Citation: Bashir Ahmad, Ahmed Alsaedi, Sotiris K. Ntouyas. Nonlinear Langevin equations and inclusions involving mixed fractional order derivatives and variable coefficient with fractional nonlocal-terminal conditions[J]. AIMS Mathematics, 2019, 4(3): 626-647. doi: 10.3934/math.2019.3.626
[1] | R. P. Agarwal, Y. Zhou, J. R. Wang, et al. Fractional functional differential equations with causal operators in Banach spaces, Math. Comput. Modell., 54 (2011), 1440-1452. doi: 10.1016/j.mcm.2011.04.016 |
[2] | B. Ahmad and J. Nieto, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Differ. Equations, 2010 (2010), Article ID 649486: 1-10. |
[3] | B. Ahmad, J. J. Nieto, A. Alsaedi, et al. A study of nonlinear Langevin equation involving two fractional orders in different intervals,Nonlinear Anal. Real World Appl., 13 (2012), 599-606. doi: 10.1016/j.nonrwa.2011.07.052 |
[4] | B. Ahmad, S. K. Ntouyas and A. Alsaedi, New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Differ. Equations, 2011 (2011), Article ID 107384: 1-11. |
[5] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, et al. Fractional-order multivalued problems with non-separated integral-flux boundary conditions, Electron. J. Qual. Theory Differ. Equations, (2015), 1-17. |
[6] | B. Ahmad, A. Alsaedi, S. K. Ntouyas, et al. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Switzerland: Springer, Cham, 2017. |
[7] | M. Benchohra, J. Henderson, S. K. Ntouyas, et al. Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340-1350. doi: 10.1016/j.jmaa.2007.06.021 |
[8] | C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Berlin-Heidelberg: Springer-Verlag, 1977. |
[9] | W. T. Coffey, Yu. P. Kalmykov and J. T. Waldron, The Langevin Equation, 2nd Edition., Singapore: World Scientific, 2004. |
[10] | H. Covitz and S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces,Isr. J. Math., 8 (1970), 5-11. doi: 10.1007/BF02771543 |
[11] | K. Deimling, Multivalued Differential Equations, Berlin: De Gruyter, 1992. |
[12] | K. Diethelm, The Analysis of Fractional Differential Equations, Berlin, Heidelberg: Springer-verlag, 2010. |
[13] | H. Ergören and B. Ahmad, Neutral functional fractional differential inclusions with impulses at variable times, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 24 (2017), 235-246. |
[14] | A. Granas and J. Dugundji, Fixed Point Theory, New York: Springer-Verlag, 2003. |
[15] | F. Jiao and Y. Zhou,Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos, 22 (2012), Article ID 1250086. |
[16] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier Science B.V., 2006. |
[17] | M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991. |
[18] | M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123-127. |
[19] | V. Lakshmikantham, S. Leela and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge: Cambridge Academic Publishers, 2009. |
[20] | A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786. |
[21] | J. S. Leszczynski and T. Blaszczyk, Modeling the transition between stable and unstable operation while emptying a silo, Granular Matter, 13 (2011), 429-438. doi: 10.1007/s10035-010-0240-5 |
[22] | S. C. Lim, M. Li and L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309-6320. doi: 10.1016/j.physleta.2008.08.045 |
[23] | K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, New York: John Wiley, 1993. |
[24] | I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, 1999. |
[25] | D. Qarout, B. Ahmad and A. Alsaedi, Existence theorems for semi-linear Caputo fractional differential equations with nonlocal discrete and integral boundary conditions, Fract. Calc. Appl. Anal., 19 (2016), 463-479. |
[26] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Yverdon: Gordon and Breach, 1993. |
[27] | J. Tariboon, S. K. Ntouyas and Ch. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Adv. Math. Phys., 2014 (2014), Article ID 372749: 1-15. |
[28] | M. Uranagase and T. Munakata, Generalized Langevin equation revisited: Mechanical random force and self-consistent structure,J. Phys. A Math. Theor., 43 (2010), Article ID 455003. |
[29] | C. Yu and G. Gao, Some results on a class of fractional functional differential equations, Commun. Appl. Nonlinear Anal., 11 (2004), 67-75. |
[30] | C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl., 310 (2005), 26-29. doi: 10.1016/j.jmaa.2004.12.015 |