anal., 262 (2012), 2677–2694. doi: 10.1016/j.jfa.2011.12.023
    [25] A. Szulki, T. Weth, Ground state solution for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802–3822. doi: 10.1016/j.jfa.2009.09.013
    [26] X. H. Tang, Non-Nehair manifold method for asympotically a periodic Schrödinger equations, Sci. China Math., 58 (2015), 715–728.
    [27] X. H. Tang, S. T. Chen, X. Y. Lin, J. S. Yu, Ground state solutions of Nehari-Pankov type for Schrödinger equations with local supper-quadratic conditions, J. Differ. Equations., 268 (2020), 4663–4690. doi: 10.1016/j.jde.2019.10.041
    [28] X. H. Tang, X. Y. Lin, J. S. Yu, Nontrivial solution for Schrödinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369–383. doi: 10.1007/s10884-018-9662-2
    [29] C. Troestler, M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Commun. Part. Diff. Eq., 21 (1996), 1431–1449. doi: 10.1080/03605309608821233
    [30] M. B. Yang, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Anal., 72 (2010), 2620–2627. doi: 10.1016/j.na.2009.11.009
    [31] M. B. Yang, Existence of semiclassical solutions for some critical Schrödinger-Poisson equations with potentials, Nonlinear Anal., 198 (2020), 111874. doi: 10.1016/j.na.2020.111874
    [32] J. Zhang, W. M. Zou, The critical cases for a Berestyski-Lions theorem, Sci. China Math., 57 (2014), 541–554. doi: 10.1007/s11425-013-4687-9
    [33] X. X. Zhou, W. M. Zou, Ground state and muitiple solutions via generalized Nehair manifold, Nonlinear Anal., 102 (2014), 251–263. doi: 10.1016/j.na.2014.02.018
  • This article has been cited by:

    1. Inkyung Ahn, Seongman Heo, Seunghyun Ji, Kyung Hyun Kim, Taehwan Kim, Eun Joo Lee, Jooyoung Park, Keehoon Sung, Investigation of nonlinear epidemiological models for analyzing and controlling the MERS outbreak in Korea, 2018, 437, 00225193, 17, 10.1016/j.jtbi.2017.10.004
    2. Carl-Etienne Juneau, Tomas Pueyo, Matt Bell, Genevieve Gee, Pablo Collazzo, Louise Potvin, Lessons from past pandemics: a systematic review of evidence-based, cost-effective interventions to suppress COVID-19, 2022, 11, 2046-4053, 10.1186/s13643-022-01958-9
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3189) PDF downloads(141) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog