Entropy is a scientific term that finds applications in various domains, such as the laws of thermodynamics, where it was initially discovered, as well as statistical physics and information theory. We used unified hybrid censored data to investigate some inverse Weibull distribution entropy metrics. Entropy is defined using three measures: Rényi, Shannon, and Tsallis entropy. The classical estimates of the entropy measures were developed using the unified hybrid censored data, which included both point and approximation confidence intervals. The Bayesian method utilized the Markov Chain Monte Carlo sampling technique to develop Bayesian estimations. This was done by employing two loss functions, namely squared error and general entropy loss functions. Additionally, we delved into the investigation of Bayes credible intervals. Monte Carlo simulations were applied to explain how the estimates functioned at different sample sizes and censoring strategies via some accuracy criteria. Several observations were made in light of the simulation results. To provide a clear explanation of the offered methodologies, two applications using mechanical and cancer data sets were investigated.
Citation: Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Wejdan Ali Alajlan, Ahmed Elshahhat. Entropy evaluation in inverse Weibull unified hybrid censored data with application to mechanical components and head-neck cancer patients[J]. AIMS Mathematics, 2025, 10(1): 1085-1115. doi: 10.3934/math.2025052
Entropy is a scientific term that finds applications in various domains, such as the laws of thermodynamics, where it was initially discovered, as well as statistical physics and information theory. We used unified hybrid censored data to investigate some inverse Weibull distribution entropy metrics. Entropy is defined using three measures: Rényi, Shannon, and Tsallis entropy. The classical estimates of the entropy measures were developed using the unified hybrid censored data, which included both point and approximation confidence intervals. The Bayesian method utilized the Markov Chain Monte Carlo sampling technique to develop Bayesian estimations. This was done by employing two loss functions, namely squared error and general entropy loss functions. Additionally, we delved into the investigation of Bayes credible intervals. Monte Carlo simulations were applied to explain how the estimates functioned at different sample sizes and censoring strategies via some accuracy criteria. Several observations were made in light of the simulation results. To provide a clear explanation of the offered methodologies, two applications using mechanical and cancer data sets were investigated.
| [1] | R. Clausius, The mechanical theory of heat, London, UK: McMillan and Co., 1865. |
| [2] |
C. E. Shannon, A mathematical theory of communication, The Bell System Technical Journal, 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
|
| [3] |
J. M. Amigó, S. G. Balogh, S. Hernández, A brief review of generalized entropies, Entropy, 20 (2018), 813. https://doi.org/10.3390/e20110813 doi: 10.3390/e20110813
|
| [4] | A. Rényi, On measures of entropy and information, In: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, volume 1: contributions to the theory of statistics, 1961,547–561. |
| [5] |
C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys., 52 (1988), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
|
| [6] |
R. A. Bantan, M. Elgarhy, C. Chesneau, F. Jamal, Estimation of entropy for inverse Lomax distribution under multiple censored data, Entropy, 22 (2020), 601. https://doi.org/10.3390/e22060601 doi: 10.3390/e22060601
|
| [7] |
A. A. Al-Babtain, I. Elbatal, C. Chesneau, M. Elgarhy, Estimation of different types of entropies for the Kumaraswamy distribution, PLoS ONE, 16 (2021), e0249027. https://doi.org/10.1371/journal.pone.0249027 doi: 10.1371/journal.pone.0249027
|
| [8] |
T. Brochet, J. Lapuyade-Lahorgue, A. Huat, S. Thureau, D. Pasquier, I. Gardin, et al., A quantitative comparison between Shannon and Tsallis–Havrda–Charvat entropies applied to cancer outcome prediction, Entropy, 24 (2022), 436. https://doi.org/10.3390/e24040436 doi: 10.3390/e24040436
|
| [9] |
H. Okasha, M. Nassar, Product of spacing estimation of entropy for inverse Weibull distribution under progressive type-Ⅱ censored data with applications, J. Taibah Univ. Sci., 16 (2022), 259–269. https://doi.org/10.1080/16583655.2022.2046945 doi: 10.1080/16583655.2022.2046945
|
| [10] |
H. Ren, X. Hu, Bayesian estimations of Shannon entropy and Rényi entropy of inverse Weibull distribution, Mathematics, 11 (2023), 2483. https://doi.org/10.3390/math11112483 doi: 10.3390/math11112483
|
| [11] |
F. M. A. Alam, M. Nassar, On entropy estimation of inverse Weibull distribution under improved adaptive progressively Type-Ⅱ censoring with applications, Axioms, 12 (2023), 751. https://doi.org/10.3390/axioms12080751 doi: 10.3390/axioms12080751
|
| [12] |
E. A. Ahmed, M. El-Morshedy, L. A. Al-Essa, M. S. Eliwa, Statistical inference on the entropy measures of gamma distribution under progressive censoring: EM and MCMC algorithms, Mathematics, 11 (2023), 2298. https://doi.org/10.3390/math11102298 doi: 10.3390/math11102298
|
| [13] |
A. Feutrill, M. Roughan, A review of Shannon and differential entropy rate estimation, Entropy, 23 (2021), 1046. https://doi.org/10.3390/e23081046 doi: 10.3390/e23081046
|
| [14] |
A. Z. Keller, M. T. Goblin, N. R. Farnworth, Reliability analysis of commercial vehicle engines, Reliability Engineering, 10 (1985), 15–25. https://doi.org/10.1016/0143-8174(85)90039-3 doi: 10.1016/0143-8174(85)90039-3
|
| [15] |
P. Xiuyun, Y. Zaizai, Bayesian estimation and prediction for the inverse Weibull distribution under general progressive censoring, Commun. Stat.-Theor. Meth., 45 (2016), 621–635. https://doi.org/10.1080/03610926.2013.834452 doi: 10.1080/03610926.2013.834452
|
| [16] | K. Lee, Estimation of entropy of the inverse Weibull distribution under generalized progressive hybrid censored data, Journal of the Korean Data and Information Science Society, 28 (2017), 659–668. |
| [17] |
A. S. Hassan, A. N. Zaky, Estimation of entropy for inverse Weibull distribution under multiple censored data, J. Taibah Univ. Sci., 13 (2019), 331–337. https://doi.org/10.1080/16583655.2019.1576493 doi: 10.1080/16583655.2019.1576493
|
| [18] |
N. Jana, S. Bera, Interval estimation of multicomponent stress–strength reliability based on inverse Weibull distribution, Math. Comput. Simulat., 191 (2022), 95–119. https://doi.org/10.1016/j.matcom.2021.07.026 doi: 10.1016/j.matcom.2021.07.026
|
| [19] | M. Maswadah, An optimal point estimation method for the inverse Weibull model parameters using the Runge-Kutta method, Aligarh Journal of Statistics, 41 (2021), 1–22. |
| [20] |
M. Kayid, M. A. Alshehri, Modified maximum likelihood estimation of the inverse Weibull model, Axioms, 12 (2023), 961. https://doi.org/10.3390/axioms12100961 doi: 10.3390/axioms12100961
|
| [21] |
Z. Mou, G. Liu, J.-Y. Chiang, S. Chen, Inference on the reliability of inverse Weibull with multiply Type-Ⅰ censored data, J. Stat. Comput. Sim., 94 (2024), 2189–2209. https://doi.org/10.1080/00949655.2024.2324366 doi: 10.1080/00949655.2024.2324366
|
| [22] |
B. Epstein, Truncated life tests in the exponential case, Ann. Math. Statist., 25 (1954), 555–564. https://doi.org/10.1214/aoms/1177728723 doi: 10.1214/aoms/1177728723
|
| [23] |
A. Childs, B. Chandrasekar, N. Balakrishnan, D. Kundu, Exact likelihood inference based on Type-Ⅰ and Type-Ⅱ hybrid censored samples from the exponential distribution, Ann. Inst. Stat. Math., 55 (2003), 319–330. https://doi.org/10.1007/BF02530502 doi: 10.1007/BF02530502
|
| [24] |
B. Chandrasekar, A. Childs, N. Balakrishnan, Exact likelihood inference for the exponential distribution under generalized Type-Ⅰ and Type-Ⅱ hybrid censoring, Nav. Res. Log., 51 (2004), 994–1004. https://doi.org/10.1002/nav.20038 doi: 10.1002/nav.20038
|
| [25] |
N. Balakrishnan, A. Rasouli, N. Sanjari Farsipour, Exact likelihood inference based on an unified hybrid censored sample from the exponential distribution, J. Stat. Comput. Sim., 78 (2008), 475–488. https://doi.org/10.1080/00949650601158336 doi: 10.1080/00949650601158336
|
| [26] |
J. Yu, W. Gui, Y. Shan, Statistical inference on the Shannon entropy of inverse Weibull distribution under the progressive first-failure censoring, Entropy, 21 (2019), 1209. https://doi.org/10.3390/e21121209 doi: 10.3390/e21121209
|
| [27] |
R. Xu, W. Gui, Entropy estimation of inverse Weibull distribution under adaptive type-Ⅱ progressive hybrid censoring schemes, Symmetry, 11 (2019), 1463. https://doi.org/10.3390/sym11121463 doi: 10.3390/sym11121463
|
| [28] |
K. Lee, Bayesian and maximum likelihood estimation of entropy of the inverse Weibull distribution under generalized type Ⅰ progressive hybrid censoring, Commun. Stat. Appl. Meth., 27 (2020), 469–486. https://doi.org/10.29220/CSAM.2020.27.4.469 doi: 10.29220/CSAM.2020.27.4.469
|
| [29] |
S. F. Ateya, Estimation under inverse Weibull distribution based on Balakrishnan's unified hybrid censored scheme, Commun. Stat.-Simul. Comput., 46 (2017), 3645–3666. https://doi.org/10.1080/03610918.2015.1099666 doi: 10.1080/03610918.2015.1099666
|
| [30] |
Y. E. Jeon, S. B. Kang, Estimation of the Rayleigh distribution under unified hybrid censoring, Aust. J. Stat., 50 (2021), 59–73. https://doi.org/10.17713/AJS.V50I1.990 doi: 10.17713/AJS.V50I1.990
|
| [31] |
A. Alrashidi, A. Rabie, A. A. Mahmoud, S. G. Nasr, M. S. Mustafa, A. Al Mutairi, et al., Exponentiated gamma constant-stress partially accelerated life tests with unified hybrid censored data: statistical inferences, Alex. Eng. J., 88 (2024), 268–275. https://doi.org/10.1016/j.aej.2023.12.066 doi: 10.1016/j.aej.2023.12.066
|
| [32] | W. H. Greene, Econometric analysis, 7 Eds., Upper Saddle River, New Jersey: Pearson Prentice-Hall, 2012. |
| [33] |
A. Elshahhat, W. S. Abu El Azm, Statistical reliability analysis of electronic devices using generalized progressively hybrid censoring plan, Qual. Reliab. Eng. Int., 38 (2022), 1112–1130. https://doi.org/10.1002/qre.3058 doi: 10.1002/qre.3058
|
| [34] |
S. Zhou, A. Xu, Y. Tang, L. Shen, Fast Bayesian inference of reparameterized gamma process with random effects, IEEE Trans. Reliab., 73 (2024), 399–412. https://doi.org/10.1109/TR.2023.3263940 doi: 10.1109/TR.2023.3263940
|
| [35] |
A. Henningsen, O. Toomet, maxLik: A package for maximum likelihood estimation in R, Comput. Stat., 26 (2011), 443–458. https://doi.org/10.1007/s00180-010-0217-1 doi: 10.1007/s00180-010-0217-1
|
| [36] | M. Plummer, N. Best, K. Cowles, K. Vines, CODA: convergence diagnosis and output analysis for MCMC, R News, 6 (2006), 7–11. |
| [37] |
A. Elshahhat, B. R. Elemary, Analysis for Xgamma parameters of life under Type-Ⅱ adaptive progressively hybrid censoring with applications in engineering and chemistry, Symmetry, 13 (2021), 2112. https://doi.org/10.3390/sym13112112 doi: 10.3390/sym13112112
|
| [38] |
R. Alotaibi, M. Nassar, Z. A. Khan, A. Elshahhat, Statistical analysis of stress–strength in a newly inverted Chen model from adaptive progressive Type-Ⅱ censoring and modelling on light-emitting diodes and pump motors, AIMS Math., 9 (2024), 34311–34355. https://doi.org/10.3934/math.20241635 doi: 10.3934/math.20241635
|
| [39] |
M. Nassar, R. Alotaibi, A. Elshahhat, E‐Bayesian estimation using spacing function for inverse Lindley adaptive Type‐Ⅰ progressively censored samples: comparative study with applications, Appl. Bionics Biomech., 2024 (2024), 5567457. https://doi.org/10.1155/2024/5567457 doi: 10.1155/2024/5567457
|
| [40] |
R. Alotaibi, M. Nassar, Z. A. Khan, A. Elshahhat, Analysis of Weibull progressively first-failure censored data with beta-binomial removals, AIMS Math., 9 (2024), 24109–24142. https://doi.org/10.3934/math.20241172 doi: 10.3934/math.20241172
|
| [41] |
I. Elbatal, M. Nassar, A. B. Ghorbal, L. S. G. Diab, A. Elshahhat, Bayesian and E-Bayesian reliability analysis of improved adaptive Type-Ⅱ progressive censored inverted Lindley data, IEEE Access, 12 (2024), 101829–101841. https://doi.org/10.1109/ACCESS.2024.3408042 doi: 10.1109/ACCESS.2024.3408042
|
| [42] |
R. Alotaibi, M. Nassar, A. Elshahhat, Analysis of reliability indicators for inverted Lomax model via improved adaptive Type‐Ⅱ progressive censoring plan with applications, Complexity, 2024 (2024), 4848673. https://doi.org/10.1155/2024/4848673 doi: 10.1155/2024/4848673
|
| [43] |
M. Nassar, A. Elshahhat, Estimation procedures and optimal censoring schemes for an improved adaptive progressively Type-Ⅱ censored Weibull distribution, J. Appl. Stat., 51 (2024), 1664–1688. https://doi.org/10.1080/02664763.2023.2230536 doi: 10.1080/02664763.2023.2230536
|
| [44] | D. N. P. Murthy, M. Xie, R. Jiang, Weibull models, Hoboken, NJ, USA: Wiley, 2004. https://doi.org/10.1002/047147326X |
| [45] |
H. S. Mohammed, A. Elshahhat, R. Alotaibi, Inferences of inverted gompertz parameters from an adaptive Type-Ⅱ progressive hybrid censoring, Phys. Scr., 98 (2023), 105222. https://doi.org/10.1088/1402-4896/acf5ad doi: 10.1088/1402-4896/acf5ad
|
| [46] |
B. Efron, Logistic regression, survival analysis, and the Kaplan-Meier curve, J. Amer. Stat. Assoc., 83 (1988), 414–425. https://doi.org/10.1080/01621459.1988.10478612 doi: 10.1080/01621459.1988.10478612
|
| [47] |
A. Elshahhat, M. Nassar, Analysis of adaptive Type-Ⅱ progressively hybrid censoring with binomial removals, J. Stat. Comput. Sim., 93 (2023), 1077–1103. https://doi.org/10.1080/00949655.2022.2127149 doi: 10.1080/00949655.2022.2127149
|