In this paper, we introduce several co-associative laws and the notion of a pre-$ B $-algebra. We show that every $ B $-algebra is both a pre-$ B $-algebra and a $ \perp $-algebra. We apply the notions of a post groupoid and a pre-semigroup of a groupoid to the set $ (\mathbb{N}, +) $ of all nonnegative integers, and we prove that the groupoid $ (\mathbb{N}, +) $ cannot be a post groupoid of a $ B $-algebra or an edge $ d $-algebra.
Citation: Siriluk Donganont, Sun Shin Ahn, Hee Sik Kim. Several co-associative laws and pre-$ B $-algebras[J]. AIMS Mathematics, 2025, 10(4): 9332-9341. doi: 10.3934/math.2025431
In this paper, we introduce several co-associative laws and the notion of a pre-$ B $-algebra. We show that every $ B $-algebra is both a pre-$ B $-algebra and a $ \perp $-algebra. We apply the notions of a post groupoid and a pre-semigroup of a groupoid to the set $ (\mathbb{N}, +) $ of all nonnegative integers, and we prove that the groupoid $ (\mathbb{N}, +) $ cannot be a post groupoid of a $ B $-algebra or an edge $ d $-algebra.
| [1] | J. Neggers, H. S. Kim, On $B$-algebras, Mat. Vestn., 54 (2002), 21–29. |
| [2] | J. R. Cho, H. S. Kim, On $B$-algebras and quasigroups, Quasigroups Relat Syst., 8 (2001), 1–6. |
| [3] | A. Walendziak, Some axiomatizations of $B$-algebras, Math. Slovaca, 56 (2006), 301–306. |
| [4] | C. B. Kim, H. S. Kim, Another axiomatization of $B$-algebras, Demonstr. Math., 41 (2008), 259–262. |
| [5] |
H. K. Abdullah, A. A. Atshan, Complete ideal and $n$-ideal of $B$-algebra, Appl. Math. Sci., 11 (2017), 1705–1713. https://doi.org/10.12988/ams.2017.75159 doi: 10.12988/ams.2017.75159
|
| [6] |
K. E. Belleza, J. P. Vilela, The dual $B$-algebra, Eur. J. Pure Appl. Math., 12 (2019), 1497–1507. https://doi.org/10.29020/nybg.ejpam.v12i4.3526 doi: 10.29020/nybg.ejpam.v12i4.3526
|
| [7] | N. O. Al-Shehrie, Derivations of $B$-algebras, J. King Abdulaziz Univ., 22 (2010), 71–82. |
| [8] |
L. D. Naingue, J. P. Vilela, On companion $B$-algebras, Eur. J. Pure Appl. Math., 12 (2019), 1248–1259. https://doi.org/10.29020/nybg.ejpam.v12i3.3495 doi: 10.29020/nybg.ejpam.v12i3.3495
|
| [9] |
Y. B. Jun, E. H. Roh, H. S. Kim, On fuzzy $B$-algebras, Czech. Math. J., 52 (2002), 375–384. https://doi.org/10.1023/A:1021739030890 doi: 10.1023/A:1021739030890
|
| [10] |
T. Senapati, C. S. Kim, M. Bhowmik, M. Pal, Cubic subalgebras and cubic closed ideals of $B$-algebras, Fuzzy Inf. Eng., 7 (2015), 129–149. https://doi.org/10.1016/j.fiae.2015.05.001 doi: 10.1016/j.fiae.2015.05.001
|
| [11] | N. C. Gonzaga, J. P. Vilela, Fuzzy order relative to fuzzy $B$-algebras, Ital. J. Pure Appl. Math., 42 (2019), 485–493. |
| [12] |
R. A. Borzooei, H. S. Kim, Y. B. Jun, S. S. Ahn, On multipolar intuitionistic fuzzy $B$-algebras, Math., 8 (2020), 907. https://doi.org/10.3390/math8060907 doi: 10.3390/math8060907
|
| [13] | J. Neggers, H. S. Kim, On $d$-algebras, Math. Slovaca, 49 (1999), 19–26. |
| [14] | J. Neggers, Y. B. Jun, H. S. Kim, On $d$-ideals in $d$-algebras, Math. Slovaca, 49 (1999), 243–251. |
| [15] | P. A. Grillet, Semigroups, an introduction to the structure theory, New York: Marcel Dekker, 1995. |
| [16] |
H. S. Kim, J. Neggers, The semigroups of binary systems and some perspectives, Bull. Korean Math. Soc., 45 (2008), 651–661. https://doi.org/10.4134/BKMS.2008.45.4.651 doi: 10.4134/BKMS.2008.45.4.651
|