
Citation: Elisabetta Genovese, Thomas Thaler. The benefits of flood mitigation strategies: effectiveness of integrated protection measures[J]. AIMS Geosciences, 2020, 6(4): 459-472. doi: 10.3934/geosci.2020025
[1] | Mansour Shrahili, Mohamed Kayid . Uncertainty quantification based on residual Tsallis entropy of order statistics. AIMS Mathematics, 2024, 9(7): 18712-18731. doi: 10.3934/math.2024910 |
[2] | Ramy Abdelhamid Aldallal, Haroon M. Barakat, Mohamed Said Mohamed . Exploring weighted Tsallis extropy: Insights and applications to human health. AIMS Mathematics, 2025, 10(2): 2191-2222. doi: 10.3934/math.2025102 |
[3] | H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550 |
[4] | Mohamed Said Mohamed, Najwan Alsadat, Oluwafemi Samson Balogun . Continuous Tsallis and Renyi extropy with pharmaceutical market application. AIMS Mathematics, 2023, 8(10): 24176-24195. doi: 10.3934/math.20231233 |
[5] | Mohamed Said Mohamed, Haroon M. Barakat, Aned Al Mutairi, Manahil SidAhmed Mustafa . Further properties of Tsallis extropy and some of its related measures. AIMS Mathematics, 2023, 8(12): 28219-28245. doi: 10.3934/math.20231445 |
[6] | Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Wejdan Ali Alajlan, Ahmed Elshahhat . Entropy evaluation in inverse Weibull unified hybrid censored data with application to mechanical components and head-neck cancer patients. AIMS Mathematics, 2025, 10(1): 1085-1115. doi: 10.3934/math.2025052 |
[7] | Alaa M. Abd El-Latif, Hanan H. Sakr, Mohamed Said Mohamed . Fractional generalized cumulative residual entropy: properties, testing uniformity, and applications to Euro Area daily smoker data. AIMS Mathematics, 2024, 9(7): 18064-18082. doi: 10.3934/math.2024881 |
[8] | M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, A. H. Mansi, M. O. Mohamed . Inference and other aspects for q−Weibull distribution via generalized order statistics with applications to medical datasets. AIMS Mathematics, 2024, 9(4): 8311-8338. doi: 10.3934/math.2024404 |
[9] | Areej M. AL-Zaydi . On concomitants of generalized order statistics arising from bivariate generalized Weibull distribution and its application in estimation. AIMS Mathematics, 2024, 9(8): 22002-22021. doi: 10.3934/math.20241069 |
[10] | G. M. Mansour, M. A. Abd Elgawad, A. S. Al-Moisheer, H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. O. Mohamed . Bivariate Epanechnikov-Weibull distribution based on Sarmanov copula: properties, simulation, and uncertainty measures with applications. AIMS Mathematics, 2025, 10(5): 12689-12725. doi: 10.3934/math.2025572 |
Let Z be a random variable (RV) having probability density function (PDF) gZ(z). Shannon [33] defined entropy for a RV Z as
H(Z)=−∫∞0gZ(z)loggZ(z)dz. |
The non-additive generalization of Shannon's entropy of order η, suggested by Tsallis [37], is known as Tsallis entropy. This measure plays an important role in the uncertainty measurements of an RV Z, which is defined as
Hη(Z)=1η−1(1−∫∞0gηZ(z)dz), | (1.1) |
where 0<η≠1. When η⟶1, Tsallis entropy approaches Shannon entropy.
There are many applications of this new entropy, especially in physics [7], earthquakes [2], stock exchanges [20], plasma [23], and income distribution [35]. For more information about Tsallis entropy, we recommend reading Tsallis [38]. Several generalizations of Shannon entropy have been developed, which make these entropies sensitive to different kinds of probability distributions via the addition of a few additional parameters. A new measure of Shannon entropy, cumulative residual entropy (CRE), was introduced by Rao et al. [30] by taking into account the survival function instead of the probability density function. CRE is considered more stable and mathematically sound due to its more regular survival function (SF) than the PDF. Moreover, distribution functions exist even when probability density functions do not exist (e.g., Govindarajulu, power-Pareto, and generalized lambda distributions). CRE measure is based on SF ¯GZ(z). According to his definition, CRE is defined as
J(Z)=−∫∞0¯GZ(z)log¯GZ(z)dz. |
A cumulative residual Tsallis entropy (CRTE) of order η, which is represented by ζη(Z), was introduced by Sati and Gupta [32]. This CRTE is defined as
ζη(Z)=1η−1(1−∫∞0¯GηZ(z)dz),η>0,η≠1. | (1.2) |
When η⟶1, CRTE approaches CRE.
The CRTE may also be represented in terms of the mean residual life function of Z, which is another useful representation defined as
ζη(Z)=1ηE[m(Zη)]. | (1.3) |
Rajesh and Sunoj [31] unveiled an alternative measure for CRTE denoted by the order η, which is defined as
ξη(Z)=1η−1(∫∞0(¯GZ(z)−¯GηZ(z))dz),η>0,η≠1. | (1.4) |
The characteristics of the residual Tsallis entropy for order statistics (OSs) were studied by Shrahili and Kayid [34]. Mohamed [24] recently conducted a study on the CRTE and its dynamic form, which is based on the Farlie-Gumbel-Morgenstern (FGM) family. When prior information is presented in the form of marginal distributions, it is advantageous to model bivariate data using marginal distributions. The FGM family is one of these families that has been the subject of a significant amount of study. The FGM family is represented by the bivariate cumulative distribution function (CDF) GZ,X(z,x)=GZ(z)GX(x)[1+θ(1−GZ(z))(1−GX(x))], −1≤θ≤1, where GZ(z) and GX(x) are the marginal CDFs of two RVs Z and X, respectively. Literature indicates that several modifications have been implemented in the FGM family to increase the correlation between its marginals. Extensive families have been the subject of a great number of studies, each of which has a unique point of view. Examples of these studies are Barakat et al. [6], Abd Elgawad and Alawady [1], Alawady et al. [4], Chacko and Mary [10], Husseiny et al. [17,18], and Nagy et al. [26]. It was demonstrated by Huang and Kotz [15] that a single iteration may result in a doubling of the correlation between marginals in FGM. This was established through the use of a single iteration. The joint CDF iterated FGM (IFGM) family with a single iteration is denoted by IFGM(γ,ω) and defined as
GZ,X(z,x)=GZ(z)GX(x)[1+γ¯GZ(z)¯GX(x)+ωGZ(z)GX(x)¯GZ(z)¯GX(x)]. | (1.5) |
The corresponding joint PDF (JPDF) is given by
gZ,X(z,x)=gZ(z)gX(x)[1+γ(1−2GZ(z))(1−2GX(x))+ωGZ(z)GX(x)(2−3GZ(z))(2−3GX(x))]. | (1.6) |
Classical FGM can clearly be regarded as a special case of the IFGM(γ,ω) family (1.5)–(1.6) by putting ω=0. If the two marginals GZ(z) and GX(x) are continuous, Huang and Kotz [15] showed that the natural parameter space Ω (which is the admissible set of the parameters γ and ω that makes GZ,X(z,x) is a genuine CDF) is convex, where Ω={(γ,ω):−1≤γ≤1;−1≤γ+ω;ω≤3−γ+√9−6γ−3γ22}. Additionally, if the marginals are uniform, the correlation coefficient is ρ=γ3+ω12. Finally, the maximal correlation coefficient attained for this family is maxρ=0.434, versus maxρ=13=0.333 achieved for γ=1 in the original FGM [16]. The JPDF of the IFGM copula is plotted in Figure 1. Figure 1 illustrates subfigures that exhibit unique parameter values. Each subfigure from (a) to (f) had the parameter values arranged in a vector form (γ,ω).
As a unifying model for ascendingly ordered RVs, generalized order statistics (GOSs) have drawn more and more attention. The GOSs model was first presented by Kamps [21]. It is made up of several pertinent models of ordered RVs, such as order statistics (OSs), record values, sequential OSs (SOSs), and progressive censored type-Ⅱ OSs (POS-II). The RVs Z(r,n,˜m,κ),r=1,2,...,n, are called GOSs based on a continuous CDF GZ(z) with the PDF gZ(z), if their JPDF has the form
f(˜m,κ)1,...,n:n(z1,...,zn)=κGγn−1Z(zn)gZ(zn)n−1∏i=1γiGγi−γi+1−1Z(zi)gZ(zi), |
where G−1(0)≤z1≤...≤zn≤G−1(1), κ>0,γi=n+κ−i+∑n−1t=imt>0,i=1,…,n−1, and ˜m=(m1,m2,…,mn−1)∈R. In this paper, we assume that the parameters γ1,…,γn−1, and γn=κ, are pairwise different, i.e., γt≠γs,t≠s,t,s=1,2,...,n. We obtain a very wide subclass of GOSs that contains m-GOSs (where m1=...=mn−1=m), OSs, POS-II, and SOSs. The PDF of the rth GOS and the JPDF of the rth and sth GOSs, 1≤r<s≤n, respectively, are given by Kamps and Cramer [22].
fZ(r,n,˜m,κ)(z)=Crr∑i=1αi;r¯Gγi−1Z(z)gZ(z),z∈R,1≤r≤n, | (1.7) |
fZ(r,n;˜m,κ),Z(s,n;˜m,κ)(z,x)=Cs[s∑i=r+1αi;r;s(¯GZ(x)¯GZ(z))γi][r∑i=1αi;r¯GγiZ(z)]gZ(z)¯GZ(z)gZ(x)¯GZ(x),z<x, | (1.8) |
where ¯G=1−G is (SF) of G, Cr=r∏i=1γi,αi;r=r∏j=1j≠i1γj−γi,1≤i≤r≤n, and αi;r;s=s∏j=r+1j≠i1γj−γi,r+1≤i≤s≤n.
When dealing with selection and prediction difficulties, the meaning of concomitants is a vital tool. The idea of concomitants of OSs (COSs) was first proposed by David [11]. Refer to David and Nagaraja [12] for a comprehensive understanding of the COS. Many studies have been published on the concomitants of the GOSs (CGOSs) model. Researchers such as Alawady et al. [5], Beg and Ahsanullah [8], and Domma and Giordano [13] have studied this issue. The CGOSs models, however, have only been studied in a restricted number of studies when γt≠γs,t≠s,t,s=1,2,...,n. These include Abd Elgawad and Alawady [1], and Mohie El-Din et al. [25].
Let (Zi,Xi),i=1,2,...,n, be a random sample from a continuous bivariate CDF GZ,X(z,x). If we denote Z(r,n,˜m,κ) as the rth GOS of the Z sample values, then the X values associated with Z(r,n,˜m,κ) is called the concomitant of the rth GOS and is denoted by X[r,n,˜m,κ],r=1,2,...,n. The PDF of the concomitant of rth GOS is given by
g[r,n,˜m,κ](x)=∫∞−∞gX|Z(x|z)fZ(r,n,˜m,κ)(z)dz. | (1.9) |
More generally, for 1≤r<s≤n, the JPDF of the concomitants of rth and sth GOSs is given by
g[r,s,n,˜m,κ](x1,x2)=∫∞−∞∫x1−∞gX|Z(x1|z1)gX|Z(x2|z2)fZ(r,n,˜m,κ),Z(s,n,˜m,κ)(z1,z2)dz2dz1. | (1.10) |
Motivation and the purpose of the work
Mohamed [24] exhibited CRTE features in CGOSs that were based on FGM. Suter et al. [36] conducted another study that examined Tsallis entropy in CGOSs resulting from FGM. We generalize the previous articles by investigating Tsallis measures in CGOS from IFGM in more general scenarios. The objectives that inspired this study are as follows: Tsallis entropy measures based on CGOSs with interesting features are introduced in a broad framework. We considered sub models through a comprehensive numerical analysis, including OSs, record values, and k-record values. An in-depth analysis of reaching satisfactory results using the nonparametric estimate of these measures. More sophistication and flexibility are provided by the suggested distribution (IFGM) for modeling complicated data sets. This is why we used actual data in our analysis.
The arrangement of this paper is organized as follows: In Section 2, we obtain some characterization results on concomitants X[r,n,˜m,k] based on IFGM(γ,ω) as Tsallis entropy, CRTE, and alternate measure of CRTE. In Section 3, we extend and compute some examples of information measures for the concomitants X[r,n,˜m,k] from IFGM(γ,ω). We use the empirical method in combination with CGOS based on the IFGM family, to estimate the CRTE in Section 4. Finally, in Section 5, a bivariate real-world data set has been probed, and we examine the Tsallis entropy and CRTE. Finally, Section 6 concludes the work.
In this section, we derived Tsallis entropy, CRTE, and an alternative measure CRTE for CGOS based on the IFGM(γ,ω) family. First, we will point out some important results that we will use in deducing these measures. Husseiny et al. [17] derived the PDF, CDF, and SF for the concomitant X[r,n,˜m,k] of the rth GOS, respectively, as follows:
g[r,n,˜m,k](x)=(1+δ(˜m,k)r,n:1)gX(x)+(δ(˜m,k)r,n:2−δ(˜m,k)r,n:1)gV1(x)−δ(˜m,k)r,n:2gV2(x), | (2.1) |
G[r,n,˜m,k](x)=GX(x)[1+δ(˜m,k)r,n:1(1−GX(x))+δ(˜m,k)r,n:2(GX(x)−G2X(x))], | (2.2) |
and
¯G[r,n,˜m,k](x)=¯GX(x)[1−δ(˜m,k)r,n:1GX(x)−δ(˜m,k)r,n:2G2X(x)], | (2.3) |
where Vi∼Gi+1X,i=1,2, δ(˜m,k)r,n:1=γCr−1r∑i=1ai(r)(1−γi1+γi) and δ(˜m,k)r,n:2=ωCr−1r∑i=1ai(r)(1−γi1+γi)(3−γi2+γi).
Theorem 2.1. Tsallis entropy of concomitants of the rth GOS based on the IFGM(γ,ω) is given by
Hη[r,n,˜m,k](x)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(δ(˜m,k)r,n:1)j−p(δ(˜m,k)r,n:2)pEU[(gX(G−1X(U)))η−1(1−2U)j−p(2U−3U2)p]), |
where N(x)=∞, if x is non-integer, and N(x)=x, if x is integer, and U is a uniform RV on (0, 1).
Proof. Using (1.1) and (2.1), Tsallis entropy is provided by
Hη[r,n,˜m,k](x)=1η−1(1−∫∞0gη[r,n,˜m,k](x)dx)=1η−1(1−∫∞0gηX(x)(1+δ(˜m,k)r,n:1(1−2GX(x))+δ(˜m,k)r,n:2GX(x)(2−3GX(x)))ηdx)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(δ(˜m,k)r,n:1)j−p(δ(˜m,k)r,n:2)pE[gη−1X(x)(1−2GX(x))j−p(2GX(x)−3GX(x)2)p]). | (2.4) |
Remark 2.1. If ˜m=0 and k=1. The Tsallis entropy of the concomitant of the rth OS based on the IFGM(γ,ω) is given by
Hη[r:n](x)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(Ω1,r:n)j−p(Ω2,r:n)pE[gη−1X(x)(1−2GX(x))j−p(2GX(x)−3GX(x)2)p]) |
where Ω1,r:n=γ(n−2r+1)n+1 and Ω2,r:n=ω[r(2n−3r+1)(n+1)(n+2)], (cf. Husseiny et al. [17]).
Remark 2.2. If ˜m=−1 and k=1. Tsallis entropy of the concomitant of the nth upper record value based on IFGM(γ,ω) is given by
Hη[n](x)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(Δn:1)j−p(Δn:2)pE[gη−1X(x)(1−2GX(x))j−p(2GX(x)−3GX(x)2)p]), |
where Δn:1=γ(2−(n−1)−1) and Δn:2=ω(2−(n−2)−3−(n−1)−1).
Remark 2.3. Tsallis entropy for the concomitant of the nth upper k-record value based on IFGM(γ,ω) is given by
Hη[n,k](x)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(∇n,k:1)j−p(∇n,k:2)pE[gη−1X(x)(1−2GX(x))j−p(2GX(x)−3GX(x)2)p]), |
where ∇n,k:1=γ(2(kk+1)n−1) and ∇n,k:2=ω(4(kk+1)n−3(kk+2)n−1). (cf. Nagy and Alrasheedi [27]).
Theorem 2.2. CRTE for CGOS based on the IFGM(γ,ω) is given by
ζη[r,n,˜m,k](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sEU[(U)2i−s(1−U)ηgX(G−1X(U))]), |
where U is a uniform RV on (0, 1).
Proof. Using (1.2) and (2.3), then CRTE is provided by
ζη[r,n,˜m,k](x)=1η−1(1−∫∞0¯Gη[r,n,˜m,k](x)dx)=1η−1(1−∫∞0¯GηX(x)[1−GX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2GX(x))]ηdx)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). | (2.5) |
Remark 2.4. If ˜m=0 and k=1. The CRTE of the concomitant of the rth OS based on the IFGM(γ,ω) is given by
ζη[r:n](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(Ω1,r:n)s(Ω2,r:n)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
Remark 2.5. If ˜m=−1 and k=1. CRTE of the concomitant of the nth upper record value based on the IFGM(γ,ω) is given by
ζη[n](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(Δn:1)s(Δn:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
Remark 2.6. CRTE of the concomitant of the nth upper k-record value based on the IFGM(γ,ω) is given by
ζη[n,k](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(∇n,k:1)s(∇n,k:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
For the concomitant X[r,n,˜m,k] of the rth GOS, the moment of X[r,n,˜m,k] based on the IFGM(γ,ω) (cf. Husseiny et al. [17]) is given by
μ[r,n,˜m,k](x)=(1+δ(˜m,k)r,n:1)μX+(δ(˜m,k)r,n:2−δ(˜m,k)r,n:1)μV1−δ(˜m,k)r,n:2μV2. | (2.6) |
Theorem 2.3. The alternative measure of CRTE for CGOS based on IFGM(γ,ω) is given by
ξη[r,n,˜m,k](x)=1η−1(μ[r,n,˜m,k](x)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sEU[(U)2i−s(1−U)ηgX(G−1X(U))]), |
where U is a uniform RV on (0, 1).
Proof. Using (1.4) and (2.6), the alternative measure of CRTE is provided by
ξη[r,n,˜m,k](x)=1η−1(∫∞0(¯G[r,n,˜m,k](x)−¯Gη[r,n,˜m,k](x))dx)=1η−1(μ[r,n,˜m,k](x)−∫∞0¯GηX(x)[1−GX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2GX(x))]ηdx)=1η−1(μ[r,n,˜m,k](x)−N(η)∑i=0i∑s=0(ηi)(sp)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). | (2.7) |
Theorem 2.4. Let X[r,n,˜m,k] be a CGOS based on a continuous CDF GX(x) with the PDF gX(x). For all η>0, we have
ξη[r,n,˜m,k](x)=E(Xη[r,n,˜m,k])+E(Hη[r,n,˜m,k](X)), |
where
Hη[r,n,˜m,k](u)=∫u0m′[r,n,˜m,k](x)¯Gη−1[r,n,˜m,k](x)dx,u>0. |
Proof. Using (1.3) and m[r,n,˜m,k](x)λ[r,n,˜m,k](x)=1+m′[r,n,˜m,k](x), where
λ[r,n,˜m,k](x)=g[r,n,˜m,k](x)¯G[r,n,˜m,k](x). |
Then, we obtain
ξη[r,n,˜m,k](x)=∫∞0m[r,n,˜m,k](x)λ[r,n,˜m,k](x)¯Gη[r,n,˜m,k](x)dx=E(Xη[r,n,˜m,k])+∫∞0m′[r,n,˜m,k](x)¯Gη[r,n,˜m,k](x)dx, |
for all η>0. Upon using Fubini's theorem, we obtain
∫∞0m′[r,n,˜m,k](x)¯Gη[r,n,˜m,k](x)dx=∫∞0m′[r,n,˜m,k](x)dx∫∞xg[r,n,˜m,k](u)¯Gη−1[r,n,˜m,k](x)dudx=∫∞0g[r,n,˜m,k](u)∫u0m′[r,n,˜m,k](x)¯Gη−1[r,n,˜m,k](x)dxdu. |
This gives the desired result.
Remark 2.7. If ˜m=0 and k=1. The alternative measure of CRTE for concomitant of the rth OSs based on the IFGM(γ,ω) is given by
ξη[r:n](x)=1η−1(μ[r:n](x)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(Ω1,r:n)s(Ω2,r:n)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
Remark 2.8. If ˜m=−1 and k=1. The alternative measure of CRTE for concomitant of the nth upper record value based on the IFGM(γ,ω) is given by
ξη[n](x)=1η−1(μ[n](x)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(Δn:1)s(Δn:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
Remark 2.9. The alternative measure of CRTE for concomitant of the nth upper k-record value based on the IFGM(γ,ω) is given by
ξη[n,k](x)=1η−1(μ[n,k](x)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(∇n,k:1)s(∇n,k:2)i−sE[g−1X(x)(1−GX(x))η(GX(x))2i−s]). |
In this section, we study the Tsallis entropy, CRTE, and alternate measure of CRTE for CGOS in IFGM(γ,ω) for some popular distributions. We consider the extended Weibull (EW) family of distributions, which was developed by Gurvich et al. [14], as a case study. The CDF of EW is given by
GX(x)=1−e−τH(x;ε),x>0,τ>0, |
where H(x;ε) is a differentiable, nonnegative, continuous, and monotonically increasing function when x depends on the parameter vector ε. Also, H(x;ε)⟶0+ as x⟶0+ and H(x;ε)⟶+∞ as x⟶+∞. This CDF is denoted by EW (τ,ε) and has the following PDF:
gX(x)=τh(x;ε)e−τH(x;ε),x>0, |
where h(x;ε) is the derivative of H(x;ε) with respect to x. Several important models are included in the EW, including the Rayleigh, Pareto, Weibull, uniform, and exponential distributions (ED). For further details about this family, see Jafari et al. [19].
Example 3.1. Consider two variables, Z and X, that possess ED from IFGM (represented by IFGM-ED) (i.e. GX(x)=1−e−θx,x,θ>0). Based on (2.4), we get the Tsallis entropy in X[r,n,˜m,k] as follows:
Hη[r,n,˜m,k](x)=1η−1(1−N(η)∑j=0j∑p=0j−p∑l=0p∑u=0(ηj)(jp)(j−pl)(pu)(−1)l+u(2)j−p−l(3)p−u(δ(˜m,k)r,n:1)j−p(δ(˜m,k)r,n:2)pθη−1β(1+p,η+j−u−1)). |
Example 3.2. Consider Z and X to be power distributions derived from IFGM (i.e. GX(x)=xc,0≤x≤1,c>0). Then Hη[r,n,˜m,k](x) is given by
Hη[r,n,˜m,k](x)=1η−1(1−N(η)∑j=0j∑p=0j−p∑t=0p∑w=0(ηj)(jp)(j−pt)(pw)(−1)t(2)t+p−w(−3)w(δ(˜m,k)r,n:1)j−p(δ(˜m,k)r,n:2)pcη1−η+c(t+p+w+η)). |
Example 3.3. Suppose that Z and X have EW based on IFGM with (i.e. GX(x)=1−e−τH(x;ε),x>0,τ>0,). Then, we have the Tsallis entropy in X[r,n,˜m,k] as follows:
H(EW)η[r,n,˜m,k](x)=1η−1(1−N(η)∑j=0j∑p=0(ηj)(jp)(δ(˜m,k)r,n:1)j−p(δ(˜m,k)r,n:2)pE[[(τh(x;ε))e(−τH(x;ε))]η−1(2e(−τH(x;ε))−1)j−p(4e(−τH(x;ε))−3(e(−τH(x;ε)))2−1)p]). |
Example 3.4. Assume that Z and X both possess IFGM-ED. Based on (2.5), we obtain the CRTE in X[r,n,˜m,k] as follows:
ζη[r,n,˜m,k](x)=1θ(η−1)(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sβ(2i−s+1,η)). |
Example 3.5. Assume that the uniform distributions of Z and X come from an IFGM (i.e. GX(x)=x,0≤x≤1). Based on (2.5), we obtain the CRTE in X[r,n,˜m,k] as follows:
ζη[r,n,˜m,k](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sβ(2i−s+1,η+1)). |
Example 3.6. Let us say that Z and X have EW according to IFGM. From (2.5), we get the CRTE in X[r,n,˜m,k] as follows:
ζ(EW)η[r,n,˜m,k](x)=1η−1(1−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sE[(τh(x;ε)e−τH(x;ε))−1(e−τH(x;ε))η(1−e−τH(x;ε))2i−s]). |
Example 3.7. Assume that Z and X both possess IFGM-ED. Based on (2.7), we have the alternate measure of CRTE in X[r,n,˜m,k] as follows:
ξη[r,n,˜m,k](x)=1θ(η−1)((1−δ(˜m,k)r,n:12−δ(˜m,k)r,n:23)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sβ(2i−s+1,η)). |
Example 3.8. Assume that the uniform distributions of Z and X come from IFGM. Based on (2.7), we obtain the alternate measure of CRTE in X[r,n,˜m,k] as follows:
ξη[r,n,˜m,k](x)=1(η−1)(12(1−δ(˜m,k)r,n:13−δ(˜m,k)r,n:26)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sβ(2i−s+1,η+1)). |
Example 3.9. Let us say that Z and X have EW, according to IFGM. Based on (2.7), we obtain the alternate measure of CRTE in X[r,n,˜m,k] as follows:
ξη[r,n,˜m,k](x)=1η−1(μEW[r,n,˜m,k](x)−N(η)∑i=0i∑s=0(ηi)(is)(−1)2i−s(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)i−sE[(τh(x;ε)e−τH(x;ε))−1(e−τH(x;ε))η(1−e−τH(x;ε))2i−s]). |
As shown in Tables 1–4 of the IFGM-ED, the Tsallis entropy and the CRTE for X[r:n] and X[n] are presented. After running the numbers through MATHEMATICA version 12, we can deduce the following properties from Tables 1–4.
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.23536 | 0.23456 | 0.22795 | 0.22733 | 3 | 1 | 0.11068 | 0.10937 | 0.10798 | 0.10707 |
3 | 2 | 0.24673 | 0.2466 | 0.24559 | 0.24551 | 3 | 2 | 0.09946 | 0.09588 | 0.09301 | 0.09149 |
3 | 3 | 0.24888 | 0.24907 | 0.24972 | 0.24974 | 3 | 3 | 0.00306 | 0.04804 | 0.06282 | 0.06771 |
7 | 1 | 0.22023 | 0.21907 | 0.21008 | 0.20928 | 7 | 1 | 0.11495 | 0.11308 | 0.11223 | 0.11183 |
7 | 2 | 0.23621 | 0.23526 | 0.22701 | 0.2262 | 7 | 2 | 0.11074 | 0.109 | 0.1068 | 0.10522 |
7 | 3 | 0.24371 | 0.2432 | 0.23845 | 0.23797 | 7 | 3 | 0.10794 | 0.10384 | 0.09844 | 0.09471 |
7 | 4 | 0.2471 | 0.2469 | 0.24523 | 0.24506 | 7 | 4 | 0.09989 | 0.09348 | 0.08732 | 0.08372 |
7 | 5 | 0.24852 | 0.24852 | 0.24852 | 0.24852 | 7 | 5 | 0.0751 | 0.0751 | 0.0751 | 0.0751 |
7 | 6 | 0.24902 | 0.24916 | 0.24969 | 0.24971 | 7 | 6 | 0.00542 | 0.04396 | 0.05796 | 0.06282 |
7 | 7 | 0.24903 | 0.24935 | 0.24993 | 0.24993 | 7 | 7 | -0.17228 | -0.0084 | 0.02783 | 0.03836 |
9 | 1 | 0.21557 | 0.21442 | 0.20583 | 0.20508 | 9 | 1 | 0.1167 | 0.11456 | 0.11364 | 0.11326 |
9 | 2 | 0.23139 | 0.23026 | 0.22071 | 0.21979 | 9 | 2 | 0.11187 | 0.11031 | 0.10888 | 0.1079 |
9 | 3 | 0.24007 | 0.23928 | 0.23201 | 0.23126 | 9 | 3 | 0.10984 | 0.10723 | 0.10341 | 0.10059 |
9 | 4 | 0.24474 | 0.24428 | 0.24 | 0.23955 | 9 | 4 | 0.10703 | 0.10192 | 0.09523 | 0.09064 |
9 | 5 | 0.24717 | 0.24696 | 0.24514 | 0.24496 | 9 | 5 | 0.09999 | 0.09288 | 0.08576 | 0.08151 |
9 | 6 | 0.24838 | 0.24834 | 0.24803 | 0.24801 | 9 | 6 | 0.0826 | 0.07875 | 0.07607 | 0.07475 |
9 | 7 | 0.24893 | 0.24901 | 0.24938 | 0.2494 | 9 | 7 | 0.04208 | 0.05741 | 0.06448 | 0.06724 |
9 | 8 | 0.2491 | 0.24929 | 0.24985 | 0.24986 | 9 | 8 | -0.04679 | 0.02525 | 0.04694 | 0.05386 |
9 | 9 | 0.24901 | 0.24937 | 0.24994 | 0.24993 | 9 | 9 | -0.22959 | -0.02309 | 0.01896 | 0.03111 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.24877 | 0.249 | 0.24973 | 0.24976 | 2 | 0.00145 | 0.05054 | 0.06565 | 0.07051 |
3 | 0.24895 | 0.24931 | 0.24993 | 0.24993 | 3 | -0.1754 | -0.00544 | 0.03056 | 0.04099 |
4 | 0.24888 | 0.24934 | 0.24994 | 0.24993 | 4 | -0.33831 | -0.04564 | 0.00606 | 0.0216 |
5 | 0.24878 | 0.24933 | 0.24994 | 0.24992 | 5 | -0.44823 | -0.06915 | -0.00781 | 0.01218 |
6 | 0.24872 | 0.24932 | 0.24993 | 0.24992 | 6 | -0.51214 | -0.0817 | -0.01496 | 0.00829 |
7 | 0.24868 | 0.24931 | 0.24993 | 0.24992 | 7 | -0.54667 | -0.08814 | -0.01851 | 0.00677 |
8 | 0.24866 | 0.2493 | 0.24993 | 0.24991 | 8 | -0.56464 | -0.09139 | -0.02027 | 0.00617 |
9 | 0.24865 | 0.2493 | 0.24993 | 0.24991 | 9 | -0.57382 | -0.09301 | -0.02113 | 0.00593 |
10 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 10 | -0.57846 | -0.09382 | -0.02156 | 0.00582 |
11 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 11 | -0.58079 | -0.09423 | -0.02177 | 0.00577 |
12 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 12 | -0.58196 | -0.09443 | -0.02188 | 0.00575 |
13 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 13 | -0.58255 | -0.09453 | -0.02193 | 0.00574 |
14 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 14 | -0.58284 | -0.09458 | -0.02196 | 0.00573 |
15 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 15 | -0.58299 | -0.09461 | -0.02197 | 0.00573 |
16 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 16 | -0.58306 | -0.09462 | -0.02198 | 0.00573 |
17 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 17 | -0.5831 | -0.09463 | -0.02198 | 0.00573 |
18 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 18 | -0.58312 | -0.09463 | -0.02198 | 0.00573 |
19 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 19 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
20 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 20 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
21 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 21 | -0.58314 | -0.09463 | -0.02198 | 0.00573 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.43317 | 0.43238 | 0.42624 | 0.42568 | 3 | 1 | 0.09714 | 0.09603 | 0.0952 | 0.09477 |
3 | 2 | 0.40404 | 0.40318 | 0.39702 | 0.39651 | 3 | 2 | 0.10007 | 0.09975 | 0.09955 | 0.09945 |
3 | 3 | 0.32162 | 0.32909 | 0.36567 | 0.3678 | 3 | 3 | 0.10199 | 0.10251 | 0.10277 | 0.10289 |
7 | 1 | 0.44158 | 0.4411 | 0.4375 | 0.43719 | 7 | 1 | 0.09509 | 0.09389 | 0.09302 | 0.09258 |
7 | 2 | 0.43401 | 0.43307 | 0.42539 | 0.42465 | 7 | 2 | 0.0972 | 0.09578 | 0.09466 | 0.09406 |
7 | 3 | 0.42314 | 0.42183 | 0.41092 | 0.40986 | 7 | 3 | 0.09882 | 0.09775 | 0.0969 | 0.09645 |
7 | 4 | 0.40648 | 0.40515 | 0.3949 | 0.39398 | 7 | 4 | 0.10011 | 0.09958 | 0.0992 | 0.09901 |
7 | 5 | 0.37863 | 0.37863 | 0.37863 | 0.37863 | 7 | 5 | 0.10115 | 0.10115 | 0.10115 | 0.10115 |
7 | 6 | 0.32728 | 0.33319 | 0.36347 | 0.36531 | 7 | 6 | 0.10201 | 0.10245 | 0.10267 | 0.10277 |
7 | 7 | 0.22427 | 0.25007 | 0.35054 | 0.35503 | 7 | 7 | 0.10273 | 0.10352 | 0.10409 | 0.10451 |
9 | 1 | 0.44288 | 0.44248 | 0.43956 | 0.43931 | 9 | 1 | 0.09461 | 0.09351 | 0.09273 | 0.09234 |
9 | 2 | 0.43748 | 0.4367 | 0.4304 | 0.4298 | 9 | 2 | 0.09643 | 0.09495 | 0.09378 | 0.09317 |
9 | 3 | 0.43039 | 0.42925 | 0.41959 | 0.41864 | 9 | 3 | 0.09791 | 0.09651 | 0.09538 | 0.09476 |
9 | 4 | 0.42075 | 0.41932 | 0.40741 | 0.40626 | 9 | 4 | 0.09911 | 0.09808 | 0.09725 | 0.09682 |
9 | 5 | 0.40701 | 0.40558 | 0.3944 | 0.39339 | 9 | 5 | 0.10012 | 0.09954 | 0.09911 | 0.0989 |
9 | 6 | 0.3863 | 0.38566 | 0.38127 | 0.38092 | 9 | 6 | 0.10097 | 0.10083 | 0.10074 | 0.1007 |
9 | 7 | 0.353 | 0.35534 | 0.36876 | 0.36968 | 9 | 7 | 0.10169 | 0.10194 | 0.10208 | 0.10214 |
9 | 8 | 0.29611 | 0.30699 | 0.35753 | 0.3603 | 9 | 8 | 0.10232 | 0.10288 | 0.10318 | 0.10332 |
9 | 9 | 0.1942 | 0.22695 | 0.34802 | 0.35309 | 9 | 9 | 0.10286 | 0.10373 | 0.10449 | 0.10513 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.31766 | 0.32626 | 0.3671 | 0.3694 | 2 | 0.10198 | 0.10254 | 0.10284 | 0.10297 |
3 | 0.21824 | 0.24603 | 0.35185 | 0.35646 | 3 | 0.10272 | 0.10355 | 0.10418 | 0.10466 |
4 | 0.13412 | 0.18248 | 0.34541 | 0.35144 | 4 | 0.10305 | 0.10408 | 0.10545 | 0.10682 |
5 | 0.07755 | 0.14133 | 0.34267 | 0.34947 | 5 | 0.1032 | 0.10439 | 0.10658 | 0.10897 |
6 | 0.04423 | 0.11758 | 0.34147 | 0.34867 | 6 | 0.10327 | 0.10456 | 0.10737 | 0.11053 |
7 | 0.02598 | 0.10473 | 0.34094 | 0.34833 | 7 | 0.10331 | 0.10466 | 0.10785 | 0.11149 |
8 | 0.01638 | 0.098 | 0.34069 | 0.34818 | 8 | 0.10332 | 0.10471 | 0.10812 | 0.11203 |
9 | 0.01144 | 0.09456 | 0.34057 | 0.34812 | 9 | 0.10333 | 0.10474 | 0.10826 | 0.11231 |
10 | 0.00893 | 0.09281 | 0.34052 | 0.34809 | 10 | 0.10334 | 0.10475 | 0.10833 | 0.11246 |
11 | 0.00766 | 0.09193 | 0.34049 | 0.34807 | 11 | 0.10334 | 0.10476 | 0.10837 | 0.11253 |
12 | 0.00702 | 0.09148 | 0.34048 | 0.34806 | 12 | 0.10334 | 0.10476 | 0.10838 | 0.11257 |
13 | 0.0067 | 0.09126 | 0.34047 | 0.34806 | 13 | 0.10334 | 0.10477 | 0.10839 | 0.11259 |
14 | 0.00654 | 0.09115 | 0.34047 | 0.34806 | 14 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
15 | 0.00646 | 0.09109 | 0.34046 | 0.34806 | 15 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
16 | 0.00642 | 0.09107 | 0.34046 | 0.34806 | 16 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
17 | 0.0064 | 0.09105 | 0.34046 | 0.34806 | 17 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
18 | 0.00639 | 0.09105 | 0.34046 | 0.34806 | 18 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
19 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 19 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
20 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 20 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
21 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 21 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
22 | 0.00638 | 0.09104 | 0.34046 | 0.34806 | 22 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
● When γ=0.9, η=5, and θ=0.5, the value of Hη[r:n](x) goes up as n goes up. When γ=−0.5, η=10, and θ=1, the value of Hη[r:n](x) goes down as n goes up. But Hη[r:n](x) stays the same for all ω values when n=7 and r=5 (look at Table 1).
● We see that when γ is 0.9, η is 5, and θ is 0.5, and when γ is -0.5, η is 10, and θ is 1, the value of Hη[n](x) goes down as n goes up, and it almost stays the same when n=10 (look at Table 2).
● When γ=0.9, η=5, and θ=0.5, the value of ζη[r:n](x) goes down as n goes up. On the other hand, when γ=−0.5, η=10, and θ=1, the value of ζη[r:n](x) goes up as n goes up. It gets bigger as n gets bigger, but ζη[r:n](x) stays the same for all ω values when n=7 and r=5 (look at Table 3).
● When γ=0.9, η=5, and θ=0.5, the value of ζη[n](x) goes down as n goes up. When γ=−0.5, η=10, and θ=1, the value of ζη[n](x) goes up as n goes up, and the value of ζη[n](x) stays the same at n=22 (look at Table 4).
For the purpose of calculating the CRTE for concomitant X[r,n,˜m,k], we employ empirical estimators in this section. Next, we'll examine the issue of estimating the CRTE for CGOS using the empirical CRTE. Consider the IFGM sequence (Zi,Xi) for each i=1,2,...,n. In accordance with (2.7), the emperical CRTE of the set X[r,n,˜m,k] can be computed as follows:
ˆξη[r,n,˜m,k](x)=1η−1(∫∞0(ˆ¯G[r,n,˜m,k](x)−ˆ¯Gη[r,n,˜m,k](x))dx)=1η−1(∫∞0((1−ˆGX(x))[1−ˆGX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2ˆGX(x))]−(1−ˆGX(x))η[1−ˆGX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2ˆGX(x))]η)dx)=1η−1n−1∑j=1∫x(j+1)x(j)((1−ˆGX(x))[1−ˆGX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2ˆGX(x))]−(1−ˆGX(x))η[1−ˆGX(x)(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2ˆGX(x))]ηdx)=1η−1n−1∑j=1Δj((1−jn)[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]−(1−jn)η[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]η), |
where for any CDF G(.), the symbol ˆG(.) stands for the empirical CDF of G(.), and Δj=x(j+1)−x(j), j=1,2...,n−1, are the sample spacings based on ordered random samples of Xj.
Example 4.1. Define a random sample from the IFGM-ED as (Zi,Xi), where i ranges from 1 to n. The sample spacings, denoted by Δj, are considered to be independent RVs. Furthermore, Δj exhibits the ED with a mean of 1θ(n−j), where j ranges from 1 to n−1. For additional information, refer to Chandler [9] and Pyke [29]. Then the expected value and variance of the empirical CRTE in X⋆[r] are given by
E[ˆξη(X⋆[r])]=1θ(η−1)n−1∑j=11(n−j)((1−jn)[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]−(1−jn)η[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]η), | (4.1) |
Var[ˆξη(X⋆[r])]=1θ2(η−1)2n−1∑j=11(n−j)2((1−jn)[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]−(1−jn)η[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]η)2. | (4.2) |
Example 4.2. Again, for completeness, we study here the empirical CRTE of the concomitant X⋆[r] of the rth upper record value Z⋆r based on the IFGM copula. In this case, the sample spacings Δj, j=1,2,...,n−1, are independent, and each of them has the beta distribution with parameters 1 and n. According to Pyke [29], the expectation and variance of the empirical CRTE of the concomitant X⋆[r] are as follows:
E[ˆξη(X⋆[r])]=1(η−1)(n+1)n−1∑j=1((1−jn)[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]−(1−jn)η[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]η), |
Var[ˆξη(X⋆[r])]=n(η−1)(n+1)2(n+2)n−1∑j=1((1−jn)[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]−(1−jn)η[1−jn(δ(˜m,k)r,n:1−δ(˜m,k)r,n:2jn)]η)2. |
Figures 2 and 3 illustrate the relationship between CRTE and empirical CRTE in X[r:n] from IFGM-ED (γ,ω), at n=50. Figures 2 and 3 can be used to obtain the following properties:
(1) When the θ values are increased, the CRTE and the empirical CRTE have values that are practically identical to one another.
(2) At most ω and γ values, CRTE and empirical CRTE have identical results, particularly when ω=0 for all r values.
This section includes analyses of a real-world data set. The data set relates to n=50 simulated simple computer series systems consisting of a processor and a memory. The data was gathered and analyzed based on Oliveira et al. [28]. The data set contains n=50 simulated rudimentary computer systems with processors and memory. An operating computer will be able to operate when both parts are working properly (the processors and memory). Assume the system is nearing the end of its lifecycle. The degeneration advances rapidly in a short period of time [3]. In a short time (in hours), the degeneration advances rapidly. In the case of the first component, a deadly shock can destroy either it or the second component at random, due to the system's greater vulnerability to shocks. We fit the ED to the processor lifetime and memory lifetime separately. As an illustration of the data, Figures 4 and 5 provide a basic statistical analysis. The maximum likelihood estimates of the scale parameters (θi),i=1,2, are 1.24079 and 1.08616, γ=0.175473, and ω=2.16024. Table 5 examines the Tsallis entropy and CRTE for IFGM-ED(0.17543, 2.16024). For the concomitants X[r:50], r=1,2,24,25,49,50, i.e., the lower and upper extremes' concomitants, and the central values' concomitants. We observe that the Hη[r:50](x) and ζη[r:50](x) have maximum values at extremes.
r | 1 | 2 | 24 | 25 | 49 | 50 |
H5[r:50](x) | 0.0736041 | 0.066275 | 0.0909935 | 0.100391 | 0.23817 | 0.238162 |
ζ5[r:50](x) | 0.189322 | 0.188401 | 0.177055 | 0.177312 | 0.192772 | 0.193385 |
Given its simplicity and adaptability, IFGM surpasses most FGM generalizations, even though its efficiency is similar to some of those generalizations (such as the Huang\textendash Kotz FGM) in that it has a similar range of correlation coefficients. The CDFs used in this work were consistently formed by linearly combining simpler distributions, due to the advantages they offer. Tsallis entropy and its associated measures for concomitant were derived from IFGM, and a numerical analysis was conducted to uncover certain characteristics of these measures based on GOSs. Special cases were also extracted from this study, for example, OSs, record values, and k-record values. Furthermore, non-parametric estimators of CRTE were derived. The outcomes of an empirical examination of the CRTE are distinct. Finally, an illustrative analysis of a bivariate real-world data set was performed, and the proposed method performs exceptionally well. In the future work, some bivariate distribution families will be considered, including the Huang-kotz, Cambanis, and Sarmanov families, as well as various applications of the CRTE in CGOS. Additionally, we will investigate the quantile function based on Tsallis measures from concomitants. Also, for the estimation problem, we will discuss at least two estimation methods for this model: maximum likelihood and Besyain. Further, a Monte Carlo simulation will be conducted to test the estimator's performance against the empirical measure as well as the exact formula presented in this paper.
I. A. Husseiny: Conceptualization, Writing original draft, Formal analysis, Software, Investigation, Methodology, Supervision; M. Nagy: Validation, Resources, Writing-review & editing, Data curation, Methodology; A. H. Mansi: Writing-review & editing, Investigation; M. A. Alawady: Conceptualization, Formal analysis, Writing original draft, Software, Investigation, Methodology, Supervision. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was conducted under a project titled "Researchers Supporting Project", funded by King Saud University, Riyadh, Saudi Arabia under grant number (RSPD2024R969).
The authors are grateful to the editor and anonymous referees for their insightful comments and suggestions, which helped to improve the paper's presentation.
This research was conducted under a project titled "Researchers Supporting Project", funded by King Saud University, Riyadh, Saudi Arabia under grant number (RSPD2024R969).
The authors declare no conflict of interest.
[1] | Hallegatte S (2012) A cost effective solution to reduce disaster losses in developing countries hydro-meteorological services, early warning, and evacuation. Policy Research Working Paper, 6058, World Bank, Washington, DC. |
[2] | Osberghaus D (2014) The Determinants of Private Flood Mitigation Measures in Germany—Evidence from a Nationwide Survey. Ecol Econ 110: 36-50. |
[3] |
Aerts JCJH, Botzen WWJ, de Moel H, et al. (2013) Cost estimates for flood resilience and protection strategies in New York City. Ann N Y Acad Sci 1294: 1-104. doi: 10.1111/nyas.12200
![]() |
[4] |
Genovese E, Green C (2015) Assessment of storm surge damage to coastal settlements in Southeast Florida. J Risk Res 18: 407-427. doi: 10.1080/13669877.2014.896400
![]() |
[5] |
Lugeri N, Kundzewicz ZW, Genovese E, et al. (2010) River flood risk and adaptation in Europe—assessment of the present status. Mitigation Adapt Strategies Global Change 15: 621-639. doi: 10.1007/s11027-009-9211-8
![]() |
[6] | IPCC (2014) Climate Change 2014. Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA. |
[7] | IPCC (2014) Climate Change 2014. Mitigation of Climate Change. In Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA. |
[8] |
Muis S, Güneralp B, Jongman B, et al. (2015) Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Sci Total Environ 538: 445-457. doi: 10.1016/j.scitotenv.2015.08.068
![]() |
[9] |
Jongman B (2018) Effective adaptation to rising flood risk. Nat Commun 9: 1-3. doi: 10.1038/s41467-017-02088-w
![]() |
[10] | FEMA (1997) Report on Costs and Benefits of Natural Hazard Mitigation, Hazard Mitigation Technical Assistance Program. |
[11] | Newman JP, Maier HR, van Delden H, et al. (2014) Literature review on decision support systems for optimising long-term natural hazard mitigation policy and project portfolios. The University of Adelaide, Report N. 2014.009. |
[12] |
Ganderton PT (2005) Benefit-cost analysis' of disaster mitigation: application as a policy and decision-making tool. Mitigation Adapt Strategies Global Change 10: 445-465. doi: 10.1007/s11027-005-0055-6
![]() |
[13] |
Lindell MK, Prater CS (2003) Assessing Community Impacts of Natural Disasters. Nat Hazards Rev 4: 176-185. doi: 10.1061/(ASCE)1527-6988(2003)4:4(176)
![]() |
[14] |
Penning-Rowsell E, Wilson T (2006) Gauging the impact of natural hazards: The pattern and cost of emergency response during flood events. Trans Inst Brit Geogr 31: 99-115. doi: 10.1111/j.1475-5661.2006.00200.x
![]() |
[15] | Santato S, Bender S, Schaller M (2013) The European Floods Directive and Opportunities offered by Land Use Planning. CSC Report 12, Climate Service Centre, Germany. |
[16] |
Nones M (2017) Flood hazard maps in the European context. Water Int 42: 324-332. doi: 10.1080/02508060.2016.1269282
![]() |
[17] | Denton F, Wilbanks TJ, Abeysinghe AC, et al. (2014) Climate-resilient pathways: adaptation, mitigation, and sustainable development. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 1101-1131. |
[18] | CIS Floods Working Group (2012) Flood Risk Management, Economics and Decision Making Support. Working Group F of the Common Implementation Strategy for the Water Framework Directive. |
[19] |
Shreve CM, Kelman I (2014) Does Mitigation Save? Reviewing cost-benefit analyses of disaster risk reduction. Int J Disaster Risk Reduct 10: 213-235. doi: 10.1016/j.ijdrr.2014.08.004
![]() |
[20] | Vorhies F (2012) The economics of public sector investment in disaster risk reduction. A working paper based on a review of the current literature prepared for the United Nations International Strategy for Disaster Reduction (UNISDR). |
[21] | Benson C, Twigg J (2004) Measuring mitigation methodologies for assessing natural hazard risks and the net benefits of mitigation—a scoping study. International Federation of Red Cross and Red Crescent Societies/the ProVention Consortium, Geneva. |
[22] |
Meyer V, Becker N, Markantonis V, et al. (2013) Assessing the Costs of Natural Hazards - State-of-the-art and Knowledge Gaps. Nat Hazards Earth Syst Sci 13: 1351-1373. doi: 10.5194/nhess-13-1351-2013
![]() |
[23] |
Kreibich H, Bubeck P, Van Vliet M, et al. (2015) A review of damage-reducing measures to manage fluvial flood risks in a changing climate. Mitigation Adapt Strategies Global Change 20: 967-989. doi: 10.1007/s11027-014-9629-5
![]() |
[24] |
Bamberg S, Masson T, Brewitt K, et al. (2017) Threat, coping and flood prevention—A meta-analysis. J Environ Psychol 54: 116-126. doi: 10.1016/j.jenvp.2017.08.001
![]() |
[25] | Paton D (2018) Disaster risk reduction: Psychological perspectives on preparedness. Aust J Psychol 71: 327-341. |
[26] |
van Valkengoed AM, Steg L (2019) Meta-analyses of factors motivating climate change adaptation behaviour. Nat Clim Change 9: 158-163. doi: 10.1038/s41558-018-0371-y
![]() |
[27] | Attems MS, Thaler T, Genovese E, et al. (2020) Implementation of property level flood risk adaptation (PLFRA) measures: choices and decisions. WIREs Water 7: e1404. |
[28] | United Nations (1994) Yokohama strategy and plan of action for a safer world: Guidelines for natural disaster prevention, preparedness, and mitigation. In World Conf. on Natural Disaster Reduction, UN Dept. for Humanitarian Affairs, Geneva, Switzerland. |
[29] | United Nations Office for Disaster Risk Reduction (UNISDR) (2009) Global Assessment Rep. on Disaster Risk Reduction. United Nations Inter-Agency Secretariat of the International Strategy for Disaster Reduction (UN/ISDR), Geneva, Switzerland. |
[30] |
Bouwer LM, Papyrakis E, Poussin J, et al. (2014) The Costing of Measures for Natural Hazard Mitigation in Europe. Nat Hazards Rev 15: 04014010. doi: 10.1061/(ASCE)NH.1527-6996.0000133
![]() |
[31] | Jeuken A, Kind J, Slootjes N, et al. (2013) Cost-benefit analysis of flood risk management strategies for the Rhine-Meuse delta. In Klijn F, Schweckendiek T (eds), Comprehensive Flood Risk Management, Taylor & Francis Group. |
[32] |
Kind JM (2014) Economically efficient flood protection standards for the Netherlands. J Flood Risk Manage 7: 103-117. doi: 10.1111/jfr3.12026
![]() |
[33] |
Kousky C, Walls M (2014) Floodplain conservation as a flood mitigation strategy: Examining costs and benefits. Ecol Econ 104: 119-128. doi: 10.1016/j.ecolecon.2014.05.001
![]() |
[34] |
Koks EE, Bočkarjova M, de Moel H, et al. (2015) Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis. Risk Anal 35: 882-900. doi: 10.1111/risa.12300
![]() |
[35] | Brouwer R, Schaafsma M (2013) The economics of flood disaster management in the Netherlands. In Guha Sapir D, Santos I, Borde A, (Eds.), The economic impacts of natural disasters, Oxford University Press, Oxford, U.K. |
[36] |
Haer T, Wouter Botzen WJW, Aerts JCJH (2016) The effectiveness of flood risk communication strategies and the influence of social networks—Insights from an agent-based model. Environ Sci Policy 60: 44-52. doi: 10.1016/j.envsci.2016.03.006
![]() |
[37] | Boyd WJ (2001) Measuring the effectiveness of disaster preparedness training for the city of Bellingham, Washington. National Fire Academy. |
[38] | European Commission (2008) Assessing the potential for a comprehensive community strategy for the prevention of natural and manmade disasters. Final Report. |
[39] |
Carsell KM, Pingel ND, Ford DT (2004) Quantifying the benefit of a flood warning system. Nat Hazard Rev 5: 131-140. doi: 10.1061/(ASCE)1527-6988(2004)5:3(131)
![]() |
[40] |
Barredo JI (2009) Normalised flood losses in Europe: 1970-2006. Nat Hazards Earth Syst Sci 9: 97-104. doi: 10.5194/nhess-9-97-2009
![]() |
[41] | Strobl E (2011) The Economic Growth Impact of Hurricanes: Evidence from U.S. Coastal Counties. Rev Econ Stat 93: 575-589. |
[42] |
Pappenberger F, Cloke HL, Parker DJ, et al. (2015) The monetary benefit of early flood warnings in Europe. Environ Sci Policy 51: 278-291. doi: 10.1016/j.envsci.2015.04.016
![]() |
[43] |
Molinari D, Ballio F, Menoni S (2013) Modelling the benefits of flood emergency management measures in reducing damages: a case study on Sondrio, Italy. Nat Hazards Earth Syst Sci 13: 1913-1927. doi: 10.5194/nhess-13-1913-2013
![]() |
[44] |
Balbi S, Villa F, Mojtahed V, et al. (2015) A spatial Bayesian network model to assess the benefits of early warning for urban flood risk to people. Nat Hazards Earth Syst Sci Discuss 3: 6615-6649. doi: 10.5194/nhessd-3-6615-2015
![]() |
[45] | Penning-Rowsell E, Johnson C, Tunstall S, et al. (2005) The benefits of flood and coastal risk management: A manual of assessment techniques. Flood Hazard Research Centre, Middlesex University Press, London, U.K. |
[46] |
De Jong M, Helsloot I (2010) The effects of information and evacuation plans on civilian response during the Dutch national flooding exercise 'Waterproef'. Procedia Eng 3: 153-162. doi: 10.1016/j.proeng.2010.07.015
![]() |
[47] |
Pfurtscheller C, Thieken AH (2013) The price of safety: costs for mitigating and coping with Alpine hazards. Nat Hazards Earth Syst Sci 13: 2619-2637. doi: 10.5194/nhess-13-2619-2013
![]() |
[48] |
Bachner G, Seebauer S, Pfurtscheller C, et al. (2016) Assessing the benefits of organized voluntary emergency services. Disaster Prev Manage 25: 298-313. doi: 10.1108/DPM-09-2015-0203
![]() |
[49] | Warner K, Ranger N, Surminski S, et al. (2009) Adaptation to climate change: Linking disaster risk reduction and insurance. United Nations International Strategy for Disaster Reduction, Geneva, Switzerland. |
[50] | Burby RJ (1998) Natural Hazards and Land Use: An Introduction. In Burby RJ, Cooperating with Nature: Confronting Natural Hazards with Land Use Planning for Sustainable Communities. Joseph Henry Press: Washington, D.C. |
[51] |
Botzen WJW, Aerts JCJH, van den Bergh JCJM (2009) Willingness of homeowners to mitigate climate risk through insurance. Ecol Econ 68: 2265-2277. doi: 10.1016/j.ecolecon.2009.02.019
![]() |
[52] |
Hudson P, Botzen WJW, Feyen L, et al. (2016) Incentivising flood risk adaptation through risk based insurance premiums: Trade-offs between affordability and risk reduction. Ecol Econ 125: 1-13. doi: 10.1016/j.ecolecon.2016.01.015
![]() |
[53] | Holub M, Fuchs S (2008) Benefits of local structural protection to mitigate torrent-related hazards. In: Brebbia CA, Beritatos E, (Eds.), Risk Analysis VI: Simulation and Hazard Mitigation. WIT Press: Southampton, U.K., 401-411. |
[54] |
Brouwer R, van Ek R (2004) Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands. Ecol Econ 50: 1-21. doi: 10.1016/j.ecolecon.2004.01.020
![]() |
[55] |
Alfieri L, Feyen L, Di Baldassarre G (2016) Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies. Clim Change 136: 507-521. doi: 10.1007/s10584-016-1641-1
![]() |
[56] | De Moel H, van Vliet M, Aerts JCJH (2014) Evaluating the effect of flood damage-reducing measures: a case study of the unembanked area of Rotterdam, the Netherlands. Reg Environ Change 14: 895-908. |
[57] |
Lasage R, Veldkamp TIE, de Moel H, et al. (2014) Assessment of the effectiveness of flood adaption strategies for HCMC. Nat Hazards Earth Syst Sci 14: 1441-1457. doi: 10.5194/nhess-14-1441-2014
![]() |
[58] |
Thieken AH, Petrow T, Kreibich H, et al. (2006) Insurability and mitigation of flood losses in private households in Germany. Risk Anal 26: 383-395. doi: 10.1111/j.1539-6924.2006.00741.x
![]() |
[59] |
Thieken AH, Kreibich H, Müller M, et al. (2007) Coping with floods: Preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrol Sci J 52: 1016-1037. doi: 10.1623/hysj.52.5.1016
![]() |
[60] |
Kreibich H, Christenberger S, Schwarze R (2011) Economic motivation of households to undertake private precautionary measures against floods. Nat Hazards Earth Syst Sci 11: 309-321. doi: 10.5194/nhess-11-309-2011
![]() |
[61] |
Kreibich H, Thieken AH, Petrow T, et al. (2005) Flood loss reduction of private households due to building precautionary measures—lessons learned from the Elbe flood in August 2002. Nat Hazards Earth Syst Sci 5: 117-126. doi: 10.5194/nhess-5-117-2005
![]() |
[62] |
Sairam N, Schrö ter K, Lüdtke S, et al. (2019) Quantifying flood vulnerability reduction via private precaution. Earth's Future 7: 235-249. doi: 10.1029/2018EF000994
![]() |
[63] |
Holub M, Hübl J (2008) Local protection against mountain hazards—state of the art and future needs. Nat Hazards Earth Syst Sci 8: 81-99. doi: 10.5194/nhess-8-81-2008
![]() |
[64] | Thaler T, Seebauer S (2019) Bottom‑up citizen initiatives in natural hazard management: Why they appear and what they can do? Environ Sci Policy 94: 101-111. |
[65] |
Lindell MK, Perry RW (2012) The Protective Action Decision Model: theoretical modifications and additional evidence. Risk Anal 32: 616-632. doi: 10.1111/j.1539-6924.2011.01647.x
![]() |
[66] |
Rogers RW (1975) A Protection Motivation Theory of fear appeals and attitude change. J Psychol 91: 93-114. doi: 10.1080/00223980.1975.9915803
![]() |
[67] | Rogers RW (1983) Cognitive and physiological processes in fear appeals and attitude change: a revised theory of protection motivation. In Cacioppo BL, Petty RE (Eds.), Social psychophysiology: a sourcebook, London: The Guilford Press, 153-176. |
[68] |
Kasperson RE, Renn O, Slovic P (1988) The social amplification of risk: a conceptual framework. Risk Anal 8: 177-187. doi: 10.1111/j.1539-6924.1988.tb01168.x
![]() |
[69] |
Babcicky P, Seebauer S (2017) The two faces of social capital in private flood mitigation: opposing effects on risk perception, self-efficacy and coping capacity. J Risk Res 20: 1017-1037. doi: 10.1080/13669877.2016.1147489
![]() |
[70] |
Entorf H, Jensen A (2020) Willingness-to-pay for hazard safety—A case study on the valuation of flood risk reduction in Germany. Saf Sci 128: 104657. doi: 10.1016/j.ssci.2020.104657
![]() |
[71] |
Kellens W, Zaalberg R, Neutens T, et al. (2011) An analysis of the public perception of flood risk on the Belgian coast. Risk Anal 31: 1055-1068. doi: 10.1111/j.1539-6924.2010.01571.x
![]() |
[72] | Farabollini P, Lugeri FR, Lugeri N (2018) Humankind and Risk: a difficult history. In Antronico L, Marincioni F (Eds.), Natural Hazards and Disaster Risk Reduction Policies, 88-103. |
1. | Ghada Mohammed Mansour, Haroon Mohamed Barakat, Islam Abdullah Husseiny, Magdy Nagy, Ahmed Hamdi Mansi, Metwally Alsayed Alawady, Measures of cumulative residual Tsallis entropy for concomitants of generalized order statistics based on the Morgenstern family with application to medical data, 2025, 22, 1551-0018, 1572, 10.3934/mbe.2025058 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.23536 | 0.23456 | 0.22795 | 0.22733 | 3 | 1 | 0.11068 | 0.10937 | 0.10798 | 0.10707 |
3 | 2 | 0.24673 | 0.2466 | 0.24559 | 0.24551 | 3 | 2 | 0.09946 | 0.09588 | 0.09301 | 0.09149 |
3 | 3 | 0.24888 | 0.24907 | 0.24972 | 0.24974 | 3 | 3 | 0.00306 | 0.04804 | 0.06282 | 0.06771 |
7 | 1 | 0.22023 | 0.21907 | 0.21008 | 0.20928 | 7 | 1 | 0.11495 | 0.11308 | 0.11223 | 0.11183 |
7 | 2 | 0.23621 | 0.23526 | 0.22701 | 0.2262 | 7 | 2 | 0.11074 | 0.109 | 0.1068 | 0.10522 |
7 | 3 | 0.24371 | 0.2432 | 0.23845 | 0.23797 | 7 | 3 | 0.10794 | 0.10384 | 0.09844 | 0.09471 |
7 | 4 | 0.2471 | 0.2469 | 0.24523 | 0.24506 | 7 | 4 | 0.09989 | 0.09348 | 0.08732 | 0.08372 |
7 | 5 | 0.24852 | 0.24852 | 0.24852 | 0.24852 | 7 | 5 | 0.0751 | 0.0751 | 0.0751 | 0.0751 |
7 | 6 | 0.24902 | 0.24916 | 0.24969 | 0.24971 | 7 | 6 | 0.00542 | 0.04396 | 0.05796 | 0.06282 |
7 | 7 | 0.24903 | 0.24935 | 0.24993 | 0.24993 | 7 | 7 | -0.17228 | -0.0084 | 0.02783 | 0.03836 |
9 | 1 | 0.21557 | 0.21442 | 0.20583 | 0.20508 | 9 | 1 | 0.1167 | 0.11456 | 0.11364 | 0.11326 |
9 | 2 | 0.23139 | 0.23026 | 0.22071 | 0.21979 | 9 | 2 | 0.11187 | 0.11031 | 0.10888 | 0.1079 |
9 | 3 | 0.24007 | 0.23928 | 0.23201 | 0.23126 | 9 | 3 | 0.10984 | 0.10723 | 0.10341 | 0.10059 |
9 | 4 | 0.24474 | 0.24428 | 0.24 | 0.23955 | 9 | 4 | 0.10703 | 0.10192 | 0.09523 | 0.09064 |
9 | 5 | 0.24717 | 0.24696 | 0.24514 | 0.24496 | 9 | 5 | 0.09999 | 0.09288 | 0.08576 | 0.08151 |
9 | 6 | 0.24838 | 0.24834 | 0.24803 | 0.24801 | 9 | 6 | 0.0826 | 0.07875 | 0.07607 | 0.07475 |
9 | 7 | 0.24893 | 0.24901 | 0.24938 | 0.2494 | 9 | 7 | 0.04208 | 0.05741 | 0.06448 | 0.06724 |
9 | 8 | 0.2491 | 0.24929 | 0.24985 | 0.24986 | 9 | 8 | -0.04679 | 0.02525 | 0.04694 | 0.05386 |
9 | 9 | 0.24901 | 0.24937 | 0.24994 | 0.24993 | 9 | 9 | -0.22959 | -0.02309 | 0.01896 | 0.03111 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.24877 | 0.249 | 0.24973 | 0.24976 | 2 | 0.00145 | 0.05054 | 0.06565 | 0.07051 |
3 | 0.24895 | 0.24931 | 0.24993 | 0.24993 | 3 | -0.1754 | -0.00544 | 0.03056 | 0.04099 |
4 | 0.24888 | 0.24934 | 0.24994 | 0.24993 | 4 | -0.33831 | -0.04564 | 0.00606 | 0.0216 |
5 | 0.24878 | 0.24933 | 0.24994 | 0.24992 | 5 | -0.44823 | -0.06915 | -0.00781 | 0.01218 |
6 | 0.24872 | 0.24932 | 0.24993 | 0.24992 | 6 | -0.51214 | -0.0817 | -0.01496 | 0.00829 |
7 | 0.24868 | 0.24931 | 0.24993 | 0.24992 | 7 | -0.54667 | -0.08814 | -0.01851 | 0.00677 |
8 | 0.24866 | 0.2493 | 0.24993 | 0.24991 | 8 | -0.56464 | -0.09139 | -0.02027 | 0.00617 |
9 | 0.24865 | 0.2493 | 0.24993 | 0.24991 | 9 | -0.57382 | -0.09301 | -0.02113 | 0.00593 |
10 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 10 | -0.57846 | -0.09382 | -0.02156 | 0.00582 |
11 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 11 | -0.58079 | -0.09423 | -0.02177 | 0.00577 |
12 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 12 | -0.58196 | -0.09443 | -0.02188 | 0.00575 |
13 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 13 | -0.58255 | -0.09453 | -0.02193 | 0.00574 |
14 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 14 | -0.58284 | -0.09458 | -0.02196 | 0.00573 |
15 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 15 | -0.58299 | -0.09461 | -0.02197 | 0.00573 |
16 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 16 | -0.58306 | -0.09462 | -0.02198 | 0.00573 |
17 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 17 | -0.5831 | -0.09463 | -0.02198 | 0.00573 |
18 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 18 | -0.58312 | -0.09463 | -0.02198 | 0.00573 |
19 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 19 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
20 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 20 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
21 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 21 | -0.58314 | -0.09463 | -0.02198 | 0.00573 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.43317 | 0.43238 | 0.42624 | 0.42568 | 3 | 1 | 0.09714 | 0.09603 | 0.0952 | 0.09477 |
3 | 2 | 0.40404 | 0.40318 | 0.39702 | 0.39651 | 3 | 2 | 0.10007 | 0.09975 | 0.09955 | 0.09945 |
3 | 3 | 0.32162 | 0.32909 | 0.36567 | 0.3678 | 3 | 3 | 0.10199 | 0.10251 | 0.10277 | 0.10289 |
7 | 1 | 0.44158 | 0.4411 | 0.4375 | 0.43719 | 7 | 1 | 0.09509 | 0.09389 | 0.09302 | 0.09258 |
7 | 2 | 0.43401 | 0.43307 | 0.42539 | 0.42465 | 7 | 2 | 0.0972 | 0.09578 | 0.09466 | 0.09406 |
7 | 3 | 0.42314 | 0.42183 | 0.41092 | 0.40986 | 7 | 3 | 0.09882 | 0.09775 | 0.0969 | 0.09645 |
7 | 4 | 0.40648 | 0.40515 | 0.3949 | 0.39398 | 7 | 4 | 0.10011 | 0.09958 | 0.0992 | 0.09901 |
7 | 5 | 0.37863 | 0.37863 | 0.37863 | 0.37863 | 7 | 5 | 0.10115 | 0.10115 | 0.10115 | 0.10115 |
7 | 6 | 0.32728 | 0.33319 | 0.36347 | 0.36531 | 7 | 6 | 0.10201 | 0.10245 | 0.10267 | 0.10277 |
7 | 7 | 0.22427 | 0.25007 | 0.35054 | 0.35503 | 7 | 7 | 0.10273 | 0.10352 | 0.10409 | 0.10451 |
9 | 1 | 0.44288 | 0.44248 | 0.43956 | 0.43931 | 9 | 1 | 0.09461 | 0.09351 | 0.09273 | 0.09234 |
9 | 2 | 0.43748 | 0.4367 | 0.4304 | 0.4298 | 9 | 2 | 0.09643 | 0.09495 | 0.09378 | 0.09317 |
9 | 3 | 0.43039 | 0.42925 | 0.41959 | 0.41864 | 9 | 3 | 0.09791 | 0.09651 | 0.09538 | 0.09476 |
9 | 4 | 0.42075 | 0.41932 | 0.40741 | 0.40626 | 9 | 4 | 0.09911 | 0.09808 | 0.09725 | 0.09682 |
9 | 5 | 0.40701 | 0.40558 | 0.3944 | 0.39339 | 9 | 5 | 0.10012 | 0.09954 | 0.09911 | 0.0989 |
9 | 6 | 0.3863 | 0.38566 | 0.38127 | 0.38092 | 9 | 6 | 0.10097 | 0.10083 | 0.10074 | 0.1007 |
9 | 7 | 0.353 | 0.35534 | 0.36876 | 0.36968 | 9 | 7 | 0.10169 | 0.10194 | 0.10208 | 0.10214 |
9 | 8 | 0.29611 | 0.30699 | 0.35753 | 0.3603 | 9 | 8 | 0.10232 | 0.10288 | 0.10318 | 0.10332 |
9 | 9 | 0.1942 | 0.22695 | 0.34802 | 0.35309 | 9 | 9 | 0.10286 | 0.10373 | 0.10449 | 0.10513 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.31766 | 0.32626 | 0.3671 | 0.3694 | 2 | 0.10198 | 0.10254 | 0.10284 | 0.10297 |
3 | 0.21824 | 0.24603 | 0.35185 | 0.35646 | 3 | 0.10272 | 0.10355 | 0.10418 | 0.10466 |
4 | 0.13412 | 0.18248 | 0.34541 | 0.35144 | 4 | 0.10305 | 0.10408 | 0.10545 | 0.10682 |
5 | 0.07755 | 0.14133 | 0.34267 | 0.34947 | 5 | 0.1032 | 0.10439 | 0.10658 | 0.10897 |
6 | 0.04423 | 0.11758 | 0.34147 | 0.34867 | 6 | 0.10327 | 0.10456 | 0.10737 | 0.11053 |
7 | 0.02598 | 0.10473 | 0.34094 | 0.34833 | 7 | 0.10331 | 0.10466 | 0.10785 | 0.11149 |
8 | 0.01638 | 0.098 | 0.34069 | 0.34818 | 8 | 0.10332 | 0.10471 | 0.10812 | 0.11203 |
9 | 0.01144 | 0.09456 | 0.34057 | 0.34812 | 9 | 0.10333 | 0.10474 | 0.10826 | 0.11231 |
10 | 0.00893 | 0.09281 | 0.34052 | 0.34809 | 10 | 0.10334 | 0.10475 | 0.10833 | 0.11246 |
11 | 0.00766 | 0.09193 | 0.34049 | 0.34807 | 11 | 0.10334 | 0.10476 | 0.10837 | 0.11253 |
12 | 0.00702 | 0.09148 | 0.34048 | 0.34806 | 12 | 0.10334 | 0.10476 | 0.10838 | 0.11257 |
13 | 0.0067 | 0.09126 | 0.34047 | 0.34806 | 13 | 0.10334 | 0.10477 | 0.10839 | 0.11259 |
14 | 0.00654 | 0.09115 | 0.34047 | 0.34806 | 14 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
15 | 0.00646 | 0.09109 | 0.34046 | 0.34806 | 15 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
16 | 0.00642 | 0.09107 | 0.34046 | 0.34806 | 16 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
17 | 0.0064 | 0.09105 | 0.34046 | 0.34806 | 17 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
18 | 0.00639 | 0.09105 | 0.34046 | 0.34806 | 18 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
19 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 19 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
20 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 20 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
21 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 21 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
22 | 0.00638 | 0.09104 | 0.34046 | 0.34806 | 22 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
r | 1 | 2 | 24 | 25 | 49 | 50 |
H5[r:50](x) | 0.0736041 | 0.066275 | 0.0909935 | 0.100391 | 0.23817 | 0.238162 |
ζ5[r:50](x) | 0.189322 | 0.188401 | 0.177055 | 0.177312 | 0.192772 | 0.193385 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.23536 | 0.23456 | 0.22795 | 0.22733 | 3 | 1 | 0.11068 | 0.10937 | 0.10798 | 0.10707 |
3 | 2 | 0.24673 | 0.2466 | 0.24559 | 0.24551 | 3 | 2 | 0.09946 | 0.09588 | 0.09301 | 0.09149 |
3 | 3 | 0.24888 | 0.24907 | 0.24972 | 0.24974 | 3 | 3 | 0.00306 | 0.04804 | 0.06282 | 0.06771 |
7 | 1 | 0.22023 | 0.21907 | 0.21008 | 0.20928 | 7 | 1 | 0.11495 | 0.11308 | 0.11223 | 0.11183 |
7 | 2 | 0.23621 | 0.23526 | 0.22701 | 0.2262 | 7 | 2 | 0.11074 | 0.109 | 0.1068 | 0.10522 |
7 | 3 | 0.24371 | 0.2432 | 0.23845 | 0.23797 | 7 | 3 | 0.10794 | 0.10384 | 0.09844 | 0.09471 |
7 | 4 | 0.2471 | 0.2469 | 0.24523 | 0.24506 | 7 | 4 | 0.09989 | 0.09348 | 0.08732 | 0.08372 |
7 | 5 | 0.24852 | 0.24852 | 0.24852 | 0.24852 | 7 | 5 | 0.0751 | 0.0751 | 0.0751 | 0.0751 |
7 | 6 | 0.24902 | 0.24916 | 0.24969 | 0.24971 | 7 | 6 | 0.00542 | 0.04396 | 0.05796 | 0.06282 |
7 | 7 | 0.24903 | 0.24935 | 0.24993 | 0.24993 | 7 | 7 | -0.17228 | -0.0084 | 0.02783 | 0.03836 |
9 | 1 | 0.21557 | 0.21442 | 0.20583 | 0.20508 | 9 | 1 | 0.1167 | 0.11456 | 0.11364 | 0.11326 |
9 | 2 | 0.23139 | 0.23026 | 0.22071 | 0.21979 | 9 | 2 | 0.11187 | 0.11031 | 0.10888 | 0.1079 |
9 | 3 | 0.24007 | 0.23928 | 0.23201 | 0.23126 | 9 | 3 | 0.10984 | 0.10723 | 0.10341 | 0.10059 |
9 | 4 | 0.24474 | 0.24428 | 0.24 | 0.23955 | 9 | 4 | 0.10703 | 0.10192 | 0.09523 | 0.09064 |
9 | 5 | 0.24717 | 0.24696 | 0.24514 | 0.24496 | 9 | 5 | 0.09999 | 0.09288 | 0.08576 | 0.08151 |
9 | 6 | 0.24838 | 0.24834 | 0.24803 | 0.24801 | 9 | 6 | 0.0826 | 0.07875 | 0.07607 | 0.07475 |
9 | 7 | 0.24893 | 0.24901 | 0.24938 | 0.2494 | 9 | 7 | 0.04208 | 0.05741 | 0.06448 | 0.06724 |
9 | 8 | 0.2491 | 0.24929 | 0.24985 | 0.24986 | 9 | 8 | -0.04679 | 0.02525 | 0.04694 | 0.05386 |
9 | 9 | 0.24901 | 0.24937 | 0.24994 | 0.24993 | 9 | 9 | -0.22959 | -0.02309 | 0.01896 | 0.03111 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.24877 | 0.249 | 0.24973 | 0.24976 | 2 | 0.00145 | 0.05054 | 0.06565 | 0.07051 |
3 | 0.24895 | 0.24931 | 0.24993 | 0.24993 | 3 | -0.1754 | -0.00544 | 0.03056 | 0.04099 |
4 | 0.24888 | 0.24934 | 0.24994 | 0.24993 | 4 | -0.33831 | -0.04564 | 0.00606 | 0.0216 |
5 | 0.24878 | 0.24933 | 0.24994 | 0.24992 | 5 | -0.44823 | -0.06915 | -0.00781 | 0.01218 |
6 | 0.24872 | 0.24932 | 0.24993 | 0.24992 | 6 | -0.51214 | -0.0817 | -0.01496 | 0.00829 |
7 | 0.24868 | 0.24931 | 0.24993 | 0.24992 | 7 | -0.54667 | -0.08814 | -0.01851 | 0.00677 |
8 | 0.24866 | 0.2493 | 0.24993 | 0.24991 | 8 | -0.56464 | -0.09139 | -0.02027 | 0.00617 |
9 | 0.24865 | 0.2493 | 0.24993 | 0.24991 | 9 | -0.57382 | -0.09301 | -0.02113 | 0.00593 |
10 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 10 | -0.57846 | -0.09382 | -0.02156 | 0.00582 |
11 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 11 | -0.58079 | -0.09423 | -0.02177 | 0.00577 |
12 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 12 | -0.58196 | -0.09443 | -0.02188 | 0.00575 |
13 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 13 | -0.58255 | -0.09453 | -0.02193 | 0.00574 |
14 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 14 | -0.58284 | -0.09458 | -0.02196 | 0.00573 |
15 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 15 | -0.58299 | -0.09461 | -0.02197 | 0.00573 |
16 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 16 | -0.58306 | -0.09462 | -0.02198 | 0.00573 |
17 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 17 | -0.5831 | -0.09463 | -0.02198 | 0.00573 |
18 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 18 | -0.58312 | -0.09463 | -0.02198 | 0.00573 |
19 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 19 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
20 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 20 | -0.58313 | -0.09463 | -0.02198 | 0.00573 |
21 | 0.24864 | 0.2493 | 0.24993 | 0.24991 | 21 | -0.58314 | -0.09463 | -0.02198 | 0.00573 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||||
n | r | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | r | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
3 | 1 | 0.43317 | 0.43238 | 0.42624 | 0.42568 | 3 | 1 | 0.09714 | 0.09603 | 0.0952 | 0.09477 |
3 | 2 | 0.40404 | 0.40318 | 0.39702 | 0.39651 | 3 | 2 | 0.10007 | 0.09975 | 0.09955 | 0.09945 |
3 | 3 | 0.32162 | 0.32909 | 0.36567 | 0.3678 | 3 | 3 | 0.10199 | 0.10251 | 0.10277 | 0.10289 |
7 | 1 | 0.44158 | 0.4411 | 0.4375 | 0.43719 | 7 | 1 | 0.09509 | 0.09389 | 0.09302 | 0.09258 |
7 | 2 | 0.43401 | 0.43307 | 0.42539 | 0.42465 | 7 | 2 | 0.0972 | 0.09578 | 0.09466 | 0.09406 |
7 | 3 | 0.42314 | 0.42183 | 0.41092 | 0.40986 | 7 | 3 | 0.09882 | 0.09775 | 0.0969 | 0.09645 |
7 | 4 | 0.40648 | 0.40515 | 0.3949 | 0.39398 | 7 | 4 | 0.10011 | 0.09958 | 0.0992 | 0.09901 |
7 | 5 | 0.37863 | 0.37863 | 0.37863 | 0.37863 | 7 | 5 | 0.10115 | 0.10115 | 0.10115 | 0.10115 |
7 | 6 | 0.32728 | 0.33319 | 0.36347 | 0.36531 | 7 | 6 | 0.10201 | 0.10245 | 0.10267 | 0.10277 |
7 | 7 | 0.22427 | 0.25007 | 0.35054 | 0.35503 | 7 | 7 | 0.10273 | 0.10352 | 0.10409 | 0.10451 |
9 | 1 | 0.44288 | 0.44248 | 0.43956 | 0.43931 | 9 | 1 | 0.09461 | 0.09351 | 0.09273 | 0.09234 |
9 | 2 | 0.43748 | 0.4367 | 0.4304 | 0.4298 | 9 | 2 | 0.09643 | 0.09495 | 0.09378 | 0.09317 |
9 | 3 | 0.43039 | 0.42925 | 0.41959 | 0.41864 | 9 | 3 | 0.09791 | 0.09651 | 0.09538 | 0.09476 |
9 | 4 | 0.42075 | 0.41932 | 0.40741 | 0.40626 | 9 | 4 | 0.09911 | 0.09808 | 0.09725 | 0.09682 |
9 | 5 | 0.40701 | 0.40558 | 0.3944 | 0.39339 | 9 | 5 | 0.10012 | 0.09954 | 0.09911 | 0.0989 |
9 | 6 | 0.3863 | 0.38566 | 0.38127 | 0.38092 | 9 | 6 | 0.10097 | 0.10083 | 0.10074 | 0.1007 |
9 | 7 | 0.353 | 0.35534 | 0.36876 | 0.36968 | 9 | 7 | 0.10169 | 0.10194 | 0.10208 | 0.10214 |
9 | 8 | 0.29611 | 0.30699 | 0.35753 | 0.3603 | 9 | 8 | 0.10232 | 0.10288 | 0.10318 | 0.10332 |
9 | 9 | 0.1942 | 0.22695 | 0.34802 | 0.35309 | 9 | 9 | 0.10286 | 0.10373 | 0.10449 | 0.10513 |
γ=0.9,η=5,θ=0.5 | γ=−0.5,η=10,θ=1 | ||||||||
n | ω=−1.8 | ω=−1.4 | ω=1.2 | ω=1.4 | n | ω=−0.4 | ω=1.4 | ω=2.5 | ω=3 |
2 | 0.31766 | 0.32626 | 0.3671 | 0.3694 | 2 | 0.10198 | 0.10254 | 0.10284 | 0.10297 |
3 | 0.21824 | 0.24603 | 0.35185 | 0.35646 | 3 | 0.10272 | 0.10355 | 0.10418 | 0.10466 |
4 | 0.13412 | 0.18248 | 0.34541 | 0.35144 | 4 | 0.10305 | 0.10408 | 0.10545 | 0.10682 |
5 | 0.07755 | 0.14133 | 0.34267 | 0.34947 | 5 | 0.1032 | 0.10439 | 0.10658 | 0.10897 |
6 | 0.04423 | 0.11758 | 0.34147 | 0.34867 | 6 | 0.10327 | 0.10456 | 0.10737 | 0.11053 |
7 | 0.02598 | 0.10473 | 0.34094 | 0.34833 | 7 | 0.10331 | 0.10466 | 0.10785 | 0.11149 |
8 | 0.01638 | 0.098 | 0.34069 | 0.34818 | 8 | 0.10332 | 0.10471 | 0.10812 | 0.11203 |
9 | 0.01144 | 0.09456 | 0.34057 | 0.34812 | 9 | 0.10333 | 0.10474 | 0.10826 | 0.11231 |
10 | 0.00893 | 0.09281 | 0.34052 | 0.34809 | 10 | 0.10334 | 0.10475 | 0.10833 | 0.11246 |
11 | 0.00766 | 0.09193 | 0.34049 | 0.34807 | 11 | 0.10334 | 0.10476 | 0.10837 | 0.11253 |
12 | 0.00702 | 0.09148 | 0.34048 | 0.34806 | 12 | 0.10334 | 0.10476 | 0.10838 | 0.11257 |
13 | 0.0067 | 0.09126 | 0.34047 | 0.34806 | 13 | 0.10334 | 0.10477 | 0.10839 | 0.11259 |
14 | 0.00654 | 0.09115 | 0.34047 | 0.34806 | 14 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
15 | 0.00646 | 0.09109 | 0.34046 | 0.34806 | 15 | 0.10334 | 0.10477 | 0.1084 | 0.1126 |
16 | 0.00642 | 0.09107 | 0.34046 | 0.34806 | 16 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
17 | 0.0064 | 0.09105 | 0.34046 | 0.34806 | 17 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
18 | 0.00639 | 0.09105 | 0.34046 | 0.34806 | 18 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
19 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 19 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
20 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 20 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
21 | 0.00639 | 0.09104 | 0.34046 | 0.34806 | 21 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
22 | 0.00638 | 0.09104 | 0.34046 | 0.34806 | 22 | 0.10334 | 0.10477 | 0.1084 | 0.11261 |
r | 1 | 2 | 24 | 25 | 49 | 50 |
H5[r:50](x) | 0.0736041 | 0.066275 | 0.0909935 | 0.100391 | 0.23817 | 0.238162 |
ζ5[r:50](x) | 0.189322 | 0.188401 | 0.177055 | 0.177312 | 0.192772 | 0.193385 |