Research article Special Issues

On fundamental algebraic characterizations of complex intuitionistic Q-fuzzy subfield

  • The main objective of this study is to propose a new notion of a complex intuitionistic Q-fuzzy subfield of a field F that is developed from the concept of a complex fuzzy subfield of a field F by adding the notion of intuitionistic Q-fuzzy into a complex fuzzy subfield. We establish a new structure of complex fuzzy subfields which is called complex intuitionistic Q-fuzzy subfield. The most significant advantage of this addition appears to be that it broadens the scope of the investigation from membership function values to membership and non-membership function values. The range of complex fuzzy subfields is expanded to the unit disc in the complex plane for both membership and non-membership functions. Some fundamental operations, especially the intersection, union, and complement of complex intuitionistic Q-fuzzy subfields are studied. We define the necessity and possibility operators on a complex intuitionistic Q-fuzzy subfield. Moreover, we show that each complex intuitionistic Q-fuzzy subfield generates two intuitionistic Q-fuzzy subfields. Subsequently, several related theorems are proven.

    Citation: Adela Khamis, Abd Ghafur Ahmad. On fundamental algebraic characterizations of complex intuitionistic Q-fuzzy subfield[J]. AIMS Mathematics, 2023, 8(3): 7032-7060. doi: 10.3934/math.2023355

    Related Papers:

    [1] Dilshad Alghazzwi, Arshad Ali, Ahmad Almutlg, E. A. Abo-Tabl, A. A. Azzam . A novel structure of $ q $-rung orthopair fuzzy sets in ring theory. AIMS Mathematics, 2023, 8(4): 8365-8385. doi: 10.3934/math.2023422
    [2] Doaa Al-Sharoa . (α1, 2, β1, 2)-complex intuitionistic fuzzy subgroups and its algebraic structure. AIMS Mathematics, 2023, 8(4): 8082-8116. doi: 10.3934/math.2023409
    [3] Muhammad Bilal Khan, Dragan Pamucar, Mohamed Abdelwahed, Nurnadiah Zamri, Loredana Ciurdariu . Using multi-attribute decision-making technique for the selection of agribots via newly defined fuzzy sets. AIMS Mathematics, 2025, 10(5): 12168-12204. doi: 10.3934/math.2025552
    [4] Zhuonan Wu, Zengtai Gong . Algebraic structure of some complex intuitionistic fuzzy subgroups and their homomorphism. AIMS Mathematics, 2025, 10(2): 4067-4091. doi: 10.3934/math.2025189
    [5] Shahzaib Ashraf, Huzaira Razzaque, Muhammad Naeem, Thongchai Botmart . Spherical q-linear Diophantine fuzzy aggregation information: Application in decision support systems. AIMS Mathematics, 2023, 8(3): 6651-6681. doi: 10.3934/math.2023337
    [6] Muhammad Jawad, Niat Nigar, Sarka Hoskova-Mayerova, Bijan Davvaz, Muhammad Haris Mateen . Fundamental theorems of group isomorphism under the framework of complex intuitionistic fuzzy set. AIMS Mathematics, 2025, 10(1): 1900-1920. doi: 10.3934/math.2025088
    [7] Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki, Fawad Hussain . q-Spherical fuzzy rough sets and their usage in multi-attribute decision-making problems. AIMS Mathematics, 2023, 8(4): 8210-8248. doi: 10.3934/math.2023415
    [8] Anas Al-Masarwah, Abd Ghafur Ahmad . Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-algebras. AIMS Mathematics, 2020, 5(2): 1035-1049. doi: 10.3934/math.2020072
    [9] Sumbal Ali, Asad Ali, Ahmad Bin Azim, Ahmad ALoqaily, Nabil Mlaiki . Averaging aggregation operators under the environment of q-rung orthopair picture fuzzy soft sets and their applications in MADM problems. AIMS Mathematics, 2023, 8(4): 9027-9053. doi: 10.3934/math.2023452
    [10] Sumbal Ali, Asad Ali, Ahmad Bin Azim, Abdul Samad Khan, Fuad A. Awwad, Emad A. A. Ismail . TOPSIS method based on q-rung orthopair picture fuzzy soft environment and its application in the context of green supply chain management. AIMS Mathematics, 2024, 9(6): 15149-15171. doi: 10.3934/math.2024735
  • The main objective of this study is to propose a new notion of a complex intuitionistic Q-fuzzy subfield of a field F that is developed from the concept of a complex fuzzy subfield of a field F by adding the notion of intuitionistic Q-fuzzy into a complex fuzzy subfield. We establish a new structure of complex fuzzy subfields which is called complex intuitionistic Q-fuzzy subfield. The most significant advantage of this addition appears to be that it broadens the scope of the investigation from membership function values to membership and non-membership function values. The range of complex fuzzy subfields is expanded to the unit disc in the complex plane for both membership and non-membership functions. Some fundamental operations, especially the intersection, union, and complement of complex intuitionistic Q-fuzzy subfields are studied. We define the necessity and possibility operators on a complex intuitionistic Q-fuzzy subfield. Moreover, we show that each complex intuitionistic Q-fuzzy subfield generates two intuitionistic Q-fuzzy subfields. Subsequently, several related theorems are proven.



    A fuzzy set theory plays a significant role in the field of mathematics. Zadeh [1] is the first to propose the fuzzy set, which is a generalization of the ordinary set. The fuzzy set is a function where its domain is the universal set X, and its co-domain is the closed interval between zero and one. The facts from the obscure, imprecise, and occasionally biased computational presupposition were overcome using fuzzy logic. The use of ambiguous human judgment in problem calculation is made possible by fuzzy logic. This idea also encourages us to look for a better approach to making decisions to handle daily problems. Similarly, Goguen [2] continued the work of Zadeh [1] and explored the concept of an L-fuzzy set. Afterwards, De Luca and Termini [3] established some algebraic properties of fuzzy sets. Recent studies have discussed the applications of the fuzzy set and complex fuzzy set to solve one of the famous real-life problems, which is the decision-making problem (see [4,5]). In these studies, a new algorithm was introduced and applied to the interval-valued complex neutrosophic soft-set model to solve a hypothetical decision-making problem.

    After that, Rosenfeld [6] applied the idea of a fuzzy set in group theory and determined the concept of a fuzzy subgroup. Consequently, many mathematicians generalized fuzzy subgroups [7,8,9]. Solairaju and Nagarajan [10] established the Q-fuzzy group, where Q is a non-empty set, and presented a definition of a Q-fuzzy set as a mapping μ:G×Q[0,1] in G such that Q is any set and G is a group. Moreover, Selvam et al. [11] introduced certain properties of anti-Q-fuzzy normal subgroups. Rasuli [12] introduced the notion of anti-Q-fuzzy subgroups with respect to t-conorm and studied their important properties.

    Later on, Rasuli [13] presented the notions of Q-fuzzy subrings and anti-Q-fuzzy subrings and proved some related properties by using two types of norms, which are t-conorm and t-norm. Emniyet and Sahin [14] introduced the concept of fuzzy normed rings and demonstrated a few algebraic characteristics of normed ring theory on a fuzzy set. Furthermore, Al Tahan [15] proposed certain findings on fuzzy multi-Hv-ideals of Hv-rings and established the notion of generalized fuzzy multi-Hv-ideals as a generalization of fuzzy Hv-ideals. Al-Masarwah and Ahmad [16] introduced structures on doubt neutrosophic ideals of BCK/BCI-Algebras under (S,T)-norms. Addis et al. [17] defined the notion of a fuzzy kernel of a fuzzy homomorphism on rings and showed that it is a fuzzy ideal of the domain ring. Kausar et al. [18] gave the characterizations of fuzzy bi-ideals in LA-rings and characterized left weakly regular LA-rings in terms of fuzzy right ideals. Moreover, Al-Masarwah et al. [19] presented the idea of m-polar fuzzy positive implicative ideals of BCK algebras. Alolaiyan et al. [20] published a research paper about a certain structure of bipolar fuzzy subrings and defined bipolar fuzzy homomorphism by using the notion of a natural ring homomorphism. Malik and Mordeson [21] identified several properties of fuzzy subfields. On top of that, basic structure theorems were given for fuzzy subfields of finite fields by Mordeson [22]. Feng and Yao [23] introduced the notions of (λ,μ) anti-fuzzy subfields and studied their properties. After that, Hussain [24] proposed the Q-fuzzy field and described the Q-fuzzy set as mapping μ:X×Q[0,1] in a field X. Later, Muthuraman et al. [25] defined the notion of fuzzy HX field of an HX field and some of their related properties were investigated and introduced the concept of an image and pre-image of a fuzzy set.

    Moreover, the idea of defining an intuitionistic fuzzy set (IFS) was first published by Atanassov [26,27]. Then Szmidt and Kacprzyk [28] proposed new definitions of distances between IFSs. These new definitions were introduced and compared with the approach used for fuzzy sets. Additionally, G. Beliakov et al. [29] determined averaging operators for Atanassov's IFSs. After that, Broumi [30] presented the concept of Q-intuitionistic fuzzy soft sets, which combines Q-IFSs and soft sets. This concept is a generalization of Q-fuzzy soft sets. Furthermore, Atanassov [31] established new results on IFSs. Later, Hur et al. [32] examined the properties of intuitionistic fuzzy subrings and intuitionistic fuzzy subgroups. For more development about the intuitionistic fuzzy subgroup, one can refer to [33,34]. In addition, Yamin [35] studied the theory of intuitionistic fuzzy rings and provided some new concepts, such as an intuitionistic fuzzy ring with operators. Correspondingly, Abed Alhaleem and Ahmad [36,37] presented intuitionistic normal fuzzy subrings over normed rings. Intuitionistic fuzzy normed prime and maximal ideals were also presented by Abed Alhaleem and Ahmad [38].

    Ramot et al. in [39] characterized a complex fuzzy set. This set is described by a unique membership function, which consists of two terms called amplitude term and phase term. In their work, the range of the fuzzy set was expanded to the unit disc in the plane of complex instead of the interval [0,1] to present their innovative notion of complex fuzzy sets. Moreover, there are some applications of complex fuzzy sets in decision-making. Al-Sharqi et al. [40] analyzed a real-life economic problem utilizing the major aspects of interval complex neutrosophic soft relations. After that, Yang et al. [41] proposed bipolar complex fuzzy subgroups. Alolaiyan et al. [42] introduced a novel algebraic structure of (α,β)-complex fuzzy subgroups. Alsarahead and Ahmad [43] presented the complex fuzzy subring and established some new notions. Subsequently, Alsarahead and Ahmad [44] suggested the complex intuitionistic fuzzy subring and presented some new definitions. Gulzar et al. [45] introduced some characterization of Q-complex fuzzy subrings and discussed its various algebraic aspects. In 2021, Gulzar et al. [46] studied a complex fuzzy subfield and proved some properties.

    The contributions of this paper lie in presenting the concept of a complex intuitionistic Q-fuzzy subfield as a new structure. Some definitions related to complex intuitionistic Q-fuzzy subfields are proposed. Furthermore, basic operations on complex intuitionistic Q-fuzzy subfields are introduced, and some related theorems are proven. The necessity and possibility operators on a complex intuitionistic Q-fuzzy subfield are defined, and some of its properties are given.

    The novelty of this work can be viewed as:

    ● In this work, we have combined the following concepts complex fuzzy subfield and intuitionistic Q-fuzzy. This was done by adding the idea of intuitionistic Q-fuzzy into a complex fuzzy subfield. Thus, we got a new structure called a complex intuitionistic Q-fuzzy subfield.

    ● We have utilized this new concept to create and prove many theorems and results, which will be a new addition to knowledge in mathematics.

    The paper is divided into the following sections. In Section 2, we provide several definitions and preliminary results. In Section 3, we characterize some algebraic properties of the complex intuitionistic Q-fuzzy subfield and describe the notions of the necessity and possibility operators on a complex intuitionistic Q-fuzzy subfield. Some related theorems are also discussed in this section. Finally, the conclusion is summarized in Section 5.

    We provide some basic definitions of Q-fuzzy set and complex intuitionistic Q-fuzzy set in this part that will be utilized throughout the study.

    Definition 2.1. [1] A function ψ:X[0,1] that receives values from X to the range [0,1] is referred to as a fuzzy set in a universal set X. This function is referred to as a membership function and is indicated by the symbol by μψ(d). A fuzzy set ψ is represented by the formula ψ={d,μψ(d):dX}, where 0μψ(d)1, for every dX.

    Definition 2.2. [21] A fuzzy subset ψ={d,μψ(d):dX} of a field (F,+,) is said to be a fuzzy subfield for all d,kX if:

    (1) μψ(dk)min{μψ(d),μψ(k)},

    (2) μψ(dk)min{μψ(d),μψ(k)},

    (3) μψ(d1)μψ(d).

    Definition 2.3. [46] Let (F,+,) be a field. A complex fuzzy set ψ={d,μψ(d):dF} of a field F is said to be a complex fuzzy subfield of a field F if it satisfies the following for all d,kF:

    (1) μψ(dk)min{μψ(d),μψ(k)},

    (2) μψ(dk)min{μψ(d),μψ(k)},

    (3) μψ(d1)μψ(d).

    Definition 2.4. [10] Let X and Q represent any two sets. In a set X, a Q-fuzzy set is a mapping with the notation ψ:X×Q[0,1].

    Definition 2.5. [45] A Q-complex fuzzy set ( Q-CFS) of universe of discourse X is represented by the membership function μψ(d,q)=rψ(d,q)eiωψ(d,q) and described as μψ:X×Q{zC:|z|1}. This membership function receives all membership values from the unit disc on a plane, where i=1, both rψ(d,q) and ωψ(d,q) are real valued such that rψ(d,q)[0,1] and ωψ(d,q)[0,2π].

    Definition 2.6. [45] Let ψ1 and ψ2 be Q-CFS of X. Then

    (1) A Q-complex fuzzy set ψ1 is a homogeneous Q-complex fuzzy set, if for all d,kX, qQ, we have rψ1(d,q)rψ1(k,q) if and only if ωψ1(d,q)ωψ1(k,q).

    (2) A Q-complex fuzzy ψ1 is homogeneous Q-complex fuzzy set with ψ2, if for all d,kX, qQ, we have rψ1(d,q)rψ2(k,q) if and only if ωψ1(d,q)ωψ2(k,q).

    Definition 2.7. [47] Let X and Q represent any two sets. The definition of an intuitionistic Q-fuzzy set ψ in a set X is ψ={(d,q),μψ(d,q),γψ(d,q):dX,qQ}, where μψ(d):X×Q[0,1] describes the degree of membership and γψ(d):X×Q[0,1] describes the degree of non-membership of the element (d,q)X×Q, such that 0μψ(d,q)+γψ(d,q)1, for every (d,q) X×Q.

    Definition 2.8. [47] In a set X, let ψ1 and ψ2 represent two intuitionistic Q-fuzzy sets where ψ1={(d,q),μψ1(d,q),γψ1(d,q):dX,qQ} and ψ2={(d,q),μψ2(d,q),γψ2(d,q):dX,qQ}. For all dX,qQ, the next relations and operations are described as:

    (1) ψ1=ψ2μψ1(d,q)=μψ2(d,q)andγψ1(d,q)=γψ2(d,q),

    (2) ψ1c={(d,q),γψ1(d,q),μψ1(d,q):dX,qQ},

    (3) ψ1ψ2={(d,q),μψ1ψ2(d,q),γψ1ψ2(d,q):dX,qQ},

    where

    μψ1ψ2(d,q)=min{μψ1(d,q),μψ2(d,q)},

    γψ1ψ2(d,q)=max{γψ1(d,q),γψ2(d,q)},

    (4) ψ1ψ2 = {(d,q),μψ1ψ2(d,q),γψ1ψ2(d,q):dX,qQ},

    where

    μψ1ψ2(d,q)=max{μA(d,q),μB(d,q)},

    γψ1ψ2(d,q)=min{γψ1(d,q),γψ2(d,q)},

    (5) ψ={(d,q),μψ(d,q),1μψ(d,q):dX,qQ},

    (6) ψ={(d,q),1γψ(d,q),γψ(d,q):dX,qQ}.

    Proposition 2.1. [1] Let ψ1={d,μψ1(d):dX}, ψ2={d,μψ2(d):dX} two fuzzy sets. Then for all dX:

    (1) 1max{μψ1(d),μψ2(d)}=min{1μψ1(d),1μψ2(d)},

    (2) 1min{μψ1(d),μψ2(d)}=max{1μψ1(d),1μψ2(d)}.

    Definition 2.9. [21] A fuzzy subset ψ={d,μψ(d):dX} of a field (F,+,) is said to be a fuzzy subfield for all d,kX if:

    (3) μψ(dk)min{μψ(d),μψ(k)},

    (4) μψ(dk)min{μψ(d),μψ(k)},

    (5) μψ(d1)μψ(d).

    Definition 2.10. [48] Let X be a universe of discourse. A complex intuitionistic fuzzy set is defined on X and characterized by membership μψ(d)=rψ(d)eiωψ(d) and non-membership functions γψ(d)=ˆrψ(d)eiˆωψ(d), that determines for any element dX a complex-valued grade of both membership and non-membership in ψ. According to the definition, ψ={d,μψ(d),γψ(d):dX} where rψ(d)+ˆrψ(d)1.

    Definition 2.11. [48] Let ψ1 and ψ2 be two complex intuitionistic fuzzy subsets of X, with membership functions μψ1(d)=rψ1(d)eiωψ1(d) and μψ2(d)=rψ2(d)eiωψ2(d), respectively, while the non-membership functions are γψ1(d)=ˆrψ1(d)eiˆωψ1(d) and γψ2(d)=ˆrψ2(d)eiˆωψ2(d), respectively. Then ψ1ψ2 is given by:

    ψ1ψ2={d,μψ1ψ2(d),γψ1ψ2(d):dX},

    where

    μψ1ψ2(d)=min{rψ1(d),rψ2(d)}eimin{ωψ1(d),ωψ2(d)},

    γψ1ψ2(d)=max{ˆrψ1(d),ˆrψ2(d)}eimax{ˆωψ1(d),ˆωψ2(d)}.

    Definition 2.12. [48] Let ψ={d,μψ(d),γψ(d):dX} be a complex intuitionistic fuzzy set. The complement of ψ is denoted by ψc and defined as:

    ψc={d,γψ(d),μψ(d):dX}={d,ˆrψ(d)eiˆωψc(d),rψ(d)eiωψc(d):dX},

    where

    ωψc(d)=ωψ(d), 2πωψ(d), or ωψ(d)+π.

    Definition 2.13. [44] Let ψ1 and ψ2 be two complex intuitionistic fuzzy subsets of X with membership functions μψ1(d)=rψ1(d)eiωψ1(d) and μψ2(d)=rψ2(d)eiωψ2(d), respectively. While the non-membership functions are γψ1(d)=ˆrψ1(d)eiˆωψ1(d) and γψ2(d)=ˆrψ2(d)eiˆωψ2(d), respectively. Then we have

    (1) A complex intuitionistic fuzzy subset ψ1 is said to be a homogeneous complex intuitionistic fuzzy set if for all d,kX the following hold: rψ1(d)rψ1(k) if and only if ωψ1(d)ωψ1(k), and ˆrψ1(d)ˆrψ1(k) if and only if ˆωψ1(d)ˆωψ1(k).

    (2) A complex intuitionistic fuzzy subset ψ1 is said to be homogeneous with ψ2, if for all d,kX the following hold: rψ1(d)rψ2(k) if and only if ωψ1(d)ωψ2(k), and ˆrψ1(d)ˆrψ2(k) if and only if ˆωψ1(d)ˆωψ2(k).

    Definition 2.14. [44] Let ψ={d,μψ(d),γψ(d):dX} be an intuitionistic fuzzy set. Then the set ψπ(d)={d,νψπ(d),ρψπ(d):dX} is said to be an intuitionistic π-fuzzy set where νψπ(d)=2πμψ(d) and ρψπ(d)=2πγψ(d). Note that the condition νψπ(d) + ρψπ(d)2π is already satisfied.

    In this part, we start by providing an overview of the main definition of a complex intuitionistic Q-fuzzy subfield. We examine a few fundamental characterizations of complex intuitionistic Q-fuzzy subfields and establish some associated theorems.

    Definition 3.1. Let (F,+,) be a field. If a homogeneous complex intuitionistic Q-fuzzy subset ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} of a field F holds the following conditions for any d,kF, qQ, it is said to be a complex intuitionistic Q-fuzzy subfield of that field:

    (1) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (2) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (3) μψ(d1,q)μψ(d,q),

    (4) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (5) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (6) γψ(d1,q)γψ(d,q).

    Definition 3.2. Let (F,+,) be a field. If a homogeneous complex intuitionistic Q-fuzzy subset ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} of a field F holds the following conditions for any d,kF, qQ, it is said to be a complex intuitionistic anti- Q-fuzzy subfield of that field:

    (1) μψ(dk,q)max{μψ(d,q),μψ(k,q)},

    (2) μψ(dk,q)max{μψ(d,q),μψ(k,q)},

    (3) μψ(d1,q)μψ(d,q),

    (4) γψ(dk,q)min{γψ(d,q),γψ(k,q)},

    (5) γψ(dk,q)min{γψ(d,q),γψ(k,q)},

    (6) γψ(d1,q)γψ(d,q).

    Definition 3.3. An intuitionistic π-Q-fuzzy set of a field F is defined as ψπ={(d,q),νψπ(d,q),ρψπ(d,q):dF,qQ}. If the following holds for any d,kF, qQ, then ψπ is said to be an intuitionistic π-Q-fuzzy subfield of a field F:

    (1) νψπ(dk,q)min{νψπ(d,q),νψπ(k,q)},

    (2) νψπ(dk,q)min{νψπ(d,q),νψπ(k,q)},

    (3) νψπ(d1,q)νψπ(d,q),

    (4) ρψπ(dk,q)max{ρψπ(d,q),ρψπ(k,q)},

    (5) ρψπ(dk,q)max{ρψπ(d,q),ρψπ(k,q)},

    (6) ρψπ(d1,q)ρψπ(d,q).

    Theorem 3.1. Let ψπ={(d,q),νψπ(d,q),ρψπ(d,q):dF,qQ} be an intuitionistic π-Q-fuzzy set a field F. Then ψπ is said to be an intuitionistic π-Q-fuzzy subfield if and only if ψ is an intuitionistic Q-fuzzy subfield.

    Theorem 3.2. Let F be a field and ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a homogeneous complex intuitionistic Q-fuzzy set with membership function μψ(d,q)=rψ(d,q)eiωψ(d,q) and non-membership function γψ(d,q)=ˆrψ(d,q)eiˆωψ(d,q). Then ψ is a complex intuitionistic Q-fuzzy subfield of a field F if and only if:

    (1) The intuitionistic Q-fuzzy set ψ={(d,q),rψ(d,q),ˆrψ(d,q):dF,qQ,rψ(d,q),ˆrψ(d,q)[0,1]} is an intuitionistic Q-fuzzy subfield.

    (2) The intuitionistic π-Q-fuzzy set ψ_={(d,q),ωψ(d,q),ˆωψ(d,q):dF,qQ,ωψ(d,q),ˆωψ(d,q)[0,2π]} is an intuitionistic π-Q-fuzzy subfield.

    Proof. Let ψ be a complex intuitionistic Q-fuzzy subfield and d,kF,qQ. Then we have:

    rψ(dk,q)eiωψ(dk,q)=μψ(dk,q)min{μψ(d,q),μψ(k,q)}=min{rψ(d,q)eiωψ(d,q),rψ(k,q)eiωψ(k,q)}=min{rψ(d,q),rψ(k,q)}eimin{ωψ(d,q),ωψ(k,q)}.

    (Since ψ is homogeneous)

    rψ(dk,q)min{rψ(d,q),rψ(k,q)} and ωψ(dk,q)min{ωψ(d,q),ωψ(k,q)}.

    Also, we have

    rψ(dk,q)eiωψ(dk,q)=μψ(dk,q)
    min{μψ(d,q),μψ(k,q)}=min{rψ(d,q)eiωψ(d,q),rψ(k,q)eiωψ(k,q)}=min{rψ(d,q),rψ(k,q)}eimin{ωψ(d,q),ωψ(k,q)}.

    (Since ψ is homogeneous)

    rψ(dk,q)min{rψ(d,q),rψ(k,q)} and ωψ(dk,q)min{ωψ(d,q),ωψ(k,q)}.

    Moreover,

    rψ(d1,q)eiωψ(d1,q)=μψ(d1,q)μψ(d,q)=rψ(d,q)eiωψ(d,q).

    So,

    rψ(d1,q)rψ(d,q)andωψ(d1,q)ωψ(d,q).

    On the other hand,

    ˆrψ(dk,q)eiˆωψ(dk,q)=γψ(dk,q)max{γψ(d,q),γψ(k,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(k,q)eiˆωψ(k,q)}=max{ˆrψ(d,q),ˆrψ(k,q)}eimax{ˆωψ(d,q),ˆωψ(k,q)}.

    (Since ψ is homogeneous)

    ˆrψ(dk,q)max{ˆrψ(d,q),ˆrψ(k,q)} and ˆωψ(dk,q)max{ˆωψ(d,q),ˆωψ(k,q)}.

    Also, we have

    ˆrψ(dk,q)eiˆωψ(dk,q)=γψ(dk,q)max{γψ(d,q),γψ(k,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(k,q)eiˆωψ(k,q)}=max{ˆrψ(d,q),ˆrψ(k,q)}eimax{ˆωψ(d,q),ˆωψ(k,q)}.

    (Since ψ is homogeneous)

    ˆrψ(dk,q)max{ˆrψ(d,q),ˆrψ(k,q)} and ˆωψ(dk,q)max{ˆωψ(d,q),ˆωψ(k,q)}.

    Moreover,

    ˆrψ(d1,q)eiˆωψ(d1,q)=γψ(d1,q)γψ(d,q)=ˆrψ(d,q)eiˆωψ(d,q).

    So,

    ˆrψ(d1,q)ˆrψ(d,q)andˆωψ(d1,q)ˆωψ(d,q).

    Therefore, ψ is an intuitionistic Q-fuzzy subfield and ψ_ is an intuitionistic π-Q-fuzzy subfield.

    Conversely, assume that ψ is an intuitionistic Q-fuzzy subfield and ψ_ is an intuitionistic π-Q-fuzzy subfield. Thus,

    rψ(dk,q)min{rψ(d,q),rψ(k,q)},ωψ(dk,q)min{ωψ(d,q),ωψ(k,q)},
    rψ(dk,q)min{rψ(d,q),rψ(k,q)},ωψ(dk,q)min{ωψ(d,q),ωψ(k,q)},
    rψ(d1,q)rψ(d,q),ωψ(d1,q)ωψ(d,q),
    ˆrψ(dk,q)max{ˆrψ(d,q),ˆrψ(k,q)},ˆωψ(dk,q)max{ˆωψ(d,q),ˆωψ(k,q)},
    ˆrψ(dk,q)max{ˆrψ(d,q),ˆrψ(k,q)},ˆωψ(dk,q)max{ˆωψ(d,q),ˆωψ(k,q)},
    ˆrψ(d1,q)ˆrψ(d,q),ˆωψ(d1,q)ˆωψ(d,q).

    Then,

    μψ(dk,q)=rψ(dk,q)eiωψ(dk,q)min{rψ(d,q),rψ(k,q)}eimin{ωψ(d,q),ωψ(k,q)}=min{rψ(d,q)eiωψ(d,q),rψ(k,q)eiωψ(k,q)}=min{μψ(d,q),μψ(k,q)}.

    Also, we have:

    μψ(dk,q)=rψ(dk,q)eiωψ(dk,q)min{rψ(d,q),rψ(k,q)}eimin{ωψ(d,q),ωψ(k,q)}=min{rψ(d,q)eiωψ(d,q),rψ(k,q)eiωψ(k,q)}=min{μψ(d,q),μψ(k,q)}.

    Further,

    μψ(d1,q)=rψ(d1,q)eiωψ(d1,q)rψ(d,q)eiωψ(d,q)=μψ(d,q).

    On the other hand,

    γψ(dk,q)=ˆrψ(dk,q)eiˆωψ(dk,q)max{ˆrψ(d,q),ˆrψ(k,q)}eimax{ˆωψ(d,q),ˆωψ(k,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(k,q)eiˆωψ(k,q)}=max{γψ(d,q),γψ(k,q)}.

    Also, we have

    γψ(dk,q)=ˆrψ(dk,q)eiˆωψ(dk,q)max{ˆrψ(d,q),ˆrψ(k,q)}eimax{ˆωψ(d,q),ˆωψ(k,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(k,q)eiˆωψ(k,q)}=max{γψ(d,q),γψ(k,q)}.

    Moreover,

    γψ(d1,q)=ˆrψ(d1,q)eiˆωψ(d1,q)ˆrψ(d,q)eiˆωψ(d,q)=γψ(d,q).

    So, ψ is a complex intuitionistic Q-fuzzy subfield.

    Theorem 3.3. Let ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a complex intuitionistic Q-fuzzy subfield of a field F, for dF,qQ. Then

    (1) rψ(0,q)rψ(d,q), ωψ(0,q)ωψ(d,q),

    (2) rψ(1,q)rψ(d,q), ωψ(1,q)ωψ(d,q),

    (3) ˆrψ(0,q)ˆrψ(d,q), ˆωψ(0,q)ˆωψ(d,q),

    (4) ˆrψ(1,q)ˆrψ(d,q), ˆωψ(1,q)ˆωψ(d,q),

    where the identity elements of F are 0 and 1.

    Proof. (1) In the case when the identity element of F is 0 and d in F:

    rψ(0,q)eiωψ(0,q)=rψ(dd,q)eiωψ(dd,q)=μψ(dd,q)min{μψ(d,q),μψ(d,q)}=min{rψ(d,q)eiωψ(d,q),rψ(d,q)eiωψ(d,q)}=min{rψ(d,q),rψ(d,q)}eimin{ωψ(d,q),ωψ(d,q)}=rψ(d,q)eiωψ(d,q).

    (As ψ is homogeneous)

    rψ(0,q)rψ(d,q), and ωψ(0,q)ωψ(d,q).

    (2) For d0 in F and 1 is the identity element of F:

    rψ(1,q)eiωψ(1,q)=rψ(dd1,q)eiωψ(dd1,q)=μψ(dd1,q)min{μψ(d,q),μψ(d,q)}=min{rψ(d,q)eiωψ(d,q),rψ(d,q)eiωψ(d,q)}=min{rψ(d,q),rψ(d,q)}eimin{ωψ(d,q),ωψ(d,q)}=rψ(d,q)eiωψ(d,q).

    (As ψ is homogeneous)

    rψ(1,q)rψ(d,q), and ωψ(1,q)ωψ(d,q).

    (3) For d in F and 0 is the identity element of F:

    ˆrψ(0,q)eiωˆψ(0,q)=ˆrψ(dd,q)eiˆωψ(dd,q)=γψ(dd,q)max{γψ(d,q),γψ(d,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(d,q)eiˆωψ(d,q)}=max{ˆrψ(d,q),ˆrψ(d,q)}eimax{ˆωψ(d,q),ˆωψ(d,q)}=ˆrψ(d,q)eiˆωψ(d,q).

    (As ψ is homogeneous)

    ˆrψ(0,q)ˆrψ(d,q), and ˆωψ(0,q)ˆωψ(d,q).

    (4) In the case when the identity element of F is 1 and d0 in F:

    ˆrψ(1,q)eiˆωψ(1,q)=ˆrψ(dd1,q)eiˆωψ(dd1,q)=γψ(dd1,q)max{γψ(d,q),γψ(d,q)}=max{ˆrψ(d,q)eiˆωψ(d,q)ˆrψ(d,q)eiˆωψ(d,q)}=max{ˆrψ(d,q),ˆrψ(,q)}eimax{ˆωψ(d,q),ˆωψ(d,q)} = ˆrψ(d,q)eiˆωψ(d,q).

    (As ψ is homogeneous)

    ˆrψ(1,q)ˆrψ(d,q), and ˆωψ(1,q)ˆωψ(d,q).

    Theorem 3.4. Let (F,+,) be a field. Let ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a complex intuitionistic Q-fuzzy set. Then the statements below are equivalent:

    (1) The fuzzy set ψ is a complex intuitionistic Q-fuzzy subfield of a field F.

    (2) The fuzzy set ψc is a complex intuitionistic anti- Q-fuzzy subfield of a field F.

    Proof. (1)(2) Suppose ψ is a complex intuitionistic Q-fuzzy subfield. So,

    μψ(dk,q)min{μψ(d,q),μψ(k,q)}=min{rψ(d,q)eiωψ(d,q),rψ(k,q)eiωψ(k,q)}=min{rψ(d,q),rψ(k,q)}eimin{ωψ(d,q),ωψ(k,q)}
    μψc(dk,q)(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)})=max{1rψ(d,q),1rψ(k,q)}eimax{2πωψ(d,q),2πωψ(k,q)}=max{rψc(d,q),rψc(k,q)}eimax{ωψc(d,q),ωψc(k,q)}=max{rψc(d,q)eiωψc(d,q),rψc(k,q)eiωψc(k,q)}=max{μψc(d,q),μψc(k,q)}.

    Also,

    μψ(dk,q)min{μψ(d,q),μψ(k,q)}=min{rψ(d,q)eiωψ(d,q),rψ(k,q)eiωψ(k,q)}=min{rψ(d,q),rψ(k,q)}eimin{ωψ(d,q),ωψ(k,q)}
    μψc(dk,q)(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)})=max{1rψ(d,q),1rψ(k,q)}eimax{2πωψ(d,q),2πωψ(k,q)}=max{rψc(d,q),rψc(k,q)}eimax{ωψc(d,q),ωψc(k,q)}=max{rψc(d,q)eiωψc(d,q),rψc(k,q)eiωψc(k,q)}=max{μψc(d,q),μψc(k,q)}.

    Further,

    μψ(d1,q)μψ(d,q)=rψ(d,q)eiωψ(d,q)
    μψc(d1,q)(1rψ(d,q))ei(2πωψ(d,q))=rψc(d,q)eiωψc(d,q)=μψc(d,q).

    On the other hand,

    γψ(dk,q)max{γψ(d,q),γψ(k,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(k,q)eiˆωψ(k,q)}=max{ˆrψ(d,q),ˆrψ(k,q)}eimax{ˆωψ(d,q),ˆωψ(k,q)}
    γψc(dk,q)(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)})=min{1ˆrψ(d,q),1ˆrψ(k,q)}eimin{2πˆωψ(d,q),2πˆωψ(k,q)}=min{ˆrψc(d,q),ˆrψc(k,q)}eimin{ˆωψc(d,q),ˆωψc(k,q)}=min{ˆrψc(d,q)eiˆωψc(d,q),ˆrψc(k,q)eiˆωψc(k,q)}.=min{γψc(d,q),γψc(k,q)}.

    Moreover,

    γψ(dk,q)max{γψ(d,q),γψ(k,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(k,q)eiˆωψ(k,q)}=max{ˆrψ(d,q),ˆrψ(k,q)}eimax{ˆωψ(d,q),ˆωψ(k,q)}
    γψc(dk,q)(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)})=min{1ˆrψ(d,q),1ˆrψ(k,q)}eimin{2πˆωψ(d,q),2πˆωψ(k,q)}=min{ˆrψc(d,q),ˆrψc(k,q)}eimin{ˆωψc(d,q),ˆωψc(k,q)}=min{ˆrψc(d,q)eiˆωψc(d,q),ˆrψc(k,q)eiˆωψc(k,q)}=min{γψc(d,q),γψc(k,q)}.

    Father,

    (d1,q)γψγψ(d,q)=ˆrψ(d,q)eiˆωψ(d,q)

    γψc(d1,q)(1ˆrψ(d,q))=ˆrψc(d,q)=γψc(d,q).

    Therefore, ψc is a complex intuitionistic anti-Q-fuzzy subfield.

    Conversely, assume that ψc is a complex anti-Q-fuzzy subfield. So,

    μψc(dk,q)max{μψc(d,q),μψc(k,q)}=max{rψc(d,q)eiωψc(d,q),rψc(k,q)eiωψc(k,q)}=max{rψc(d,q),rψc(k,q)}eimax{ωψc(d,q),ωψc(k,q)}=max{1rψ(d,q),1rψ(k,q)}eimax{2πωψ(d,q),2πωψ(k,q)}=(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)})
    1μψ(dk,q)(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)})μψ(dk,q)min{rψ(d,q),rψ(k,q)}eimin{ωψ(d,q),ωψ(k,q)}=min{rψ(d,q)eiωψ(d,q),rψ(k,q)eiωψ(k,q)}=min{μψ(d,q),μψ(k,q)}.

    Also, we have

    μψc(dk,q)max{μψc(d,q),μψc(k,q)}=max{rψc(d,q)eiωψc(d,q),rψc(k,q)eiωψc(k,q)}=max{rψc(d,q),rψc(k,q)}eimax{ωψc(d,q),ωψc(k,q)}=max{1rψ(d,q),1rψ(k,q)}eimax{2πωψ(d,q),2πωψ(k,q)}=(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)})
    1μψ(dk,q)(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)})μψ(dk,q)min{rψ(d,q),rψ(k,q)}eimin{ωψ(d,q),ωψ(k,q)}=min{rψ(d,q)eiωψ(d,q),rψ(k,q)eiωψ(k,q)}=min{μψ(d,q),μψ(k,q)}.

    Further,

    μψc(d1,q)μψc(d,q)=rψc(d,q)eiωψc(d,q)=(1rψ(d,q))ei(2πωψ(d,q))μψ(d1,q)rψ(d,q)eiωψ(d,q)=μψ(d,q).

    On other hand,

    γψc(dk,q)min{γψc(d,q),γψc(k,q)}=min{ˆrψc(d,q)eiˆωψc(d,q),ˆrψc(k,q)eiˆωψc(k,q)}=min{ˆrψc(d,q),ˆrψc(k,q)}eimin{ˆωψc(d,q),ˆωψc(k,q)}=min{1ˆrψ(d,q),1ˆrψ(k,q)}eimin{2πˆωψ(d,q),2πˆωψ(k,q)}=(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)})
    (1γψ(dk,q))(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)})γψ(dk,q)max{ˆrψ(d,q),ˆrψ(k,q)}eimax{ˆωψ(d,q),ˆωψ(k,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(k,q)eiˆωψ(k,q)}=max{γψ(d,q),γψ(k,q)}.

    Moreover,

    γψc(dk,q)min{γψc(d,q),γψc(k,q)}
    =min{ˆrψc(d,q)eiˆωψc(d,q),ˆrψc(k,q)eiˆωψc(k,q)}=min{ˆrψc(d,q),ˆrψc(k,q)}eimin{ˆωψc(d,q),ˆωψc(k,q)}=min{1ˆrψ(d,q),1ˆrψ(k,q)}eimin{2πˆωψ(d,q),2πˆωψ(k,q)}=(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)})
    1γψ(dk,q)(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)})γψ(dk,q)max{ˆrψ(d,q),ˆrψ(k,q)}eimax{ˆωψ(d,q),ˆωψ(k,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(k,q)eiˆωψ(k,q)}=max{γψ(d,q),γψ(k,q)}.

    Also, we have

    γψc(d1,q)γψc(d,q)=ˆrψc(d,q)eiˆωψc(d,q)=(1ˆrψ(d,q))ei(2πˆωψ(d,q))γψ(d1,q)ˆrψ(d,q)eiˆωψ(d,q)=γψ(d,q).

    Thus, the theorem is proven.

    Definition 3.4. Let ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a complex intuitionistic Q-fuzzy subfield of a field F. Then

    (1) The necessity operator ψ={(d,q),μψ(d,q),1μψ(d,q):dF,qQ},

    (2) The possibility operator ψ={(d,q),1γψ(d,q),γψ(d,q):dF,qQ}.

    Theorem 3.5. Let (F,+,) be a field. If ψ is a complex intuitionistic Q-fuzzy subfield of (F,+,), then the necessity operator ψ is a complex intuitionistic Q-fuzzy subfield of (F,+,).

    Proof. Let ψ={(d,q),μψ(d,q),μψc(d,q):dF,qQ}. To show that ψ is a complex intuitionistic Q-fuzzy subfield of (F,+,), let ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a complex intuitionistic Q-fuzzy subfield of (F,+,). So, for all d,kF,qQ

    (ⅰ) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (ⅱ) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (ⅲ) μψ(d1,q)μψ(d,q),

    (ⅳ) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (ⅴ) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (ⅵ) γψ(d1,q)γψ(d,q).

    To show that ψ is a complex intuitionistic Q-fuzzy subfield, we must prove the following:

    (1) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (2) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (3) μψ(d1,q)μψ(d,q),

    (4) μψc(dk,q)max{μψc(d,q),μ(ψ)c(k,q)},

    (5) μψc(dk,q)max{μψc(d,q),μψc(k,q)},

    (6) μψc(d1,q)μψc(d,q).

    We note that conditions (1)–(3) are given. So,

    μψc(dk,q)=rψc(dk,q)eiωψc(dk,q)={1rψ(dk,q)}ei{2πωψ(dk,q)}(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)})=max{1rψ(d,q),1rψ(k,q)}eimax{2πωψ(d,q),2πωψ(k,q)}=max{rψc(d,q),rψc(k,q)}eimax{ωψc(d,q),ωψc(k,q)}=max{rψc(d,q)eiωψc(d,q),rψc(k,q)eiωψc(k,q)}=max{μψc(d,q),μψc(k,q)}.

    Moreover,

    μψc(dk,q)=rψc(dk,q)eiωψc(dk,q)={1rψ(dk,q)}ei{2πωψ(dk,q)}(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)})=max{1rψ(d,q),1rψ(k,q)}eimax{2πωψ(d,q),2πωψ(k,q)}=max{rψc(d,q),rψc(k,q)}eimax{ωψc(d,q),ωψc(k,q)}=max{rψc(d,q)eiωψc(d,q),rψc(k,q)eiωψc(k,q)}=max{μψc(d,q),μψc(k,q)}.

    Also,

    μ(ψ)c(d1,q)=r(ψ)c(d1,q)eiω(ψ)c(d1,q)={1rψ(d1,q)}ei{2πωψ(d1,q)}{1rψ(d,q)}ei{2πωψ(d,q)}=rψc(d,q)eiωψc(d,q)=μψc(d,q).

    Thus,

    μψ(dk,q)min{μψ(d,q),μψ(k,q)}, μψ(dk,q)min{μψ(d,q),μψ(k,q)}, μψ(d1,q)μψ(d,q),

    μψc(dk,q)max{μψc(d,q),μψc(k,q)}, μψc(dk,q)max{μψc(d,q),μψc(k,q)}, and μψc(d1,q)μψc(d,q).

    Therefore, ψ={(d,q),μψ(d,q),μψc(d,q):dF,qQ} is a complex intuitionistic Q-fuzzy subfield of a field F.

    Theorem 3.6. Let (F,+,) be a field. If ψ is a complex intuitionistic Q-fuzzy subfield of (F,+,), then the possibility operator ψ is a complex intuitionistic Q-fuzzy subfield of (F,+,).

    Proof. Let ψ={(d,q),γψc(d,q),γψ(d,q):dF,qQ}. To show that ψ is a complex intuitionistic Q-fuzzy subfield of (F,+,), let ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a complex intuitionistic Q-fuzzy subfield of (F,+,). Thus,

    (ⅰ) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (ⅱ) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (ⅲ) μψ(d1,q)μψ(d,q),

    (ⅳ) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (ⅴ) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (ⅵ) γψ(d1,q)γψ(d,q).

    To show that ψ is a complex intuitionistic Q-fuzzy subfield, we must prove the following:

    (1) γψc(dk,q)min{γψc(d,q),γψc(k,q)},

    (2) γψc(dk,q)min{γψc(d,q),γψc(k,q)},

    (3) γψc(d1,q)γψc(d,q),

    (4) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (5) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (6) γψ(d1,q)γψ(d,q).

    We note that conditions (4)–(6) are given. Now,

    γψc(dk,q)=ˆrψc(dk,q)eiˆωψc(dk,q)={1ˆrψ(dk,q)}ei{2πˆωψ(dk,q)}(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)})=min{1ˆrψ(d,q),1ˆrψ(k,q)}eimin{2πˆωψ(d,q),2πˆωψ(k,q)}=min{ˆrψc(d,q),ˆrψc(k,q)}eimin{ˆωψc(d,q),ˆωψc(k,q)}=min{ˆrψc(d,q)eiˆωψc(d,q),ˆrψc(k,q)eiˆωψc(k,q)}=min{γψc(d,q),γψc(k,q)}.

    Also,

    γψc(dk,q)=ˆrψc(dk,q)eiˆωψc(dk,q)={1ˆrψ(dk,q)}ei{2πˆωψ(dk,q)}(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)})=min{1ˆrψ(d,q),1ˆrψ(k,q)}eimin{2πˆωψ(d,q),2πˆωψ(k,q)}=min{ˆrψc(d,q),ˆrψc(k,q)}eimin{ˆωψc(d,q),ˆωψc(k,q)}=min{ˆrψc(d,q)eiˆωψc(d,q),ˆrψc(k,q)eiˆωψc(k,q)}=min{γψc(d,q),γψc(k,q)}.

    Moreover,

    γψc(d1,q)=ˆrψc(d1,q)eiˆωψc(d1,q)={1ˆrψ(d1,q)}ei{2πˆωψ(d1,q)}{1ˆrψ(d,q)}ei{2πˆωψ(d,q)}=ˆrψc(d,q)eiˆωψc(d,q)=γψc(d,q).

    So,

    γψc(dk,q)min{γψc(d,q),γψc(k,q)}, γψc(dk,q)min{γψc(d,q),γψc(k,q)}, γψc(d1,q)γψc(d,q),

    γψ(dk,q)max{γψ(d,q),γψ(k,q)}, γψ(dk,q)max{γψ(d,q),γψ(k,q)}, and γψ(d1,q)γψ(d,q).

    Therefore, ψ={(d,q),γψc(d,q),γψ(d,q):dF,qQ} is a complex intuitionistic Q-fuzzy subfield of a field F.

    Theorem 3.7. A complex intuitionistic Q-fuzzy subset ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} of a field F is a complex intuitionistic Q-fuzzy subfield of a field F if and only if the complex Q-fuzzy subsets μψ(d,q), γψc(d,q) are complex Q-fuzzy subfields of a field F.

    Proof. Let ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a complex intuitionistic Q-fuzzy subfield of (F,+,). Thus,

    (1) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (2) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (3) μψ(d1,q)μψ(d,q),

    (4) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (5) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (6) γψ(d1,q)γψ(d,q).

    Clearly, μψ(d,q) is a complex Q-fuzzy subfield of (F,+,) by the given (1), (2), and (3). Now we must show that γψc(d,q) is a complex Q-fuzzy subfield of (F,+,).

    To show that γψc(d,q) is a complex Q-fuzzy subfield of a field F, we will prove the following:

    (ⅰ) γψc(dk,q)min{γψc(d,q),γψc(k,q)},

    (ⅱ) γψc(dk,q)min{γψc(d,q),γψc(k,q)},

    (ⅲ) γψc(d1,q)γψc(d,q).

    Now,

    γψc(dk,q)=ˆrψc(dk,q)eiˆωψc(dk,q)={1ˆrψ(dk,q)}ei{2πˆωψ(dk,q)}(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)})=min{1ˆrψ(d,q),1ˆrψ(k,q)}eimin{2πˆωψ(d,q),2πˆωψ(k,q)}=min{ˆrψc(d,q),ˆrψc(k,q)}eimin{ˆωψc(d,q),ˆωψc(k,q)}=min{ˆrψc(d,q)eiˆωψc(d,q),ˆrψc(k,q)eiˆωψc(k,q)}=min{γψc(d,q),γψc(k,q)}.

    Moreover,

    γψc(dk,q)=ˆrψc(dk,q)eiˆωψc(dk,q)=(1ˆrψ(dk,q))ei(2πˆωψ(dk,q))(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)})=min{1ˆrψ(d,q),1ˆrψ(k,q)}eimin{2πˆωψ(d,q),2πˆωψ(k,q)}=min{ˆrψc(d,q),ˆrψc(k,q)}eimin{ˆωψc(d,q),ˆωψc(k,q)}=min{ˆrψc(d,q)eiˆωψc(d,q),ˆrψc(k,q)eiˆωψc(k,q)}=min{γψc(d,q),γψc(k,q)}.

    Further,

    γψc(d1,q)=ˆrψc(d1,q)eiˆωψc(d1,q)={1ˆrψ(d1,q)}ei{2πˆωψ(d1,q)}{1ˆrψ(d,q)}ei{2πˆωψ(d,q)}=ˆrψc(d,q)eiˆωψc(d,q)=γψc(d,q).

    Therefore, the complex Q-fuzzy subsets μψ(d,q), γψc(d,q) are complex Q-fuzzy subfields of (F,+,).

    Conversely, let μψ(d,q), γψc(d,q) are complex Q-fuzzy subfields of (F,+,). To prove that ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a complex intuitionistic Q-fuzzy subfield of (F,+,), we must prove that ψ satisfies all conditions of a complex intuitionistic Q-fuzzy subfield of a field F. So, we want to show that:

    (1) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (2) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (3) μψ(d1,q)μψ(d,q),

    (4) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (5) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (6) γψ(d1,q)γψ(d,q).

    Given that μψ(d,q) is a complex Q-fuzzy subfield of (F,+,)., we remark that (1)–(3) are satisfied. As a result, we need to demonstrate conditions (4)–(6). Given that γψc(d,q) is a complex Q-fuzzy subfield, thus:

    γψc(dk,q)min{γψc(d,q),γψc(k,q)}=min{ˆrψc(d,q)eiˆωψc(d,q),ˆrψc(k,q)eiˆωψc(k,q)}=min{ˆrψc(d,q),ˆrψc(k,q)}eimin{ˆωψc(d,q),ˆωψc(k,q)}=min{1ˆrψ(d,q),1ˆrψ(k,q)}eimin{2πˆωψ(d,q),2πˆωψ(k,q)}=(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)}).

    So,

    γψ(dk,q)max{ˆrψ(d,q),ˆrψ(k,q)}eimax{ˆωψ(d,q),ˆωψ(k,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(k,q)eiˆωψ(k,q)}=max{γψ(d,q),γψ(k,q)}.

    Also, since γψc(d,q) is a complex Q-fuzzy subfield of (F,+,), hence

    γψc(dk,q)min{γψc(d,q),γψc(k,q)},=min{ˆrψc(d,q)eiˆωψc(d,q),ˆrψc(k,q)eiˆωψc(k,q)}=min{ˆrψc(d,q),ˆrψc(k,q)}eimin{ˆωψc(d,q),ˆωψc(k,q)}=min{1ˆrψ(d,q),1ˆrψ(k,q)}eimin{2πˆωψ(d,q),2πˆωψ(k,q)}=(1max{ˆrψ(d,q),ˆrψ(k,q)})ei(2πmax{ˆωψ(d,q),ˆωψ(k,q)}).

    So,

    γψ(dk,q)max{ˆrψ(d,q),ˆrψ(k,q)}eimax{ˆωψ(d,q),ˆωψ(k,q)}=max{ˆrψ(d,q)eiˆωψ(d,q),ˆrψ(k,q)eiˆωψ(k,q)}=max{γψ(d,q),γψ(k,q)}.

    Also, since γψc(d,q) is a complex Q-fuzzy subfield of (F,+,), hence:

    γψc(d1,q)γψc(d,q)=ˆrψc(d,q)eiˆωψc(d,q)={1ˆrψ(d,q)}ei{2πˆωψ(d,q)}

    Then,

    γψ(d1,q)ˆrψ(d,q)eiˆωψ(d,q)=γψ(d,q).

    Already we have

    μψ(dk,q)min{μψ(d,q),μψ(k,q)}, μψ(dk,q)min{μψ(d,q),μψ(k,q)}, and μψ(d1,q)μψ(d,q).

    Hence, ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a complex intuitionistic Q-fuzzy subfield of a field F.

    Theorem 3.8. Let (F,+,) be a field. A complex intuitionistic Q-fuzzy subset ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} of (F,+,) is a complex intuitionistic Q-fuzzy subfield of (F,+,) if and only if the complex Q-fuzzy subsets μψc(d,q), γψ(d,q) are complex anti- Q-fuzzy subfields of (F,+,).

    Proof. Let ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a complex intuitionistic Q-fuzzy subfield of (F,+,). Then

    (1) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (2) μψ(dk,q)min{μψ(d,q),μψ(k,q)},

    (3) μψ(d1,q)μψ(d,q),

    (4) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (5) γψ(dk,q)max{γψ(d,q),γψ(k,q)},

    (6) γψ(d1,q)γψ(d,q).

    From (4), (5), and (6), it is clear that γψ(d,q) is a complex anti-Q-fuzzy subfield of (F,+,). Now we must show that μψc(d,q) is a complex anti-Q-fuzzy subfield of (F,+,).

    To show that μψc(d,q) is a complex anti-Q-fuzzy subfield of (F,+,), we will prove the following:

    (ⅰ) μψc(dk,q)max{μψc(d,q),μψc(k,q)},

    (ⅱ) μψc(dk,q)max{μψc(d,q),μψc(k,q)},

    (ⅲ) μψc(d1,q)μψc(d,q).

    Now,

    μψc(dk,q)=rψc(dk,q)eiωψc(dk,q)={1rψ(dk,q)}ei{2πωψ(dk,q)}(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)})=max{1rψ(d,q),1rψ(k,q)}eimax{2πωψ(d,q),2πωψ(k,q)}=max{rψc(d,q),rψc(k,q)}eimax{ωψc(d,q),ωψc(k,q)}=max{rψc(d,q)eiωψc(d,q),rψc(k,q)eiωψc(k,q)}=max{μψc(d,q),μψc(k,q)}.

    Also,

    μψc(dk,q)=rψc(dk,q)eiωψc(dk,q)={1rψ(dk,q)}ei{2πωψ(dk,q)}(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)})=max{1rψ(d,q),1rψ(k,q)}eimax{2πωψ(d,q),2πωψ(k,q)}=max{rψc(d,q),rψc(k,q)}eimax{ωψc(d,q),ωψc(k,q)}=max{rψc(d,q)eiωψc(d,q),rψc(k,q)eiωψc(k,q)}=max{μψc(d,q),μψc(k,q)}.

    Further,

    μψc(d1,q)=rψc(d1,q)eiωψc(d1,q)={1rψ(d1,q)}ei{2πωψ(d1,q)}{1rψ(d,q)}ei{2πωψ(d,q)}=rψc(d,q)eiωψc(d,q)=μψc(d,q).

    So, μψc(d,q) and γψ(d,q) are a complex anti-Q-fuzzy subfield of (F,+,).

    Conversely, let μψc(d,q) and γψ(d,q) are a complex anti-Q-fuzzy subfield of (F,+,). To prove that ψ={(d,q),μψ(d,q),γψ(d,q):dF,qQ} be a complex intuitionistic Q-fuzzy subfield of (F,+,), we must prove that ψ satisfies all conditions of a complex intuitionistic Q-fuzzy subfield of (F,+,). It is clear that γψ(dk,q)max{γψ(d,q),γψ(k,q)}, γψ(dk,q)max{γψ(d,q),γψ(k,q)}, and γψ(d1,q)γψ(d,q) are satisfied.

    Now,

    μψc(dk,q)max{μψc(d,q),μψc(k,q)}=max{rψc(d,q)eiωψc(d,q),rψc(k,q)eiωψc(k,q)}=max{1rψ(d,q),1rψ(k,q)}eimax{2πωψ(d,q),2πωψ(k,q)}=(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)}).

    Then,

    μψ(dk,q)min{rψ(d,q),rψ(k,q)}eimin{ωψ(d,q),ωψ(k,q)}=min{rψ(d,q)eiωψ(d,q),rψ(k,q)eiωψ(k,q)}=min{μψ(d,q),μψ(k,q)}.

    Also,

    μψc(dk,q)max{μψc(d,q),μψc(k,q)}=max{rψc(d,q)eiωψc(d,q),rψc(k,q)eiωψc(k,q)}=max{1rψ(d,q),1rψ(k,q)}eimax{2πωψ(d,q),2πωψ(k,q)}=(1min{rψ(d,q),rψ(k,q)})ei(2πmin{ωψ(d,q),ωψ(k,q)}).

    Then,

    μψ(dk,q)min{rψ(d,q),rψ(k,q)}eimin{ωψ(d,q),ωψ(k,q)}=min{rψ(d,q)eiωψ(d,q),rψ(k,q)eiωψ(k,q)}=min{μψ(d,q),μψ(k,q)}.

    Also,

    μψc(d1,q)μψc(d,q)=rψc(d,q)eiωψc(d,q)=(1rψ(d,q))ei(2πωψ(d,q)).

    Then,

    μψ(d1,q)rψ(d,q)=μψ(d,q).

    Therefore, ψ(d)={(d,q),μψ(d,q),γψ(d,q):dF,qQ} is a complex intuitionistic Q-fuzzy subfield of (F,+,).

    Definition 3.5. Let (F,+,).be a field. Let ψ1 and ψ2 be any two complex intuitionistic Q-fuzzy subfields of (F,+,) where ψ1={(d,q),μψ1(d,q),γψ1(d,q):dF,qQ} and ψ2={(d,q),μψ2(d,q),γψ2(d,q):dF,qQ}. Then their intersection is defined as:

    ψ1ψ2={(d,q),μψ1ψ2(d,q),γψ1ψ2(d,q):dF,qQ}

    where

    μψ1ψ2(d,q)=min{rψ1(d,q),rψ2(d,q)}eimin{ωψ1(d,q),ωψ2(d,q)},
    γψ1ψ2(d,q)=max{ˆrψ1(d,q),ˆrψ2(d,q)}eimax{ˆωψ1(d,q),ˆωψ2(d,q)}.

    Definition 3.6. Let (F,+,) be a field. Let ψ1 and ψ2 be any two complex intuitionistic Q-fuzzy subfields of (F,+,) where ψ1={(d,q),μψ1(d,q),γψ1(d,q):dF,qQ} and ψ2={(d,q),μψ2(d,q),γψ2(d,q):dF,qQ}. Then their union is defined as:

    ψ1ψ2={(d,q),μψ1ψ2(d,q),γψ1ψ2(d,q):dF,qQ}

    where

    μψ1ψ2(d,q)=max{rψ1(d,q),rψ2(d,q)}eimax{ωψ1(d,q),ωψ2(d,q)},
    γψ1ψ2(d,q)=min{ˆrψ1(d,q),ˆrψ2(d,q)}eimin{ˆωψ1(d,q),ˆωψ2(d,q)}.

    Theorem 3.9. Let (F,+,) be a field. If ψ1 and ψ2 be two complex intuitionistic Q-fuzzy subfields of (F,+,), then ψ1ψ2 is a complex intuitionistic Q-fuzzy subfield of (F,+,).

    Proof. Let ψ1={(d,q),μψ1(d,q),γψ1(d,q):dF,qQ} and ψ2={(d,q),μψ2(d,q),γψ2(d,q):dF,qQ} be two complex intuitionistic Q-fuzzy subfields of (F,+,). To prove that ψ1ψ2 is also a complex intuitionistic Q-fuzzy subfield, we must show that ψ1ψ2 satisfies all conditions of complex intuitionistic Q-fuzzy subfield for all d,kF,qQ. Note that rψ1(d,q),rψ2(d,q),ˆrψ1(d,q) and ˆrψ2(d,q) are intuitionistic Q-fuzzy subfields and ωψ1(d,q),ωψ2(d,q),ˆωψ1(d,q), and ˆωψ2(d,q) are intuitionistic π-Q-fuzzy subfields by Theorem 3.2. Then rψ1ψ2(d,q),rψ1ψ2(d,q) are intuitionistic Q-fuzzy subfields and ωψ1ψ2(d,q),ωψ1ψ2(d,q) are intuitionistic π-Q-fuzzy subfields.

    Now, let d,kF,qQ. Then,

    μψ1ψ2(dk,q)=rψ1ψ2(dk,q)eiωψ1ψ2(dk,q)min{rψ1ψ2(d,q),rψ1ψ2(k,q)}eimin{ωψ1ψ2(d,q),ωψ1ψ2(k,q)}=min{rψ1ψ2(d,q)eiωψ1ψ2(d,q),rψ1ψ2(k,q)eiωψ1ψ2(k,q)}.=min{μψ1ψ2(d,q),μψ1ψ2(k,q)}.

    Moreover,

    μψ1ψ2(dk,q)=rψ1ψ2(dk,q)eiωψ1ψ2(dk,q)min{rψ1ψ2(d,q),rψ1ψ2(k,q)}eimin{ωψ1ψ2(d,q),ωψ1ψ2(k,q)}=min{rψ1ψ2(d,q)eiωψ1ψ2(d,q),rψ1ψ2(k,q)eiωψ1ψ2(k,q)}.=min{μψ1ψ2(d,q),μψ1ψ2(k,q)}.

    Also,

    μψ1ψ2(d1,q)=rψ1ψ2(d1,q)eiωψ1ψ2(d1,)rψ1ψ2(d,q)eiωψ1ψ2(d,q)=μψ1ψ2(d,q).

    Further,

    γψ1ψ2(dk,q)=ˆrψ1ψ2(dk,q)eiˆωψ1ψ2(dk,q)max{ˆrψ1ψ2(d,q),ˆrψ1ψ2(k,q)}eimax{ˆωψ1ψ2(d,q),ˆωψ1ψ2(k,q)}=max{ˆrψ1ψ2(d,q)eiˆωψ1ψ2(d,q),ˆrψ1ψ2(k,q)eiˆωψ1ψ2(k,q)}.=max{γψ1ψ2(d,q),γψ1ψ2(k,q)}.

    Moreover,

    γψ1ψ2(dk,q)=ˆrψ1ψ2(dk,q)eiˆωψ1ψ2(dk,q)max{ˆrψ1ψ2(d,q),ˆrψ1ψ2(k,q)}eimax{ˆωψ1ψ2(d,q),ˆωψ1ψ2(k,q)}=max{ˆrψ1ψ2(d,q)eiˆωψ1ψ2(d,q),ˆrψ1ψ2(k,q)eiˆωψ1ψ2(k,q)}=max{γψ1ψ2(d,q),γψ1ψ2(k,q)}.

    Also,

    γψ1ψ2(d1,q)=ˆrψ1ψ2(d1,q)eiˆωψ1ψ2(d1,q)ˆrψ1ψ2(d,q)eiωψ1ψ2(d,q)=γψ1ψ2(d,q).

    Hence, the intersection of two complex intuitionistic Q-fuzzy subfields is a complex intuitionistic Q-fuzzy subfield.

    Theorem 3.10. Let {ψi:iI} represent a set of complex intuitionistic Q-fuzzy subfields of a field F. Then iIψi is a complex intuitionistic Q-fuzzy subfield.

    Proof. The proof is straightforward.

    Remark 3.1. The union of two complex intuitionistic Q-fuzzy subfields of a field F may not be a complex intuitionistic Q-fuzzy subfield of a field F.

    Example 3.1. Let F=Z11 be a field under ordinary addition and multiplication of integers where Z11={0,1,2,,10} is the set of integers modulo 11.

    Suppose that ψ1 and ψ2 are two complex intuitionistic Q-fuzzy subfields of a field Z11 where qQ and defined as:

    μψ1(d,q)={0.2eiπ2,ifd3Z110,otherwise and γψ1(d,q)={0.1eiπ9,ifd3Z110.5eiπ3,otherwise

    μψ2(d,q)={0.1eiπ3,ifd2Z110.01eiπ8,otherwise and γψ2(d,q)={0.3eiπ8,ifd2Z110.4eiπ4,otherwise.

    It is possible to verify that ψ1 and ψ2 are complex intuitionistic Q-fuzzy subfields of a field Z11.

    From Definition 3.6 ψ1ψ2={(d,q),μψ1ψ2(d,q),γψ1ψ2(d,q):dF,qQ}. Then,

    μψ1ψ2(d,q)={0.2eiπ2,ifd3Z110.1eiπ3,ifd2Z113Z110.01eiπ8,otherwise

    and

    γψ1ψ2(d,q)={0.1eiπ10,ifd3Z110.3eiπ8,ifd2Z113Z110.4eiπ4,otherwise.

    Let d=3 and k=2. Then μψ1ψ2(3,q)=0.2eiπ2, μψ1ψ2(2,q)=0.1eiπ3, μψ1ψ2(32,q)=μψ1ψ2(1,q)=0.01eiπ8, and min{μψ1ψ2(3,q),μψ1ψ2(2,q)}=min{0.2eiπ2,0.1eiπ3,}=0.1eiπ3.

    We note that μψ1ψ2(32,q)<min{μψ1ψ2(3,q),μψ1ψ2(2,q)}. This means that ψ1ψ2 does not satisfy one of the conditions of the complex intuitionistic Q-fuzzy subfield.

    Therefore, the union of two complex intuitionistic Q-fuzzy subfields of a field F may not be a complex intuitionistic Q-fuzzy subfield of a field.

    Definition 3.7. Let fields F1 and F2, have two complex intuitionistic Q-fuzzy subfields ψ1 and ψ2 such that ψ1={(d,q),μψ1(d,q),γψ1(d,q):dF1,qQ} and ψ2={(d,q),μψ2(d,q),γψ2(d,q):dF2,qQ}. Then their direct product is denoted by ψ1×ψ2 and defined as:

    (ψ1×ψ2)((d,k),q)={((d,k),q),μψ1×ψ2((d,k),q),γψ1×ψ2((d,k),q):(d,k)F1×F2,qQ}

    where

    μψ1×ψ2((d,k),q)=rψ1×ψ2((d,k),q)eiωψ1×ψ2((d,k),q)=min{rψ1(d,q),rψ2(k,q)}eimin{ωψ1(d,q),ωψ2(k,q)},
    γψ1×ψ2((d,k),q)=ˆrψ1×ψ2((d,k),q)eiˆωψ1×ψ2((d,k),q)=max{ˆrψ1(d,q),ˆrψ2(k,q)}eimax{ˆωψ1(d,q),ˆωψ2(k,q)}.

    Theorem 3.11. Let fields F1 and F2, have two complex intuitionistic Q-fuzzy subfields ψ1 and ψ2. Then ψ1×ψ2 is a complex intuitionistic fuzzy subfield of a field F1×F2.

    Proof. Let ψ1={(d,q),μψ1(d,q),γψ1(d,q):dF1,qQ} and ψ2={(d,q),μψ2(d,q),γψ2(d,q):dF2,,qQ} be two complex intuitionistic Q-fuzzy subfields of fields F1 and F2, respectively. We must demonstrate that ψ1×ψ2 satisfies all conditions of a complex intuitionistic Q-fuzzy subfield to establish that ψ1×ψ2 is a complex intuitionistic Q-fuzzy subfield. For each (d,k),(a,b)F1×F2 and qQ, we have

    μψ1×ψ2((d,k)(a,b),q)=μψ1×ψ2((da,kb),q)=rψ1×ψ2((da,kb),q)eiωψ1×ψ2((da,kb),q)=min{rψ1(da,q),rψ2(kb,q)}eimin{ωψ1(da,q),ωψ2(kb,q)}=min{rψ1(da,q)eiωψ1(da,q),rψ2(kb,q)eiωψ2(kb,q)}=min{μψ1(da,q),μψ2(kb,q)}min{min{μψ1(d,q),μψ1(a,q)},min{μψ2(k,q),μψ2(b,q)}}=min{min{μψ1(d,q),μψ2(k,q)},min{μψ1(a,q),μψ2(b,q)}}=min{μψ1×ψ2((d,k),q),μψ1×ψ2((a,b),q)}.

    Hence, μψ1×ψ2((d,k)(a,b),q)min{μψ1×ψ2((d,k),q),μψ1×ψ2((a,b),q)}.

    Moreover,

    μψ1×ψ2((d,k)(a,b),q)=μψ1×ψ2((da,kb),q)=rψ1×ψ2((da,kb),q)eiωψ1×ψ2((da,kb),q)=min{rψ1(da,q),rψ2(kb,q)}eimin{ωψ1(da,q),ωψ2(kb,q)}=min{rψ1(da,q)eiωψ1(da,q),rψ2(kb,q)eiωψ2(kb,q)}=min{μψ1(da,q),μψ2(kb,q)}min{min{μψ1(d,q),μψ1(a,q)},min{μψ2(k,q),μψ2(b,q)}}=min{min{μψ1(d,q),μψ2(k,q)},min{μψ1(a,q),μψ2(b,q)}} = min{μψ1×ψ2((d,k),q),μψ1×ψ2((a,b),q)}.

    Hence, μψ1×ψ2((d,k)(a,b),q)min{μψ1×ψ2((d,k),q),μψ1×ψ2((a,b),q)}.

    Furthermore,

    μψ1×ψ2((d1,k1),q)=rψ1×ψ2((d1,k1),q)eiωψ1×ψ2((d1,k1),q)=min{rψ1(d1,q),rψ2(k1,q)}eimin{ωψ1(d1,q),ωψ2(k1,q)}=min{rψ1(d1,q)eiωψ1(d1,q),rψ2(k1,q)eiωψ2(k1,q)}=min{μψ1(d1,q),μψ2(k1,q)}min{μψ1(d,q),μψ2(k,q)}.

    Hence, μψ1×ψ2((d1,k1),q)μψ1×ψ2((d,k),q).

    On the other hand,

    γψ1×ψ2((d,k)(a,b),q)=γψ1×ψ2((da,kb),q)=ˆrψ1×ψ2((da,kb),q)eiˆωψ1×ψ2((da,kb),q)=max{ˆrψ1(da,q),ˆrψ2(kb,q)}eimax{ˆωψ1(da,q),ˆωψ2(kb,q)}=max{ˆrψ1(da,q)eiˆωψ1(da,q),ˆrψ2(kb,q)eiˆωψ2(kb,q)}=max{γψ1(da,q),γψ2(kb,q)}max{max{γψ1(d,q),γψ1(a,q)},max{γψ2(k,q),γψ2(b,q)}}=max{max{γψ1(d,q),γψ2(k,q)},max{γψ1(a,q),γψ2(b,q)}}=max{γψ1×ψ2((d,k),q),γψ1×ψ2((a,b),q)}.

    Hence, γψ1×ψ2((d,k)(a,b),q)max{γψ1×ψ2((d,k),q),γψ1×ψ2((a,b),q)}.

    Also,

    γψ1×ψ2((d,k)(a,b),q)=γψ1×ψ2((da,kb),q)=ˆrψ1×ψ2((da,kb),q)eiˆωψ1×ψ2((da,kb),q)=max{ˆrψ1(da,q),ˆrψ2(kb,q)}eimax{ˆωψ1(da,q),ˆωψ2(kb,q)}=max{ˆrψ1(da,q)eiˆωψ1(da,q),ˆrψ2(kb,q)eiˆωψ2(kb,q)}=max{γψ1(da,q),γψ2(kb,q)}max{max{γψ1(d,q),γψ1(a,q)},max{γψ2(k,q),γψ2(b,q)}}=max{max{γψ1(d,q),γψ2(k.q)},max{γψ1(a,q),γψ2(b,q)}}=max{γψ1×ψ2((d,k),q),γψ1×ψ2((a,b),q)}.

    Hence, γψ1×ψ2((d,k)(a,b),q)max{γψ1×ψ2((d,k),q),γψ1×ψ2((a,b),q)}.

    Further,

    γψ1×ψ2((d1,k1),q)=ˆrψ1×ψ2((d1,k1),q)eiˆωψ1×ψ2((d1,k1),q)=max{ˆrψ1(d1,q),ˆrψ2(k1,q)}eimax{ˆωψ1(d1,q),ˆωψ2(k1,q)}=max{ˆrψ1(d1,q)eiˆωψ1(d1,q),ˆrψ2(k1,q)eiˆωψ2(k1,q)}=max{γψ1(d1,q),γψ2(k1,q)}max{γψ1(d,q),γψ2(k,q)}.

    Hence, γψ1×ψ2((d1,k1),q)γψ1×ψ2((d,k),q).

    Therefore, ψ1×ψ2 is a complex intuitionistic Q-fuzzy subfield of a field F1×F2.

    Corollary 3.1. Let ψ1,ψ2,ψ3,,ψn be a complex intuitionistic Q-fuzzy subfield of fields F1,F2,F2,,Fn. Then ψ1×ψ2×ψ3××ψn is a complex intuitionistic Q-fuzzy subfield of a field F1×F2×F2××Fn.

    This study proposed a concept of a complex intuitionistic Q-fuzzy subfield as a new structure. We extend the concept of a complex fuzzy subfield to a complex intuitionistic Q-fuzzy subfield by adding the idea of the intuitionistic Q-fuzzy set to a complex fuzzy subfield. This valuable contribution expands the investigation from membership function values to include both membership and non-membership function values. In the complex plane, the range of complex fuzzy subfields is extended to the unit disc for membership and non-membership functions. Furthermore, we suggested basic operations such as intersection, union, and complement and investigated some properties of these operations. In addition, we introduce the necessity operator and possibility operator on a complex intuitionistic Q-fuzzy subfield. Some important and related theorems have been studied.

    We are indebted to Universiti Kebangsaan Malaysia for providing financial support and facilities for this research under the UKM Grant TAP-K005825.

    The authors declare that they have no conflicts of interest to report regarding the present study.



    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–174. https://doi.org/10.1016/0022-247X(67)90189-8 doi: 10.1016/0022-247X(67)90189-8
    [3] A. De Luca, S. Termini, Algebraic properties of fuzzy sets, J. Math. Anal. Appl., 40 (1972), 373–386. https://doi.org/10.1016/0022-247X(72)90057-1 doi: 10.1016/0022-247X(72)90057-1
    [4] A. Al-Masarwah, A. G. Ahmad, Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-Algebras, AIMS Math., 5 (2020), 1035–1049. https://doi.org/10.3934/math.2020072 doi: 10.3934/math.2020072
    [5] F. Al-Sharqi, A. Al-Quran, A. G. Ahmad, S. Broumi, Interval-valued complex neutrosophic soft set and its applications in decision-making, Neutrosophic Sets Syst., 40 (2021), 149–168.
    [6] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5 doi: 10.1016/0022-247X(71)90199-5
    [7] I. Masmali, U. Shuaib, A. Razaq, A. Fatima, G. Alhamzi, On fundamental algebraic characterizations of μ-fuzzy normal subgroups, J. Funct. Space., 2022 (2022), 1–10. https://doi.org/10.1155/2022/2703489 doi: 10.1155/2022/2703489
    [8] S. Bhunia, G. Ghorai, A new approach to fuzzy group theory using (α, β)-Pythagorean fuzzy sets, Songklanakarin J. Sci. Technol., 43 (2021), 295–306.
    [9] S. Bhunia, G. Ghorai, M. A. Kutbi, M. Gulzar, M. A. Alam, On the algebraic characteristics of fuzzy sub e-groups, J. Funct. Space., 2021 (2021), 1–7. https://doi.org/10.1155/2021/5253346 doi: 10.1155/2021/5253346
    [10] A. Solairaju, R. Nagarajan, A new structure and construction of Q-fuzzy groups, Adv. Fuzzy Math., 4 (2009), 23–29.
    [11] P. M. S. Selvam, T. Priya, K. T. Nagalakshmi, T. Ramachandran, On some properties of anti-Q-fuzzy normal subgroups, Gen. Math. Notes, 22 (2014), 1–10.
    [12] R. Rasuli, Anti Q-fuzzy subgroups under t-conorms, Earthline J. Math. Sci., 4 (2020), 13–28. https://doi.org/10.34198/ejms.4120.1328 doi: 10.34198/ejms.4120.1328
    [13] R. Rasuli, Characterization of Q-fuzzy subrings (anti Q-fuzzy subrings) with respect to a t-norm (t-conorm), J. Inf. Optim. Sci., 39 (2018), 827–837. https://doi.org/10.1080/02522667.2016.1228316 doi: 10.1080/02522667.2016.1228316
    [14] A. Emniyet, M. Şahin, Fuzzy normed rings, Symmetry-Basel, 10 (2018), 515. https://doi.org/10.3390/sym10100515 doi: 10.3390/sym10100515
    [15] M. Al Tahan, S. Hoskova-Mayerova, B. Davvaz, Some results on (generalized) fuzzy multi-Hν-ideals of Hν-rings, Symmetry-Basel, 11 (2019), 1–14. https://doi.org/10.3390/sym11111376 doi: 10.3390/sym11111376
    [16] A. Al-Masarwah, A. G. Ahmad, Structures on Doubt Neutrosophic Ideals of BCK/BCI-Algebras under (S, T)-Norms, Neutrosophic Sets Syst., 33 (2020), 275–289. https://doi.org/10.5281/zenodo.3783032 doi: 10.5281/zenodo.3783032
    [17] G. M. Addis, N. Kausar, M. Munir, Fuzzy homomorphism theorems on rings, J. Discret. Math. Sci. Cryptogr., 2020, 1–20. https://doi.org/10.1080/09720529.2020.1809777 doi: 10.1080/09720529.2020.1809777
    [18] N. Kausar, M. Munir, B. ul Islam, M. A. Alesemi, M. Gulzar, Fuzzy bi-ideals in LA-rings, Ital. J. Pure Appl. Math., 44 (2020), 745–763.
    [19] A. Al-Masarwah, A. G. Ahmad, G. Muhiuddin, D. Al-Kadi, Generalized m-polar fuzzy positive implicative ideals of BCK-algebras, J. Math., 2021 (2021), 1–10. https://doi.org/10.1155/2021/6610009 doi: 10.1155/2021/6610009
    [20] H. Alolaiyan, M. H. Mateen, D. Pamucar, M. K. Mahmmod, F. Arslan, A certain structure of bipolar fuzzy subrings, Symmetry-Basel, 13 (2021), 1–21. https://doi.org/10.3390/sym13081397. doi: 10.3390/sym13081397
    [21] D. S. Malik, J. N. Mordeson, Fuzzy subfields, Fuzzy Set. Syst., 37 (1990), 383–388. https://doi.org/10.1016/0165-0114(90)90034-4 doi: 10.1016/0165-0114(90)90034-4
    [22] J. N. Mordeson, Fuzzy subfields of finite fields, Fuzzy Set. Syst., 52 (1992), 93–96. https://doi.org/10.1016/0165-0114(92)90041-2 doi: 10.1016/0165-0114(92)90041-2
    [23] Y. Feng, B. Yao, On (λ, μ)-anti-fuzzy subfields, J. Discret. Math. Sci. Cryptogr., 15 (2012), 49–55. https://doi.org/10.1080/09720529.2012.10698363 doi: 10.1080/09720529.2012.10698363
    [24] R. J. Hussain, A review on Q-fuzzy subgroups in algebra, Int. J. Appl. Eng. Res., 14 (2019), 60–63.
    [25] M. S. Muthuraman, M. Sridharan, K. H. Manikandan, G. Sabarinathan, R. Muthuraj, Fuzzy HX field, Int. J. Mod. Agric., 10 (2021), 141–147
    [26] K. T. Atanassov, Intuitionistic fuzzy sets, Berlin, Germany: Springer, 1999, 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1
    [27] K. T. Atanassov, Remarks on the intuitionistic fuzzy sets, Fuzzy Set. Syst., 51 (1992), 117–118. https://doi.org/10.1016/0165-0114(92)90083-G doi: 10.1016/0165-0114(92)90083-G
    [28] E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Set. Syst., 114 (2000), 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9 doi: 10.1016/S0165-0114(98)00244-9
    [29] G. Beliakov, H. Bustince, D. P. Goswami, U. K. Mukherjee, N. R. Pal, On averaging operators for Atanassov's intuitionistic fuzzy sets, Inf. Sci., 181 (2011), 1116–1124. https://doi.org/10.1016/j.ins.2010.11.024 doi: 10.1016/j.ins.2010.11.024
    [30] S. Broumi, Q-intuitionistic fuzzy soft sets, J. New Theory, 5 (2015), 80–91.
    [31] K. T. Atanassov, Review and new results on intuitionistic fuzzy sets, Int. J. Bioautomation, 20 (2016), 17–26.
    [32] K. Hur, H. W. Kang, H. K. Song, Intuitionistic fuzzy subgroups and subrings, Honam Math. J., 25 (2003), 19–41.
    [33] S. Kousar, T. Saleem, N. Kausar, D. Pamucar, G. M. Addis, Homomorphisms of lattice-valued intuitionistic fuzzy subgroup type-3, Comput. Intell. Neurosci., 2022 (2022), 1–11. https://doi.org/10.1155/2022/6847138 doi: 10.1155/2022/6847138
    [34] B. Sailaja, V. B. V. N. Prasad, The interaction between a Q-fuzzy normal subgroup and a Q-fuzzy characteristic subgroup, J. Math. Comput. Sci., 11 (2021), 819–831. https://doi.org/10.28919/jmcs/5166 doi: 10.28919/jmcs/5166
    [35] M. Yamin, P. K. Sharma, Intuitionistic fuzzy rings with operators, Int. J. Math. Comput. Sci., 6 (2018), 1860–1866. https://doi.org/10.18535/ijmcr/v6i2.01 doi: 10.18535/ijmcr/v6i2.01
    [36] N. A. Alhaleem, A. G. Ahmad, Intuitionistic anti fuzzy normal subrings over normed rings, Sains Malays., 51 (2022), 609–618. http://dx.doi.org/10.17576/jsm-2022-5102-24 doi: 10.17576/jsm-2022-5102-24
    [37] N. A. Alhaleem, A. G. Ahmad, Intuitionistic fuzzy normal subrings over normed rings, Int. J. Anal. Appl., 19 (2021), 341–359. https://doi.org/10.28924/2291-8639-19-2021-341 doi: 10.28924/2291-8639-19-2021-341
    [38] N. A. Alhaleem, A. G. Ahmad, Intuitionistic fuzzy normed subrings and intuitionistic fuzzy normed ideals, Mathematics, 8 (2020), 1–9. https://doi.org/10.3390/math8091594 doi: 10.3390/math8091594
    [39] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
    [40] F. Al-Sharqi, A. G. Ahmad, A. Al-Quran, Interval complex neutrosophic soft relations and their application in decision-making, J. Intell. Fuzzy Syst., 43 (2022), 745–771. https://doi.org/10.3233/JIFS-212422 doi: 10.3233/JIFS-212422
    [41] X. Yang, T. Mahmood, U. Ur Rehman, Bipolar complex fuzzy subgroups, Mathematics, 10 (2022), 2882. https://doi.org/10.3390/math10162882 doi: 10.3390/math10162882
    [42] H. Alolaiyan, H. A. Alshehri, M. H. Mateen, D. Pamucar, M. Gulzar, A novel algebraic structure of (α, β)-complex fuzzy subgroups, Entropy, 23 (2021), 1–16. https://doi.org/10.3390/e23080992 doi: 10.3390/e23080992
    [43] M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subrings, Int. J. Pure Appl. Math., 117 (2017), 563–577. https://doi.org/10.12732/ijpam.v117i4.1 doi: 10.12732/ijpam.v117i4.1
    [44] M. O. Alsarahead, A. G. Ahmad, Complex intuitionistic fuzzy subrings, Borneo Sci., 38 (2017), 24–37.
    [45] M. Gulzar, D. Alghazzawi, M. Haris Mateen, M. Premkumar, On some characterization of Q-complex fuzzy sub-rings, J. Math. Comput. Sci., 22 (2021), 295–305. https://doi.org/10.22436/jmcs.022.03.08 doi: 10.22436/jmcs.022.03.08
    [46] M. Gulzar, F. Dilawar, D. Alghazzawi, M. H. Mateen, A note on complex fuzzy subfield, Indones. J. Electr. Eng. Comput. Sci., 21 (2021), 1048–1056. https://doi.org/10.11591/ijeecs.v21.i2.pp1048-1056 doi: 10.11591/ijeecs.v21.i2.pp1048-1056
    [47] R. Muthuraj, K. H. Manikandan, P. M. S. Selvam, Intuitionistic Q-fuzzy normal HX group, J. Phys. Sci., 15 (2011), 95–102.
    [48] A. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, Int. Conf. Fundam. Appl. Sci., 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515
  • This article has been cited by:

    1. Adela Khamis, Abd Ghafur Ahmad, A note on direct product of complex intuitionistic fuzzy subfield, 2023, 45, 10641246, 2111, 10.3233/JIFS-230597
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1587) PDF downloads(88) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog