Research article Special Issues

Several co-associative laws and pre-$ B $-algebras

  • Received: 11 September 2024 Revised: 31 March 2025 Accepted: 17 April 2025 Published: 23 April 2025
  • MSC : 06F35, 20N02

  • In this paper, we introduce several co-associative laws and the notion of a pre-$ B $-algebra. We show that every $ B $-algebra is both a pre-$ B $-algebra and a $ \perp $-algebra. We apply the notions of a post groupoid and a pre-semigroup of a groupoid to the set $ (\mathbb{N}, +) $ of all nonnegative integers, and we prove that the groupoid $ (\mathbb{N}, +) $ cannot be a post groupoid of a $ B $-algebra or an edge $ d $-algebra.

    Citation: Siriluk Donganont, Sun Shin Ahn, Hee Sik Kim. Several co-associative laws and pre-$ B $-algebras[J]. AIMS Mathematics, 2025, 10(4): 9332-9341. doi: 10.3934/math.2025431

    Related Papers:

  • In this paper, we introduce several co-associative laws and the notion of a pre-$ B $-algebra. We show that every $ B $-algebra is both a pre-$ B $-algebra and a $ \perp $-algebra. We apply the notions of a post groupoid and a pre-semigroup of a groupoid to the set $ (\mathbb{N}, +) $ of all nonnegative integers, and we prove that the groupoid $ (\mathbb{N}, +) $ cannot be a post groupoid of a $ B $-algebra or an edge $ d $-algebra.



    加载中


    [1] J. Neggers, H. S. Kim, On $B$-algebras, Mat. Vestn., 54 (2002), 21–29.
    [2] J. R. Cho, H. S. Kim, On $B$-algebras and quasigroups, Quasigroups Relat Syst., 8 (2001), 1–6.
    [3] A. Walendziak, Some axiomatizations of $B$-algebras, Math. Slovaca, 56 (2006), 301–306.
    [4] C. B. Kim, H. S. Kim, Another axiomatization of $B$-algebras, Demonstr. Math., 41 (2008), 259–262.
    [5] H. K. Abdullah, A. A. Atshan, Complete ideal and $n$-ideal of $B$-algebra, Appl. Math. Sci., 11 (2017), 1705–1713. https://doi.org/10.12988/ams.2017.75159 doi: 10.12988/ams.2017.75159
    [6] K. E. Belleza, J. P. Vilela, The dual $B$-algebra, Eur. J. Pure Appl. Math., 12 (2019), 1497–1507. https://doi.org/10.29020/nybg.ejpam.v12i4.3526 doi: 10.29020/nybg.ejpam.v12i4.3526
    [7] N. O. Al-Shehrie, Derivations of $B$-algebras, J. King Abdulaziz Univ., 22 (2010), 71–82.
    [8] L. D. Naingue, J. P. Vilela, On companion $B$-algebras, Eur. J. Pure Appl. Math., 12 (2019), 1248–1259. https://doi.org/10.29020/nybg.ejpam.v12i3.3495 doi: 10.29020/nybg.ejpam.v12i3.3495
    [9] Y. B. Jun, E. H. Roh, H. S. Kim, On fuzzy $B$-algebras, Czech. Math. J., 52 (2002), 375–384. https://doi.org/10.1023/A:1021739030890 doi: 10.1023/A:1021739030890
    [10] T. Senapati, C. S. Kim, M. Bhowmik, M. Pal, Cubic subalgebras and cubic closed ideals of $B$-algebras, Fuzzy Inf. Eng., 7 (2015), 129–149. https://doi.org/10.1016/j.fiae.2015.05.001 doi: 10.1016/j.fiae.2015.05.001
    [11] N. C. Gonzaga, J. P. Vilela, Fuzzy order relative to fuzzy $B$-algebras, Ital. J. Pure Appl. Math., 42 (2019), 485–493.
    [12] R. A. Borzooei, H. S. Kim, Y. B. Jun, S. S. Ahn, On multipolar intuitionistic fuzzy $B$-algebras, Math., 8 (2020), 907. https://doi.org/10.3390/math8060907 doi: 10.3390/math8060907
    [13] J. Neggers, H. S. Kim, On $d$-algebras, Math. Slovaca, 49 (1999), 19–26.
    [14] J. Neggers, Y. B. Jun, H. S. Kim, On $d$-ideals in $d$-algebras, Math. Slovaca, 49 (1999), 243–251.
    [15] P. A. Grillet, Semigroups, an introduction to the structure theory, New York: Marcel Dekker, 1995.
    [16] H. S. Kim, J. Neggers, The semigroups of binary systems and some perspectives, Bull. Korean Math. Soc., 45 (2008), 651–661. https://doi.org/10.4134/BKMS.2008.45.4.651 doi: 10.4134/BKMS.2008.45.4.651
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(690) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog