Self-orthogonal (SO) codes, including Hermitian self-orthogonal (HSO) codes, form an important class of linear codes, and such codes have close connections to other mathematical structures such as block designs, lattices, and sphere packings, which can also be used to construct quantum codes. Many scholars try to solve the problem of determining low-dimensional optimal HSO codes over small fields as it is done for optimal linear codes. Let $ d_{o}(n, k) $ be the minimum distance of an optimal quaternary $ [n, k] $ linear code, and $ d_{so}(n, k) $ be that of an optimal quaternary $ [n, k] $ HSO code. In this paper, we try to determine $ d_{so}(n, 5) $ for $ n \geq 492 $ by constructing quaternary $ [n, 5] $ HSO codes in detail. Some disjoint HSO blocks have been found from generator matrices of some special optimal HSO codes. These special optimal HSO codes are constructed from quaternary simplex codes and McDonald codes. Then, $ [n, 5] $ HSO codes have been constructed for $ n \geq 492 $, by removing those special blocks from the known optimal HSO codes. As a result, we could show $ [n, 5, d_{so}(n, 5)] $ $ = [n, 5, 2\lfloor \frac{d_{o}(n, 5)}{2}\rfloor] $ for $ n \geq 492 $.
Citation: Hao Song, Yuezhen Ren, Ruihu Li, Yang Liu. Optimal quaternary Hermitian self-orthogonal $ [n, 5] $ codes of $ n \geq 492 $[J]. AIMS Mathematics, 2025, 10(4): 9324-9331. doi: 10.3934/math.2025430
Self-orthogonal (SO) codes, including Hermitian self-orthogonal (HSO) codes, form an important class of linear codes, and such codes have close connections to other mathematical structures such as block designs, lattices, and sphere packings, which can also be used to construct quantum codes. Many scholars try to solve the problem of determining low-dimensional optimal HSO codes over small fields as it is done for optimal linear codes. Let $ d_{o}(n, k) $ be the minimum distance of an optimal quaternary $ [n, k] $ linear code, and $ d_{so}(n, k) $ be that of an optimal quaternary $ [n, k] $ HSO code. In this paper, we try to determine $ d_{so}(n, 5) $ for $ n \geq 492 $ by constructing quaternary $ [n, 5] $ HSO codes in detail. Some disjoint HSO blocks have been found from generator matrices of some special optimal HSO codes. These special optimal HSO codes are constructed from quaternary simplex codes and McDonald codes. Then, $ [n, 5] $ HSO codes have been constructed for $ n \geq 492 $, by removing those special blocks from the known optimal HSO codes. As a result, we could show $ [n, 5, d_{so}(n, 5)] $ $ = [n, 5, 2\lfloor \frac{d_{o}(n, 5)}{2}\rfloor] $ for $ n \geq 492 $.
| [1] | M. Grassl, Code tables: Bounds on the parameters of various types of codes, 2024. Available from: http://www.codetables.de |
| [2] |
I. Bouyukliev, M. Grassl, Z. Varbanov, New bounds for $n_{4}(k, d)$ and classification of some optimal codes over $GF(4)$, Discrete Math., 281 (2004), 43–66. https://doi.org/10.1016/j.disc.2003.11.003 doi: 10.1016/j.disc.2003.11.003
|
| [3] |
H. Kanda, T. Maruta, Nonexistence of some linear codes over the field of order four, Discrete Math., 341 (2018), 2676–2685. https://doi.org/10.1016/j.disc.2018.06.024 doi: 10.1016/j.disc.2018.06.024
|
| [4] |
A. Rousseva, I. Landjev, The geometric approach to the existence of some quaternary Griesmer codes, Des. Codes Crypt., 88 (2020), 1925–1940. https://doi.org/10.1007/s10623-020-00777-0 doi: 10.1007/s10623-020-00777-0
|
| [5] |
E. F. Assmus, H. F. Mattson, New 5-designs, J. Combin. Theory, 6 (1969), 122–151. https://doi.org/10.1016/S0021-9800(69)80115-8 doi: 10.1016/S0021-9800(69)80115-8
|
| [6] |
C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory, 78A (1997), 92–119. https://doi.org/10.1006/jcta.1996.2763 doi: 10.1006/jcta.1996.2763
|
| [7] | J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Third Ed., New York: Springer, 1999. https://doi.org/10.1080/00029890.1989.11972239 |
| [8] |
A. R. Calderbank, E. M. Rains, P. M. Shor, N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369–1387. https://doi.org/10.1109/18.681315 doi: 10.1109/18.681315
|
| [9] |
A. Ketkar, A. Klappenecker, S. Kumar, P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory, 52 (2006), 4892–4914. https://doi.org/10.1109/TIT.2006.883612 doi: 10.1109/TIT.2006.883612
|
| [10] |
V. Pless, A classification of self-orthogonal codes over $GF(2)$, Disc. Math., 3 (1972), 209–246. https://doi.org/10.1016/0012-365X(72)90034-9 doi: 10.1016/0012-365X(72)90034-9
|
| [11] | I. Bouyukliev, S. Bouyuklieva, T. A. Gulliver, P. R. J. Ostergard, Classification of optimal binary self-orthogonal codes, J. Combinat. Math. Combinat. Comput., 59 (2006), 33. |
| [12] |
R. Li, Z. Xu, X. Zhao, On the classification of binary optimal self-orthogonal codes, IEEE Trans. Inf. Theory, 54 (2008), 3778–3782. https://doi.org/10.1109/TIT.2008.926367 doi: 10.1109/TIT.2008.926367
|
| [13] |
J. L. Kim, Y. H. Kim, N. Lee, Embedding linear codes into self-orthogonal codes and their optimal minimum distances, IEEE Trans. Inf. Theory, 67 (2021), 3701–3707. https://doi.org/10.1109/TIT.2021.3066599 doi: 10.1109/TIT.2021.3066599
|
| [14] |
J. L. Kim, W. H. Choi, Self-orthogonality matrix and Reed-Muller codes, IEEE Trans. Inf. Theory, 68 (2022), 7159–7164. https://doi.org/10.1109/TIT.2022.3186316 doi: 10.1109/TIT.2022.3186316
|
| [15] |
M. Shi, S. Li, J. L. Kim, Two conjectures on the largest minimum distances of binary self-orthogonal codes with dimension $5$, IEEE Trans. Inf. Theory, 69 (2023), 4507–4512. https://doi.org/10.1109/TIT.2023.3250718 doi: 10.1109/TIT.2023.3250718
|
| [16] |
M. Shi, S. Li, T. Helleseth, J. L. Kim, Binary self-orthogonal codes which meet the Griesmer bound or have optimal minimum distances, J. Comb. Theory Series A, 214 (2025), 106027. https://doi.org/10.1016/j.jcta.2025.106027 doi: 10.1016/j.jcta.2025.106027
|
| [17] |
I. Bouyukliev, Classification of self-orthogonal codes over $F_{3}$ and $F_{4}$, SIAM J. Disc. Math., 19 (2005), 363–370. https://doi.org/10.1137/S0895480104441085 doi: 10.1137/S0895480104441085
|
| [18] |
C. Guan, R. Li, H. Song, L. Lu, H. Li, Ternary quantum codes constructed from extremal self-dual codes and self-orthogonal codes, AIMS Math., 7 (2022), 6516–6534. https://doi.org/10.3934/math.2022363 doi: 10.3934/math.2022363
|
| [19] |
Z. Li, R. Li, On construction of ternary optimal self-orthogonal codes, Comput. Appl. Math., 43 (2024), 134. https://doi.org/10.1007/s40314-024-02653-2 doi: 10.1007/s40314-024-02653-2
|
| [20] |
Y. Ma, X. Zhao, Y. Feng, Optimal quaternary Self-Orthogonal codes of dimensions two and three (in Chinese), J. Air Force Eng. Univ.-Nat. Sci. Edit., 6 (2005), 63–66. https://doi.org/10.3969/j.issn.1009-3516.2005.05.017 doi: 10.3969/j.issn.1009-3516.2005.05.017
|
| [21] |
Y. Ren, R. Li, L. Lv, L. Guo, Optimal quaternary $[n, 4]$ hermitian self-orthogonal codes, Int. Workshop Aut. Cont. Commu., 2024,157–163. https://doi.org/10.1117/12.3052348 doi: 10.1117/12.3052348
|
| [22] |
Y. Ren, R. Li, H. Song, Construction of hermitian self-orthogonal codes and application, Mathematics, 12 (2024), 2117. https://doi.org/10.3390/math12132117 doi: 10.3390/math12132117
|