Citation: Xiangmei Li, Kamran, Absar Ul Haq, Xiujun Zhang. Numerical solution of the linear time fractional Klein-Gordon equation using transform based localized RBF method and quadrature[J]. AIMS Mathematics, 2020, 5(5): 5287-5308. doi: 10.3934/math.2020339
[1] | A. El-Mesady, Y. S. Hamed, M. S. Mohamed, H. Shabana . Partially balanced network designs and graph codes generation. AIMS Mathematics, 2022, 7(2): 2393-2412. doi: 10.3934/math.2022135 |
[2] | Adel Alahmadi, Tamador Alihia, Patrick Solé . The build up construction for codes over a non-commutative non-unitary ring of order 9. AIMS Mathematics, 2024, 9(7): 18278-18307. doi: 10.3934/math.2024892 |
[3] | Adel Alahmadi, Altaf Alshuhail, Patrick Solé . The mass formula for self-orthogonal and self-dual codes over a non-unitary commutative ring. AIMS Mathematics, 2023, 8(10): 24367-24378. doi: 10.3934/math.20231242 |
[4] | Hao Song, Yuezhen Ren, Ruihu Li, Yang Liu . Optimal quaternary Hermitian self-orthogonal [n,5] codes of n≥492. AIMS Mathematics, 2025, 10(4): 9324-9331. doi: 10.3934/math.2025430 |
[5] | Chaofeng Guan, Ruihu Li, Hao Song, Liangdong Lu, Husheng Li . Ternary quantum codes constructed from extremal self-dual codes and self-orthogonal codes. AIMS Mathematics, 2022, 7(4): 6516-6534. doi: 10.3934/math.2022363 |
[6] | Ganesh Gandal, R Mary Jeya Jothi, Narayan Phadatare . On very strongly perfect Cartesian product graphs. AIMS Mathematics, 2022, 7(2): 2634-2645. doi: 10.3934/math.2022148 |
[7] | Qiuyan Wang, Weixin Liu, Jianming Wang, Yang Yan . A class of nearly optimal codebooks and their applications in strongly regular Cayley graphs. AIMS Mathematics, 2024, 9(7): 18236-18246. doi: 10.3934/math.2024890 |
[8] | Jalal-ud-Din, Ehtasham-ul-Haq, Ibrahim M. Almanjahie, Ishfaq Ahmad . Enhancing probabilistic based real-coded crossover genetic algorithms with authentication of VIKOR multi-criteria optimization method. AIMS Mathematics, 2024, 9(10): 29250-29268. doi: 10.3934/math.20241418 |
[9] | Mohamed R. Zeen El Deen, Ghada Elmahdy . New classes of graphs with edge δ− graceful labeling. AIMS Mathematics, 2022, 7(3): 3554-3589. doi: 10.3934/math.2022197 |
[10] | Xiying Zheng, Bo Kong, Yao Yu . Quantum codes from σ-dual-containing constacyclic codes over Rl,k. AIMS Mathematics, 2023, 8(10): 24075-24086. doi: 10.3934/math.20231227 |
First we give the definitions of generalized fractional integral operators which are special cases of the unified integral operators defined in (1.9), (1.10).
Definition 1.1. [1] Let f:[a,b]→R be an integrable function. Also let g be an increasing and positive function on (a,b], having a continuous derivative g′ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function g on [a,b] of order μ where ℜ(μ)>0 are defined by:
μgIa+f(x)=1Γ(μ)∫xa(g(x)−g(t))μ−1g′(t)f(t)dt,x>a, | (1.1) |
μgIb−f(x)=1Γ(μ)∫bx(g(t)−g(x))μ−1g′(t)f(t)dt, x<b, | (1.2) |
where Γ(.) is the gamma function.
Definition 1.2. [2] Let f:[a,b]→R be an integrable function. Also let g be an increasing and positive function on (a,b], having a continuous derivative g′ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function g on [a,b] of order μ where ℜ(μ),k>0 are defined by:
μgIka+f(x)=1kΓk(μ)∫xa(g(x)−g(t))μk−1g′(t)f(t)dt,x>a, | (1.3) |
μgIkb−f(x)=1kΓk(μ)∫bx(g(t)−g(x))μk−1g′(t)f(t)dt, x<b, | (1.4) |
where Γk(.) is defined as follows [3]:
Γk(x)=∫∞0tx−1e−tkkdt,ℜ(x)>0. | (1.5) |
A fractional integral operator containing an extended generalized Mittag-Leffler function in its kernel is defined as follows:
Definition 1.3. [4] Let ω,μ,α,l,γ,c∈C, ℜ(μ),ℜ(α),ℜ(l)>0, ℜ(c)>ℜ(γ)>0 with p≥0, δ>0 and 0<k≤δ+ℜ(μ). Let f∈L1[a,b] and x∈[a,b]. Then the generalized fractional integral operators ϵγ,δ,k,cμ,α,l,ω,a+f and ϵγ,δ,k,cμ,α,l,ω,b−f are defined by:
(ϵγ,δ,k,cμ,α,l,ω,a+f)(x;p)=∫xa(x−t)α−1Eγ,δ,k,cμ,α,l(ω(x−t)μ;p)f(t)dt, | (1.6) |
(ϵγ,δ,k,cμ,α,l,ω,b−f)(x;p)=∫bx(t−x)α−1Eγ,δ,k,cμ,α,l(ω(t−x)μ;p)f(t)dt, | (1.7) |
where
Eγ,δ,k,cμ,α,l(t;p)=∞∑n=0βp(γ+nk,c−γ)β(γ,c−γ)(c)nkΓ(μn+α)tn(l)nδ | (1.8) |
is the extended generalized Mittag-Leffler function and (c)nk is the Pochhammer symbol defined by (c)nk=Γ(c+nk)Γ(c).
Recently, a unified integral operator is defined as follows:
Definition 1.4. [5] Let f,g:[a,b]⟶R, 0<a<b, be the functions such that f be positive and f∈L1[a,b], and g be differentiable and strictly increasing. Also let ϕx be an increasing function on [a,∞) and α,l,γ,c ∈ C, p,μ,δ ≥ 0 and 0<k≤δ+μ. Then for x∈[a,b] the left and right integral operators are defined by
(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)=∫xaKyx(Eγ,δ,k,cμ,α,l,g;ϕ)f(y)d(g(y)), | (1.9) |
(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)=∫bxKxy(Eγ,δ,k,cμ,β,l,g;ϕ)f(y)d(g(y)), | (1.10) |
where the involved kernel is defined by
Kyx(Eγ,δ,k,cμ,α,l,g;ϕ)=ϕ(g(x)−g(y))g(x)−g(y)Eγ,δ,k,cμ,α,l(ω(g(x)−g(y))μ;p). | (1.11) |
For suitable settings of functions ϕ, g and certain values of parameters included in Mittag-Leffler function, several recently defined known fractional and conformable fractional integrals studied in [6,7,8,9,10,1,11,12,13,14,15,16,17] can be reproduced, see [18,Remarks 6&7].
The aim of this study is to derive the bounds of all aforementioned integral operators in a unified form for (s,m)-convex functions. These bounds will hold particularly for m-convex, s-convex and convex functions and for almost all fractional and conformable integrals defined in [6,7,8,9,10,1,11,12,13,14,15,16,17].
Definition 1.5. [19] A function f:[0,b]→R,b>0 is said to be (s,m)-convex, where (s,m)∈[0,1]2 if
f(tx+m(1−t)y)≤tsf(x)+m(1−t)sf(y) | (1.12) |
holds for all x,y∈[0,b]andt∈[0,1].
Remark 1. 1. If we take (s,m) = (1,m), then (1.12) gives the definition of m-convex function.
2. If we take (s,m) = (1,1), then (1.12) gives the definition of convex function.
3. If we take (s,m) = (1,0), then (1.12) gives the definition of star-shaped function.
P1: Let g and ϕx be increasing functions. Then for x<t<y, x,y∈[a,b] the kernel Kyx(Eγ,δ,k,cμ,α,l,g;ϕ) satisfies the following inequality:
Kxt(Eγ,δ,k,cμ,α,l,g;ϕ)g′(t)≤Kxy(Eγ,δ,k,cμ,α,l,g;ϕ)g′(t). | (2.1) |
This can be obtained from the following two straightforward inequalities:
ϕ(g(t)−g(x))g(t)−g(x)g′(t)≤ϕ(g(y)−g(x))g(y)−g(x)g′(t), | (2.2) |
Eγ,δ,k,cμ,α,l(ω(g(t)−g(x))μ;p)≤Eγ,δ,k,cμ,α,l(ω(g(y)−g(x))μ;p). | (2.3) |
The reverse of inequality (1.9) holds when g and ϕx are decreasing.
P2: Let g and ϕx be increasing functions. If ϕ(0)=ϕ′(0)=0, then for x,y∈[a,b],x<y,
Kxy(Eγ,δ,k,cμ,α,l,g;ϕ)≥0.
P3: For p,q∈R,
Kxy(Eγ,δ,k,cμ,α,l,g;pϕ1+qϕ2)=pKxy(Eγ,δ,k,cμ,α,l,g;ϕ1)+qKxy(Eγ,δ,k,cμ,α,l,g;ϕ2).
The upcoming section contains the results which deal with the bounds of several integral operators in a compact form by utilizing (s,m)-convex functions. A version of the Hadamard inequality in a compact form is presented, also a modulus inequality is given for differentiable function f such that |f′| is (s,m)-convex function.
In this section first we will state the main results. The following result provides upper bound of unified integral operators.
Theorem 3.1. Let f:[a,b]⟶R, 0≤a<b be a positive integrable (s,m)-convex function, m∈(0,1]. Let g:[a,b]⟶R be differentiable and strictly increasing function, also let ϕx be an increasing function on [a,b]. If α,β,l,γ,c∈C, p,μ≥0,δ≥0 and 0<k≤δ+μ, then for x∈(a,b) the following inequality holds for unified integral operators:
(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(mf(xm)g(x)−f(a)g(a)−Γ(s+1)(x−a)s(mf(xm)sIx−g(a)−f(a)sIa+g(x)))+Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(f(b)g(b)−mf(xm)g(x)−Γ(s+1)(b−x)s(f(b)sIb−g(x)−mf(xm)sIx+g(b))). | (3.1) |
Lemma 3.2. [20] Let f:[0,∞]⟶R, be an (s,m)-convex function, m∈(0,1]. If f(x)=f(a+b−xm), then the following inequality holds:
f(a+b2)≤12s(1+m)f(x)x∈[a,b]. | (3.2) |
The following result provides generalized Hadamard inequality for (s,m)-convex functions.
Theorem 3.3. Under the assumptions of Theorem 3.1, in addition if f(x)=f(a+b−xm), m∈(0,1], then the following inequality holds:
2s(1+m)f(a+b2)((gFϕ,γ,δ,k,cμ,α,l,b−1)(a,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,a+1)(b,ω;p))≤(gFϕ,γ,δ,k,cμ,α,l,b−f)(a,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)≤(Kab(Eγ,δ,k,cμ,α,l,g;ϕ)+Kab(Eγ,δ,k,cμ,α,l,g;ϕ))(f(b)g(b)−mf(am)g(a)−Γ(s+1)(b−a)s(f(b)sIb−g(a)−mf(am)sIa+g(b))). | (3.3) |
Theorem 3.4. Let f:[a,b]⟶R, 0≤a<b be a differentiable function. If |f′| is (s,m)-convex, m∈(0,1] and g:[a,b]⟶R be differentiable and strictly increasing function, also let ϕx be an increasing function on [a,b]. If α,β,l,γ,c∈C, p,μ≥0, δ≥0 and 0<k≤δ+μ, then for x∈(a,b) we have
|(gFϕ,γ,δ,k,cμ,α,l,a+f∗g)(x,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,b−f∗g)(x,ω;p)|≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(m|f′(xm)|g(x)−|f′(a)|g(a)−Γ(s+1)(x−a)s(m|f′(xm)|sIx−g(a)−|f′(a)|sIa+g(x)))+Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(|f′(b)|g(b)−m|f′(xm)|g(x)−Γ(s+1)(b−x)s(|f′(b)|sIb−g(x)−m|f′(xm)|sIx+g(b))), | (3.4) |
where
(gFϕ,γ,δ,k,cμ,α,l,a+f∗g)(x,ω;p):=∫xaKtx(Eγ,δ,k,cμ,α,l,g;ϕ)f′(t)d(g(t)), |
(gFϕ,γ,δ,k,cμ,β,l,b−f∗g)(x,ω;p):=∫bxKxt(Eγ,δ,k,cμ,α,l,g;ϕ)f′(t)d(g(t)). |
In this section we give the proves of the results stated in aforementioned section.
Proof of Theorem 3.1. By (P1), the following inequalities hold:
Ktx(Eγ,δ,k,cμ,α,l,g;ϕ)g′(t)≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)g′(t), a<t<x, | (4.1) |
Kxt(Eγ,δ,k,cμ,α,l,g;ϕ)g′(t)≤Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)g′(t), x<t<b. | (4.2) |
For (s,m)-convex function the following inequalities hold:
f(t)≤(x−tx−a)sf(a)+m(t−ax−a)sf(xm), a<t<x, | (4.3) |
f(t)≤(t−xb−x)sf(b)+m(b−tb−x)sf(xm), x<t<b. | (4.4) |
From (4.1) and (4.3), the following integral inequality holds true:
∫xaKtx(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t))≤f(a)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)×∫xa(x−tx−a)sd(g(t))+mf(xm)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)∫xa(t−ax−a)sd(g(t)). | (4.5) |
Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional integrals in the right hand side, provides the upper bound of unified left sided integral operator (1.1) as follows:
(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(mf(xm)g(x)−f(a)g(a)−Γ(s+1)(x−a)s(mf(xm)sIx−g(a)−f(a)sIa+g(x))). | (4.6) |
On the other hand from (4.2) and (4.4), the following integral inequality holds true:
∫bxKxt(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t))≤f(b)Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)×∫bx(t−xb−x)sd(g(t))+mf(xm)Kbx(Eγ,δ,k,cμ,α,l,g;ϕ)∫bx(b−tb−x)sd(g(t)). | (4.7) |
Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional integrals in the right hand side, provides the upper bound of unified right sided integral operator (1.2) as follows:
(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)≤Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(f(b)g(b)−mf(xm)g(x)−Γ(s+1)(b−x)s(f(b)sIb−g(x)−mf(xm)sIx+g(b))). | (4.8) |
By adding (4.6) and (4.8), (3.1) can be obtained.
Remark 2. (ⅰ) If we consider (s,m) = (1, 1) in (3.1), [18,Theorem 1] is obtained.
(ⅱ) If we consider p=ω=0 in (3.1), [20,Theorem 1] is obtained.
(ⅲ) If we consider ϕ(t)=Γ(α)tα, p=ω=0 and (s,m) = (1, 1) in (3.1), [21,Theorem 1] is obtained.
(ⅳ) If we consider α=β in the result of (ⅲ), then [21,Corollary 1] is obtained.
(ⅴ) If we consider ϕ(t)=tα, g(x)=x and m=1 in (3.1), then [22,Theorem 2.1] is obtained.
(ⅵ) If we consider α=β in the result of (v), then [22,Corollary 2.1] is obtained.
(ⅶ) If we consider ϕ(t)=Γ(α)tαkkΓk(α), (s,m) = (1, 1), g(x)=x and p=ω=0 in (3.1), then [23,Theorem 1] can be obtained.
(ⅷ) If we consider α=β in the result of (ⅶ), then [23,Corollary 1] can be obtained.
(ⅸ) If we consider ϕ(t)=Γ(α)tα, g(x)=x and p=ω=0 and (s,m) = (1, 1) in (3.1), then [24,Theorem 1] is obtained.
(ⅹ) If we consider α=β in the result of (ⅸ), then [24,Corollary 1] can be obtained.
(ⅹⅰ) If we consider α=β=1 and x=a or x=b in the result of (x), then [24,Corollary 2] can be obtained.
(ⅹⅱ) If we consider α=β=1 and x=a+b2 in the result of (ⅹ), then [24,Corollary 3] can be obtained.
Proof of Theorem 3.3. By (P1), the following inequalities hold:
Kax(Eγ,δ,k,cμ,α,l,g;ϕ)g′(x)≤Kab(Eγ,δ,k,cμ,α,l,g;ϕ)g′(x), a<x<b, | (4.9) |
Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)g′(x)≤Kab(Eγ,δ,k,cμ,α,l,g;ϕ)g′(x) a<x<b. | (4.10) |
For (s,m)-convex function f, the following inequality holds:
f(x)≤(x−ab−a)sf(b)+m(b−xb−a)sf(am), a<x<b. | (4.11) |
From (4.9) and (4.11), the following integral inequality holds true:
∫baKax(Eγ,δ,k,cμ,α,l,g;ϕ)f(x)d(g(x))≤mf(am)Kab(Eγ,δ,k,cμ,α,l,g;ϕ)∫ba(b−xb−a)sd(g(x))+f(b)Kab(Eγ,δ,k,cμ,α,l,g;ϕ)∫ba(x−ab−a)sd(g(x)). |
Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional integrals in the right hand side, provides the upper bound of unified right sided integral operator (1.1) as follows:
(gFϕ,γ,δ,k,cμ,α,l,b−f)(a,ω;p)≤Kab(Eγ,δ,k,cμ,α,l,g;ϕ)(f(b)g(b)−mf(am)g(a)−Γ(s+1)(b−a)s(f(b)sIb−g(a)−mf(am)sIa+g(b))). | (4.12) |
On the other hand from (4.9) and (4.11), the following inequality holds which involves Riemann-Liouville fractional integrals on the right hand side and estimates of the integral operator (1.2):
(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)≤Kab(Eγ,δ,k,cμ,α,l,g;ϕ)(f(b)g(b)−mf(am)g(a)−Γ(s+1)(b−a)s(f(b)sIb−g(a)−mf(am)sIa+g(b))). | (4.13) |
By adding (4.12) and (4.13), following inequality can be obtained:
(gFϕ,γ,δ,k,cμ,α,l,b−f)(a,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)≤(Kab(Eγ,δ,k,cμ,α,l,g;ϕ)+Kab(Eγ,δ,k,cμ,α,l,g;ϕ))(f(b)g(b)−mf(am)g(a)−Γ(α+1)(b−a)s(f(b)sIb−g(b)−mf(am)sIa+g(b))). | (4.14) |
Multiplying both sides of (3.2) by Kax(Eγ,δ,k,cμ,α,l,g;ϕ)g′(x), and integrating over [a,b] we have
f(a+b2)∫baKax(Eγ,δ,k,cμ,α,l,g;ϕ)d(g(x))≤(12s)(1+m)∫baKab(Eγ,δ,k,cμ,α,l,g;ϕ)f(x)d(g(x)). |
From Definition 1.4, the following inequality is obtained:
f(a+b2)2s(1+m)(gFϕ,γ,δ,k,cμ,α,l,b−1)(a,ω;p)≤(gFϕ,γ,δ,k,cμ,α,l,b−f)(a,ω;p). | (4.15) |
Similarly multiplying both sides of (3.2) by Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)g′(x), and integrating over [a,b] we have
f(a+b2)2s(1+m)(gFϕ,γ,δ,k,cμ,β,l,a+1)(b,ω;p)≤(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p). | (4.16) |
By adding (4.15) and (4.16) the following inequality is obtained:
f(a+b2)2s(1+m)((gFϕ,γ,δ,k,cμ,β,l,a+1)(b,ω;p)+(gFϕ,γ,δ,k,cμ,α,l,b−1)(a,ω;p))≤(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)+(gFϕ,γ,δ,k,cμ,α,l,b−f)(a,ω;p). | (4.17) |
Using (4.14) and (4.17), inequality (3.3) can be obtained, this completes the proof.
Remark 3. (ⅰ) If we consider (s,m) = (1, 1) in (3.3), [18,Theorem 2] is obtained.
(ⅱ) If we consider p=ω=0 in (3.3), [20,Theorem 3] is obtained.
(ⅲ) If we consider ϕ(t)=Γ(α)tα+1, p=ω=0 and (s,m) = (1, 1) in (3.3), [21,Theorem 3] is obtained.
(ⅳ) If we consider α=β in the result of (iii), then [21,Corollary 3] is obtained.
(ⅴ) If we consider ϕ(t)=tα+1, g(x)=x and m=1 in (3.3), then [22,Theorem 2.4] is obtained.
(ⅵ) If we consider α=β in the result of (v), then [22,Corollary 2.6] is obtained.
(ⅶ) If we consider ϕ(t)=Γ(α)tαk+1, (s,m) = (1, 1), g(x)=x and p=ω=0 in (3.3), then [23,Theorem 3] can be obtained.
(ⅷ) If we consider α=β in the result of (ⅶ), then [23,Corollary 6] can be obtained.
(ⅸ) If we consider ϕ(t)=Γ(α)tα+1, p=ω=0, (s,m)=1 and g(x)=x in (3.3), [24,Theorem 3] can be obtained.
(ⅹ) If we consider α=β in the result of (ⅸ), [24,Corrolary 6] can be obtained.
Proof of Theorem 3.4. For (s,m)-convex function the following inequalities hold:
|f′(t)|≤(x−tx−a)s|f′(a)|+m(t−ax−a)s|f′(xm)|, a<t<x, | (4.18) |
|f′(t)|≤(t−xb−x)s|f′(b)|+m(b−tb−x)s|f′(xm)|, x<t<b. | (4.19) |
From (4.1) and (4.18), the following inequality is obtained:
|(gFϕ,γ,δ,k,cμ,α,l,a+(f∗g))(x,ω;p)|≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(x−a)s×((x−a)s(m|f′(xm)|g(x)−|f′(a)|g(a))−Γ(s+1)(m|f′(xm)|sIx−g(a)−|f′(a)|sIa+g(x))). | (4.20) |
Similarly, from (4.2) and (4.19), the following inequality is obtained:
|(gFϕ,γ,δ,k,cμ,β,l,b−(f∗g))(x,ω;p)|≤Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(b−x)s×((b−x)s(|f′(b)|g(b)−mf′|(xm)|g(x))−Γ(s+1)(|f′(b)|sIb−g(x)−mf′|(xm)|sIx+g(b))). | (4.21) |
By adding (4.20) and (4.21), inequality (3.4) can be achieved.
Remark 4. (ⅰ) If we consider (s,m) = (1, 1) in (3.4), then [18,Theorem 3] is obtained.
(ⅱ) If we consider p=ω=0 in (3.4), then [20,Theorem 2] is obtained.
(ⅲ) If we consider ϕ(t)=Γ(α)tα+1, p=ω=0 and (s,m) = (1, 1) in (3.4), then [21,Theorem 2] is obtained.
(ⅳ) If we consider α=β in the result of (iii), then [21,Corollary 2] is obtained.
(ⅴ) If we consider ϕ(t)=tα, g(x)=x and m=1 in (3.4), then [22,Theorem 2.3] is obtained.
(ⅵ) If we consider α=β in the result of (v), then [22,Corollary 2.5] is obtained.
(ⅶ) If we consider ϕ(t)=Γ(α)tαk+1, (s,m) = (1, 1), g(x)=x and p=ω=0 in (3.4), then [23,Theorem 2] can be obtained.
(ⅷ) If we consider α=β in the result of (ⅶ), then [23,Corollary 4] can be obtained.
(ⅸ) If we consider α=β=k=1 and x=a+b2, in the result of (ⅷ), then [23,Corollary 5] can be obtained.
(ⅹ) If we consider ϕ(t)=Γ(α)tα+1, g(x)=x and p=ω=0 and (s,m) = (1, 1) in (3.4), then [24,Theorem 2] is obtained.
(ⅹⅰ) If we consider α=β in the result of (x), then [24,Corollary 5] can be obtained.
In this section, we have established boundedness and continuity of unified integral operators for m-convex and convex functions.
Theorem 5.1. Under the assumptions of Theorem 1, the following inequality holds for m-convex functions:
(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(g(x)−g(a))(mf(xm)+f(a))+Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(g(b)−g(x))(mf(xm)+f(b)). | (5.1) |
Proof. If we put s=1 in (4.5), we have
∫xaKtx(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t))≤f(a)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)×∫xa(x−tx−a)d(g(t))+mf(xm)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)∫xa(t−ax−a)d(g(t)). | (5.2) |
Further from simplification of (5.2), the following inequality holds:
(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)≤Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(g(x)−g(a))(mf(xm)+f(a)). | (5.3) |
Similarly from (4.8), the following inequality holds:
(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)≤Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(g(b)−g(x))(mf(xm)+f(b)). | (5.4) |
From (5.3) and (5.4), (5.1) can be obtained.
Theorem 5.2. With assumptions of Theorem 4, if f∈L∞[a,b], then unified integral operators for m-convex functions are bounded and continuous.
Proof. From (5.3) we have
|(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)|≤Kab(Eγ,δ,k,cμ,α,l,g;ϕ)(g(b)−g(a))(m+1)‖f‖∞, |
which further gives
|(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)|≤K‖f‖∞, |
where K=(g(b)−g(a))(m+1)Kab(Eγ,δ,k,cμ,α,l,g;ϕ).
Similarly, from (5.4) the following inequality holds:
|(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)|≤K‖f‖∞. |
Hence the boundedness is followed, further from linearity the continuity of (1.9) and (1.10) is obtained.
Corollary 1. If we take m=1 in Theorem 5, then unified integral operators for convex functions are bounded and continuous and following inequalities hold:
|(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)|≤K‖f‖∞, |
|(gFϕ,γ,δ,k,cμ,β,l,b−f)(x,ω;p)|≤K‖f‖∞, |
where K=2(g(b)−g(a))Kab(Eγ,δ,k,cμ,α,l,g;ϕ).
This paper has explored bounds of a unified integral operator for (s,m)-convex functions. These bounds are obtained in a compact form which have further interesting consequences with respect to fractional and conformable integrals for convex, m-convex and s-convex functions. Furthermore by applying Theorems 3.1, 3.3 and 3.4 several associated results can be derived for different kinds of fractional integral operators of convex, m-convex and s-convex functions.
This work was sponsored in part by Social Science Planning Fund of Liaoning Province of China(L15AJL001, L16BJY011, L18AJY001), Scientific Research Fund of The Educational Department of Liaoning Province(2017LNZD07, 2016FRZD03), Scientific Research Fund of University of science and technology Liaoning(2016RC01, 2016FR01)
The authors declare that no competing interests exist.
[1] |
F. Yousef, M. Alquran, I. Jaradat, et al. Ternary-fractional differential transform schema: Theory and application, Adv. Differ. Equ., 2019 (2019), 1-13. doi: 10.1186/s13662-018-1939-6
![]() |
[2] | S. Bhatter, A. Mathur, D. Kumar, et al. A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory, Physica A, 537 (2020), 122578. |
[3] |
A. Goswami, J. Singh, D. Kumar, et al. An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma, Physica A, 524 (2019), 563-575. doi: 10.1016/j.physa.2019.04.058
![]() |
[4] | D. Kumar, F. Tchier, J. Singh, et al. An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 1-9. |
[5] |
D. Kumar, J. Singh, D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Meth. Appl. Sci., 43 (2020), 443-457. doi: 10.1002/mma.5903
![]() |
[6] |
A. Yusuf, M. Inc, A. I. Aliyu, et al. Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations, Chaos Soliton Fract., 116 (2018), 220-226. doi: 10.1016/j.chaos.2018.09.036
![]() |
[7] |
D. Kumar, J. Singh, K. Tanwar, et al. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws, Int. J. Heat Mass Tran., 138 (2019), 1222-1227. doi: 10.1016/j.ijheatmasstransfer.2019.04.094
![]() |
[8] | D. Kumar, J. Singh, S. D. Purohit, et al. A hybrid analytical algorithm for nonlinear fractional wave-like equations, Math. Model. Nat. Pheno., 14 (2019), 1-13. |
[9] | M. J. Ablowitz, M. A. Ablowitz, P. A. Clarkson, et al. Solitons, Nonlinear Evolution Equations and Inverse Scatterin, Cambridge university press, 1991. |
[10] | A. M. Yang, Y. Z. Zhang, C. Cattani, et al. Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets, Abstr. Appl. Anal., 2014 (2014), 1-6. |
[11] |
A. M. Wazwaz, New travelling wave solutions to the Boussinesq and the Klein-Gordon equations, Commun. Nonlinear Sci., 13 (2008), 889-901. doi: 10.1016/j.cnsns.2006.08.005
![]() |
[12] | A. M. Wazwaz, The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation, Appl. Math. Comput., 167 (2005), 1179-1195. |
[13] | A. S. V. R. Kanth, K. Aruna, Differential transform method for solving the linear and nonlinear Klein-Gordon equation, Comput. Phys. Commun., 180 (2018), 708-711. |
[14] |
K. Hosseini, P. Mayeli, R. Ansar, Modified Kudryashov method for solving the conformable timefractional Klein-Gordon equations with quadratic and cubic nonlinearities, Optik, 130 (2017), 737-742. doi: 10.1016/j.ijleo.2016.10.136
![]() |
[15] |
K. Hosseini, P. Mayeli, D. Kuma, New exact solutions of the coupled sine-Gordon equations in nonlinear optics using the modified Kudryashov method, J. Mod. Optic., 65 (2018), 361-364. doi: 10.1080/09500340.2017.1380857
![]() |
[16] |
K. Hosseini, P. Mayeli, R. Ansar, Bright and singular soliton solutions of the conformable timefractional Klein-Gordon equations with different nonlinearities, Wave. Random Complex, 28 (2018), 426-434. doi: 10.1080/17455030.2017.1362133
![]() |
[17] | K. Hosseini, Y. J. Xu, P. Mayeli, et al. A study on the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearitiesA study on the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities, Optoelectron. Adv. Mat., 11 (2017), 423-429. |
[18] |
E. Yusufoğlu, The variational iteration method for studying the Klein-Gordon equation, Appl. Math. Lett., 21 (2008), 669-674. doi: 10.1016/j.aml.2007.07.023
![]() |
[19] | M. Alaroud, M. Al-Smadi, O. A. Arqub, et al. Numerical Solutions of Linear Time-fractional Klein-Gordon Equation by Using Power Series Approach, SSRN Electron. J., 2018 (2018), 1-6. |
[20] |
M. Kurulay, Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method, Adv. Differ, Equ., 2012 (2012), 1-8. doi: 10.1186/1687-1847-2012-1
![]() |
[21] | K. A. Gepreel, M. S. Mohamed, Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation, Chinese Phys. B, 22 (2013), 010201. |
[22] |
A. K. Golmankhaneh, A. K. Golmankhaneh, D. Baleanu, On nonlinear fractional Klein-Gordon equation, Signal Process., 91 (2011), 446-451. doi: 10.1016/j.sigpro.2010.04.016
![]() |
[23] | E. A. B. Abdel-Salam, E. A. Yousif, Solution of nonlinear space-time fractional differential equations using the fractional Riccati expansion method, Math. Probl. Eng., 2013 (2013), 1-6. |
[24] |
D. Kumar, J. Singh, D. Baleanu, A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dynam., 87 (2017), 511-517. doi: 10.1007/s11071-016-3057-x
![]() |
[25] |
A. Mohebbi, M. Abbaszadeh, M. Dehghan, High-order difference scheme for the solution of linear time fractional Klein-Gordon equations, Numer. Meth. Part. Differ. Equ., 30 (2014), 1234-1253. doi: 10.1002/num.21867
![]() |
[26] |
M. Dehghan, M. Abbaszadeh, A. Mohebbi, An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Eng. Anal. Bound. Elem., 50 (2015), 412-434. doi: 10.1016/j.enganabound.2014.09.008
![]() |
[27] |
M. M. Khader, An efficient approximate method for solving linear fractional Klein-Gordon equation based on the generalized Laguerre polynomials, Int. J. Comput. Math., 90 (2013), 1853-1864. doi: 10.1080/00207160.2013.764994
![]() |
[28] | G. Hariharan, Wavelet method for a class of fractional Klein-Gordon equations, J. Comput. Nonlinear Dynam., 8 (2013), 1-6. |
[29] | H. Singh, D. Kumar, J. Singh, et al. A reliable numerical algorithm for the fractional klein-gordon equation, Eng. Trans., 67 (2019), 21-34. |
[30] | S. Vong, Z. Wang, A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions, Entropy, 274 (2014), 268-282. |
[31] |
M. Dehghan, A. Shokri, Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math., 230 (2009), 400-410. doi: 10.1016/j.cam.2008.12.011
![]() |
[32] | M. Dehghan, A. Shokri, A method of solution for certain problems of transient heat conduction, AIAA J., 8 (1968), 2004-2009. |
[33] |
G. J. Moridis, D. L. Reddell, The Laplace transform finite difference method for simulation of flow through porous media, Water Resour. Res., 27 (1991), 1873-1884. doi: 10.1029/91WR01190
![]() |
[34] | G. J. Moridis, D. L. Reddell, The Laplace transform boundary element (LTBE) method for the solution of diffusion-type equations, In: Boundary Elements XIII, Springer, Dordrecht, 1991, 83-97. |
[35] | G. J. Moridis, D. L. Reddell, The Laplace transform finite element (LTFE) numerical method for the solution of the ground water equations, paper H22C-4, AGU 91 Spring Meeting, Baltimore, May 28-31, 1991, EOS Trans. of the AGU, 72 (1991), 17. |
[36] |
E. A. Sudicky, R. G. McLaren, The Laplace Transform Galerkin Technique for large-scale simulation of mass transport in discretely fractured porous formations, Water Resour. Res., 28 (1992), 499-514. doi: 10.1029/91WR02560
![]() |
[37] | G. J. Moridis, E. J. Kansa, The Laplace transform multiquadric method: A highly accurate scheme for the numerical solution of partial differentia, J. Appl. Sci. Comput., (1993), 55910181. |
[38] |
Q. T. L. Gia, W. Mclean, Solving the heat equation on the unit sphere via Laplace transforms and radial basis functions, Adv. Comput. Math., 40 (2014), 353-375. doi: 10.1007/s10444-013-9311-6
![]() |
[39] |
W. McLean, V. Thomee, Time discretization of an evolution equation via Laplace transforms, IMA J. Numer. Anal., 24 (2004), 439-463. doi: 10.1093/imanum/24.3.439
![]() |
[40] |
M. L. Fernandez, C. Palencia, On the numerical inversion of the Laplace transform of certain holomorphic mappings, Appl. Numer. Math., 51 (2004), 289-303. doi: 10.1016/j.apnum.2004.06.015
![]() |
[41] |
W. McLean, V. Thomee, Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equ. Appl., 22 (2010), 57-94. doi: 10.1216/JIE-2010-22-1-57
![]() |
[42] |
J. A. C. Weideman, L. N. Trefethen, Parabolic and Hyperbolic contours for computing the Bromwich integral, Math. Comput., 76 (2007), 1341-1356. doi: 10.1090/S0025-5718-07-01945-X
![]() |
[43] |
D. Sheen, I. H. Shaon, V. Thomee, A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer.l Anal., 23 (2003), 269-299. doi: 10.1093/imanum/23.2.269
![]() |
[44] |
Z. J. Fu, W. Chen, H. T. Yang, Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys., 235 (2013), 52-66. doi: 10.1016/j.jcp.2012.10.018
![]() |
[45] |
M. Uddin, A. Ali, On the approximation of time-fractional telegraph equations using localized kernel-based method, Adv. Differ. Equ., 2018 (2018), 1-14. doi: 10.1186/s13662-017-1452-3
![]() |
[46] |
M. Uddin, A. Ali, A localized transform-based meshless method for solving time fractional wave- diffusion equation, Eng. Anal. Bound. Elem., 92 (2018), 108-113. doi: 10.1016/j.enganabound.2017.10.021
![]() |
[47] | K. B. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Academic Press, New York, London, 1974. |
[48] |
M. Uddin, On the selection of a good value of shape parameter in solving time dependent partial differential equations using RBF approximation method, Appl. Math. Model., 38 (2014), 135-144. doi: 10.1016/j.apm.2013.05.060
![]() |
[49] | R. E. Carlson, T. A. Foley, The parameter r2 in multiquadric interpolation, Comput. Math. Appl., 21 ((1991), 29-42. |
[50] | R. E. Carlson, T. A. Foley, Near optimal parameter selection for multiquadric interpolation, Manuscript, Computer Science and Engineering Department, Arizona State University, Tempe., 20 (1994). |
[51] |
D. Kumar, F. Tchier, J. Singh, et al. Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math., 3 (1995), 251-264. doi: 10.1007/BF02432002
![]() |
[52] | L. N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM, 1997. |
1. | A. El-Mesady, Omar Bazighifan, Mehar Ali Malik, Construction of Mutually Orthogonal Graph Squares Using Novel Product Techniques, 2022, 2022, 2314-4785, 1, 10.1155/2022/9722983 | |
2. | A. El-Mesady, Omar Bazighifan, S. S. Askar, Serena Matucci, A Novel Approach for Cyclic Decompositions of Balanced Complete Bipartite Graphs into Infinite Graph Classes, 2022, 2022, 2314-8888, 1, 10.1155/2022/9308708 | |
3. | A. El-Mesady, Omar Bazighifan, Qasem Al-Mdallal, On infinite circulant-balanced complete multipartite graphs decompositions based on generalized algorithmic approaches, 2022, 61, 11100168, 11267, 10.1016/j.aej.2022.04.022 | |
4. | R. Praveen, P. Pabitha, A secure lightweight fuzzy embedder based user authentication scheme for internet of medical things applications, 2023, 10641246, 1, 10.3233/JIFS-223617 | |
5. | A. El-Mesady, Omar Bazighifan, H. M. Shabana, Gohar Ali, On Graph-Transversal Designs and Graph-Authentication Codes Based on Mutually Orthogonal Graph Squares, 2022, 2022, 2314-4785, 1, 10.1155/2022/8992934 | |
6. | A. El-Mesady, Omar Bazighifan, Miaochao Chen, Decompositions of Circulant-Balanced Complete Multipartite Graphs Based on a Novel Labelling Approach, 2022, 2022, 2314-8888, 1, 10.1155/2022/2017936 | |
7. | C. Beaula, P. Venugopal, B. Praba, Xuanlong Ma, Block Encryption and Decryption of a Sentence Using Decomposition of the Turan Graph, 2023, 2023, 2314-4785, 1, 10.1155/2023/7588535 | |
8. | Ahmed El-Mesady, Tasneem Farahat, Ramadan El-Shanawany, Aleksandr Y. Romanov, On Orthogonal Double Covers and Decompositions of Complete Bipartite Graphs by Caterpillar Graphs, 2023, 16, 1999-4893, 320, 10.3390/a16070320 | |
9. | Muhammad Awais, Zulfiqar Ahmed, Waseem Khalid, Ebenezer Bonyah, Tareq Al-shami, Analysis of Zigzag and Rhombic Benzenoid Systems via Irregularity Indices, 2023, 2023, 2314-4785, 1, 10.1155/2023/4833683 | |
10. | Yash M Dalal, Spandana N Raj, Supreeth S, Shruthi G, Yerriswamy T, Arun Biradar, 2023, Comparative Approach to Secure Data Over Cloud Computing Environment, 979-8-3503-4314-4, 1, 10.1109/CSITSS60515.2023.10334187 | |
11. | Ce Shi, Tatsuhiro Tsuchiya, Chengmin Wang, Separable detecting arrays, 2024, 9, 2473-6988, 34806, 10.3934/math.20241657 | |
12. | Anam Zahid, Faisal Kamiran, Samar Abbas, Bilal Qureshi, Asim Karim, Data-Driven Uplift Modeling, 2025, 13, 2169-3536, 62462, 10.1109/ACCESS.2025.3557468 | |
13. | Chengmin Wang, Ce Shi, Tatsuhiro Tsuchiya, Quanrui Zhang, Detecting arrays on graphs, 2025, 33, 2688-1594, 3328, 10.3934/era.2025147 |