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Abstract: Entropy is a scientific term that finds applications in various domains, such as the laws of
thermodynamics, where it was initially discovered, as well as statistical physics and information theory.
We used unified hybrid censored data to investigate some inverse Weibull distribution entropy metrics.
Entropy is defined using three measures: Rényi, Shannon, and Tsallis entropy. The classical estimates
of the entropy measures were developed using the unified hybrid censored data, which included both
point and approximation confidence intervals. The Bayesian method utilized the Markov Chain Monte
Carlo sampling technique to develop Bayesian estimations. This was done by employing two loss
functions, namely squared error and general entropy loss functions. Additionally, we delved into
the investigation of Bayes credible intervals. Monte Carlo simulations were applied to explain how
the estimates functioned at different sample sizes and censoring strategies via some accuracy criteria.
Several observations were made in light of the simulation results. To provide a clear explanation of the
offered methodologies, two applications using mechanical and cancer data sets were investigated.
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1. Introduction

Entropy is a useful metric in a variety of fields, including insurance, physics, statistics, artificial
intelligence, and economics. Entropy in information theory specifies the level of uncertainty for a
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random variable (RV). Its earliest application was in physics, specifically in terms of the second law
of thermodynamics. Clausius [1] first established the notion of entropy in thermodynamics to measure
the volume of energy in a system that cannot do work.

Shannon [2] outlined entropy as a quantitative indicator of uncertainty integrating probability and
statistics. Shannon entropy (SE) is regarded as one of the cornerstones of information theory. This
notion was supplemented by multiple entropy indicators acquired from real-world scenarios; see
Amigó et al. [3] for an in-depth review. In this work, we concentrate on three important entropy
measures, mainly Rényi entropy (REn) by Rényi [4], the Tsallis entropy (TEn) by Tsallis [5], and
Shannon entropy (SEn) by [2]. Consider a non-negative continuous RV Z with probability density
function (PDF) g(z; θ), where θ represents the unknown parameter vector. Subsequent to this, the REn,
TEn, and SEn of the RV Z can be determined, respectively:

ER =
1

1 − ξ
log

{∫ ∞

0
[g(z; θ)]ξdz

}
, ξ ≥ 0, ξ , 1, (1.1)

ET =
1

1 − ζ

{∫ ∞

0
[g(z; θ)]ζdz − 1

}
. ζ ≥ 0 ζ , 1, (1.2)

and

ES = −

∫ ∞

0
g(z; θ) log

[
g(z; θ)

]
dz. (1.3)

Data with a large entropy measure suggests that there is a more heterogeneous dataset, whereas
a small entropy measure indicates a more homogeneous collection of data. In practice, the entropy
indices and the parameter vector θ are unknown and need to be estimated. Estimating the entropy of
an RV has frequently been a topic that attracts attention in information theory. Many publications,
including those by Bantan et al. [6], Al-Babtain et al. [7], Brochet et al. [8], Okasha and Nassar [9],
Ren and Hu [10], Alam and Nassar [11], and Ahmed et al. [12] involve evaluating entropy indices and
unknown parameters. See also the review paper by Feutrill and Roughan [13].

From a parametric standpoint, we assume in this work that the data come from the inverse Weibull
(IW) model. This approach involves estimating the unknown parameters of the IW model and then
utilizing them directly to assess the entropy indices, a process known as plug-in estimation. The
IW distribution is a desirable statistical model for describing numerous kinds of data, including
engineering, medical, and actuarial sciences data, since its failure rate can be decreasing or upside-
down bathtub subject to the value of the shape parameter. Keller et al. [14] employed the IW
distribution to study mechanical failures of parts due to degradation. Following that, several researchers
investigated the IW distribution with various forms of data, see for example Xiuyun and Zaizai [15],
Lee [16], Hassan and Zaky [17], Jana and Bera [18], Maswadah [19], Kayid and Alshehri [20], and
Mou et al. [21].

It is said that the RV Z follows the IW distribution, written as IW(θ), where θ = (γ, α)⊤, if
the associated PDF and cumulative distribution function (CDF) are expressed, respectively, by

g(z; θ) = γαz−(α+1)e−γz−α , z ≥ 0, γ, α > 0, (1.4)

AIMS Mathematics Volume 10, Issue 1, 1085–1115.



1087

and
G(z; θ) = e−γz−α , (1.5)

where γ is the scale parameter and α is the shape parameter. Assume that Z ∼ IW(θ) with the PDF
presented in (1.4), then the REn, TEn, and SEn of the RV Z are given, respectively, by

ER =
log (ξγ)

α
− log(α) +

1
1 − ξ

{
log

[
Γ
[
φ(α; ξ)

]]
− ξ log(ξ)

}
, ξ , 1, ξ ≥

1
1 + α

, (1.6)

ET =
1

1 − ζ

[
αζ−1Γ

[
φ(α; ζ)

]
γ

ζ−1
α ζφ(α;ζ)

− 1
]
, ζ , 1, ζ ≥

1
1 + α

(1.7)

and

ES =

(
1 +

1
α

)
[γ∗ + log(γ)] − log(γα) + 1, (1.8)

where φ(α, v) = v−1
α
+ v and γ∗ are Euler constants.

In life testing experiments, it is impractical to gather data on every single item being studied due
to the extensive time and cost involved. As a result, it is common practice to use censored samples.
This approach enables researchers to end the experiment once a predetermined number of failures or a
set time has been reached. In the statistical literature, numerous censoring plans have been proposed,
each with its own merits. For the RV Z, suppose that we have a random sample of size n with ordered
failure times Z1:n,Z2:n, . . . ,Zn:n. Epstein [22] proposed a hybrid censored (HC) sampling plan, where
the life-testing experiment ends at a random time given by τ∗1 = min(T,Zm:n), where T ∈ (0,∞) and
1 ≤ m < n are predetermined before starting the test. Childs et al. [23] termed this plan as a Type-I
HC scheme (Type-I HCS) mainly because the duration of the experiment will not be higher than T .
In this Type-I HCS, however, there is a possibility that very few failures may occur. For this reason,
Childs et al. [23] proposed a new HCS, referred to as the Type-II hybrid censoring scheme (Type-II
HCS), which guarantees a fixed number of failures. In this case, the termination point is determined
by τ∗2 = max(T,Zm:n). Despite that Type-II HCS assures a certain number of failures, it comes with
the problem of taking a while to record m failures and finish the life test. Chandrasekar et al. [24]
modified these censored sampling plans through the development of two extensions: Generalized Type-
I and Type-II HCSs. Although these two new censoring plans have more advantages than the previous
ones, they continue to possess certain flaws. For instance, in the generalized Type-I HCS, we are
not able to ensure a specific number of failures. On the other hand, in the generalized Type-II HCS,
there is a chance of either getting no failures at all or only a few. To address these shortcomings,
Balakrishnan et al. [25] developed a unified HCS (Unified-HCS) by combining the last two censoring
schemes. A detailed description of the Unified-HCS is presented in the next section.

We are motivated to do this work because no researcher, to the best of our knowledge,
has investigated the estimations of the mentioned three entropy measures of the IW distribution
based on Unified-HCS data. In the literature, some researchers used different censoring schemes,
including progressive First-Failure, generalized Type-I progressive hybrid censoring, adaptive Type-
II progressive hybrid censoring, and improved adaptive Type-II progressive censoring, to investigate
entropy estimations. For more details, refer to Yu et al. [26], Xu and Gui [27], and Lee [28]. Some
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of these researchers solely evaluated classical estimations, while others considered both classical and
Bayesian estimations for a single entropy measure. Thus, no effort is made to estimate the entropy
measures REn, TEn, and SEn for the IW distribution using both classical and Bayesian estimation
methods. As a result, our goal is to compare the maximum likelihood and Bayesian estimation
methodologies for the entropy metrics REn, TEn, and SEn. The IW distribution is used in this study
for a variety of reasons. It is widely used for modeling life data, especially when failure rates are
decreasing or exhibit an upside-down bathtub form. This distribution accurately captures scenarios
where usual Weibull or exponential distributions may fail. It has numerous practical applications
in various domains, such as reliability engineering, survival analysis, and risk assessment. We are
also interested in using the Unified-HCS scheme because it helps balance cost and efficiency in
experimental design by ensuring a specified number of observed failures. This scheme is particularly
beneficial in reliability studies, where other single-stage censoring methods may yield less efficient
results.

In this study, the maximum likelihood estimates (MLEs) and approximate confidence intervals
(ACIs) for these metrics are described. Furthermore, in Bayesian estimation, the Markov Chain Monte
Carlo (MCMC) sampling approach is used to derive point Bayes estimates using both the squared
error loss (SEL) and general entropy loss (GEL) functions. The Bayesian credible intervals (BCIs)
are also investigated. Simulation research is used to assess the efficiency of alternative methodologies
by varying sample sizes and censoring strategies. Finally, a couple of applications are explored to
demonstrate the use of the described approaches.

The remaining part of this work is structured in the following manner: In Section 2, we describe the
Unified-HCS and investigate maximum likelihood estimations for the entropy metrics REn, TEn, and
SEn. In Section 3, we provide Bayesian estimations for entropy metrics. In Section 4, a simulation
study is performed and some insights are presented. In Section 5, we investigate two real data sets. In
Section 6, we conclude the paper to a close.

2. Maximum likelihood estimation

In this part, we first present the Unified-HCS, and then look at the MLEs of the entropy measures
for the IW distribution and the related ACIs.

2.1. Unified-HCS

Assume we run a life-testing experiment using n identical items. Let Z1:n, . . . ,Zn:n represent the
associated lifetimes from the IW distribution with PDF and CDF as given by in (1.4) and (1.5),
respectively. Before starting the experiment, fix m1,m2 ∈ {1, 2, . . . , n}, where m1 < m2 and T1 <

T2 ∈ (0,∞). Balakrishnan et al. [25] described the Unified-HCS as follows. If Zm1:n < T1, then the test
is terminated at min[max(Zm2:n,T1),T2]. On the other hand, if T1 < Zm1:n < T2, then the test is stopped
at min(Zm2:n,T2). In addition, if the m1 − th failure happens after time T2, end the experiment at Zm1:n.
Following this censoring plan, we can ensure that the test will be concluded upon reaching T2 with
at least m1 failures and that there will be exactly m1 failures otherwise. Let τ denote the termination
point, then under the Unified-HCS one can observed one of the following six cases (C):

• C-1: 0 < Zm1:n < Zm2:n < T1 < T2, terminate the test at τ = T1.
• C-2: 0 < Zm1:n < T1 < Zm2:n < T2, terminate the test at τ = Zm2:n.
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• C-3: 0 < Zm1:n < T1 < T2 < Zm2:n, terminate the test at τ = T2.
• C-4: 0 < T1 < Zm1:n < Zm2:n < T2, terminate the test at τ = Zm2:n.
• C-5: 0 < T1 < Zm1:n < T2 < Zm2:n, terminate the test at τ = T2.
• C-6: 0 < T1 < T2 < Zm1:n < Zm2:n, terminate the test at τ = Zm1:n.

For the various cases mentioned above, we can rewrite the unified likelihood function of the
observed data as

L(θ; z) ∝
ν∏

i=1

g(zi; θ) [1 −G(τ; θ)]n−ν , (2.1)

where z = (z1:n, . . . , zν:n),

ν =


d1, for C-1
m2, for C-2 and C-4
d2, for C-3 and C-5
m1, for C-6

,

and d1 and d2 are the observed number of failures recorder before T1 and T2, respectively. Many
authors considered the Unified-HCS in their studies, see for example Ateya [29], Jeon and Kang [30]
and Alrashidi et al. [31].

2.2. Point estimation of the entropy measures

Based on a Unified-HCS sample z = (z1:n, . . . , zν:n), we can write the likelihood function based on
(1.4), (1.5), and (2.1) as given below

L(θ; z) = (γα)ν exp
[
−γ

∑ν

i=1
z−αi − (α − 1)

∑ν

i=1
log(zi) + (n − ν)ϕ(τ; θ)

]
, (2.2)

where zi = zi:n, i = 1, . . . , ν and ϕ(τ; θ) = log
(
1 − e−γτ

−α
)
. In order to calculate the MLEs for the entropy

indices REn, TEn, and SEn, we must first calculate the MLEs for the IW distribution parameters γ and
α. Once we have obtained the MLEs for these parameters, we can then use the invariance property of
the MLEs to calculate the required estimates for the entropy measures. From (2.2), the log-likelihood
function follows

log L(θ; z) = ν log(γα) − γ
∑ν

i=1
z−αi − (α − 1)

∑ν

i=1
log(zi) + (n − ν)ϕ(τ; θ). (2.3)

The MLEs of γ and α, represented by γ̂ and α̂, respectively, are determined by solving the next
system simultaneously

∂ log L(θ; z)
∂γ

=
ν

γ
−

∑ν

i=1
z−αi + (n − ν)ϕ1(τ; θ) = 0 (2.4)

and
∂ log L(θ; z)

∂α
=
ν

α
+ γ

∑ν

i=1
z−αi log(zi) −

∑ν

i=1
log(zi) + (n − ν)ϕ2(τ; θ) = 0, (2.5)

where ϕ1(τ; θ) = τ−αη(τ; θ) and ϕ2(τ; θ) = −γτ−α log(τ)η(τ; θ), with η(τ; θ) = e−γτ
−α

(1 − e−γτ
−α

)−1.
Following (2.4) and (2.5), the MLEs γ̂ and α̂ clearly lack closed forms. Therefore, one can use any
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numerical approach to compute them numerically. Once γ̂ and α̂ are obtained, the MLEs of REn, TEn,
and SEn can be computed from Eqs (1.6), (1.7), and (1.8), respectively, as

ÊR =
log (ξγ̂)

α̂
− log(α̂) +

1
1 − ξ

{
log

[
Γ
[
φ(α̂; ξ)

]]
− ξ log(ξ)

}
, ξ , 1, ξ ≥

1
1 + α̂

,

ÊT =
1

1 − ζ

[
α̂ζ−1Γ

[
φ(α̂; ζ)

]
γ̂

ζ−1
α̂ ζφ(α̂;ζ)

− 1
]
, ζ , 1, ζ ≥

1
1 + α̂

and

ÊS =

(
1 +

1
α̂

)
[γ∗ + log(γ̂)] − log(γ̂α̂) + 1.

2.3. Interval estimation of the entropy measures

In order to calculate the 100(1 − ϵ)% ACIs for the entropy measurements REn, TEn, and SEn, we
must determine their respective variances. Here, we use the delta method to approximate the needed
variances; for more details, see Greene [32] and Elshahhat and Abu El Azm [33]. Using this approach
requires obtaining the variance-covariance matrix, which we estimate by taking the inverse of the
observed Fisher information matrix as described below

J−1(θ̂) =

 −∂
2 log L(θ;z)

∂γ2 −
∂2 log L(θ;z)

∂γ∂α

−
∂2 log L(θ;z)

∂α∂γ
−
∂2 log L(θ;z)

∂α2


−1

(γ,α)=(γ̂,α̂)

=

(
v̂ar(γ̂) ĉov(γ̂, α̂)

ĉov(α̂, γ̂) v̂ar(α̂)

)
,

where θ̂ = (γ̂, α̂)⊤ and

∂2 log L(θ; z)
∂γ2 = −

ν

γ2 − (n − ν)ϕ11(τ; θ),

∂2 log L(θ; z)
∂α2 = −

ν

α2 − γ

ν∑
i=1

z−αi log2(zi) + (n − ν)ϕ22(τ; θ)

and
∂2 log L(θ; z)

∂γ∂α
=

ν∑
i=1

z−αi log(zi) + (n − ν)ϕ12(τ; θ),

where ϕ11(τ; θ) = ϕ1(τ; θ)[ϕ1(τ; θ) + τ−α],

ϕ22(τ; θ) = ϕ2(τ; θ)τ−α log(τ)(1 − e−γτ
−α

)−1
[
γ + τ−α(e−γτ

−α

− 1)
]

and
ϕ12(τ; θ) = ϕ1(τ; θ)τ−α log(τ)(1 − e−γτ

−α

)−1
[
γ + τ−α(e−γτ

−α

− 1)
]
.

Then, by applying the delta method, we can approximate the estimated variances of REn, TEn, and
SEn. These approximations are given below

v̂ar(ÊR) ≈
(
ÊR.1 ÊR.2

) ( v̂ar(γ̂) ĉov(γ̂, α̂)
ĉov(α̂, γ̂) v̂ar(α̂)

)  ÊR.1

ÊR.2


AIMS Mathematics Volume 10, Issue 1, 1085–1115.
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v̂ar(ÊT ) ≈
(
ÊT.1 ÊT.2

) ( v̂ar(γ̂) ĉov(γ̂, α̂)
ĉov(α̂, γ̂) v̂ar(α̂)

)  ÊT.1

ÊT.2


and

v̂ar(ÊS ) ≈
(
ÊS .1 ÊS .2

) ( v̂ar(γ̂) ĉov(γ̂, α̂)
ĉov(α̂, γ̂) v̂ar(α̂)

)  ÊS .1

ÊS .2

 ,
where

ÊR.1 =
1
γ̂α̂
, ÊR.2 = −

α̂ + log(ξγ̂) − ψ
[
φ(α̂; ξ)

]
α̂2 ,

ÊT.1 = −
α̂ζ−3Γ

[
φ(α̂; ζ)

]
γ̂

ζ−1
α̂ ζφ(α̂;ζ)

{
α̂ + log(ζγ̂) + ψ

[
φ(α̂; ζ)

]}
, ÊT.2 =

α̂ζ−2Γ
[
φ(α̂; ζ)

]
γ̂

ζ−1
α̂ +1ζφ(α̂;ζ)

,

and
ÊS .1 = −

α̂ + γ∗ + log(γ̂)
α̂2 , ÊS .2 =

1
γ̂α̂
,

where ψ(.) is the digamma function. After calculating v̂ar(ÊR), v̂ar(ÊT ) and v̂ar(ÊS ), one can compute
the 100(1 − ϵ)% ACIs of REn, TEn, and SEn, respectively, as

ÊR ± y ϵ
2

√
v̂ar(ÊR), ÊT ± y ϵ

2

√
v̂ar(ÊT ) and ÊS ± y ϵ

2

√
v̂ar(ÊS ),

where y ϵ
2

is the upper (ϵ/2)th percentile point of the standard normal distribution.

3. Bayesian estimation

Bayesian estimation is an approach for using previous information to address decision challenges.
The benefit of this method is that it can incorporate prior knowledge into statistical deduction,
which improves the precision of the results. Bayesian estimation is frequently used in statistics
and other domains like machine learning and data mining. Because of Bayesian estimation’s
outstanding effectiveness, many scholars now employ it for estimating unknown parameters and some
related functions. See for example, Zhou et al. [34]. In this section, we investigate the Bayesian
estimation of the entropy indices REn, TEn, and SEn based on two loss functions, namely SEL and
GEL functions. Due to the fact that there are no conjugate prior distributions associated with the
unknown parameters, we assume that the two parameters γ and α are independent and follow the
gamma distribution with the joint prior distribution

π(θ) ∝ γa1−1αa2−1e−(b1γ+b2α), (3.1)

where the hyper-parameters a j, b j > 0, j = 1, 2 and are known. The gamma distribution is used
for a variety of causes. Its flexibility enables it to produce a wide range of shapes. Furthermore,
it provides the same support as the unknown parameters of the IW distribution. The gamma
distribution is frequently used in practice, enabling both analytical and numerical Bayesian inference.
Furthermore, it provides closed-form formulas for both mean and variance, making it easier to
determine hyperparameter values during simulations or empirical computations in data analysis. The
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posterior distribution is obtained by combining the likelihood function in (2.2) with the joint prior
distribution given by (3.1) as given below

Q(θ|z) =
1
A
γν+a1−1αν+a2−1 exp

[
−γ

(∑ν

i=1
z−αi + b1

)
− α

(∑ν

i=1
log(zi) + b2

)
+ (n − ν)ϕ(τ; θ)

]
, (3.2)

where A is the normalized constant. In our study, we use two loss functions to obtain Bayes estimators
for the entropy indices REn, TEn, and SEn. The first is the SEL function, in which the Bayes estimator
represents the posterior mean. The second is the GEL function, which produces the Bayes estimator
as follows

µ̃GEL =
[
E(µ−ρ)

]−1/ρ
, ρ , 0,

in which ρ is a factor that regulates the degree of asymmetry and µ̃GEL is the Bayes estimator of the
parameter µ using the GEL function. Now, for any entropy index, say for example REn, its Bayes
estimators using both SEL and GEL functions can be obtained, respectively, as

ẼR.S EL =

∫ ∞
0

∫ ∞
0
ERπ(θ)L(θ|z)dγdα∫ ∞

0

∫ ∞
0
π(θ)L(θ|z)dγdα

(3.3)

and

ẼR.GEL =


∫ ∞

0

∫ ∞
0

[ER]−ρπ(θ)L(θ|z)dγdα∫ ∞
0

∫ ∞
0
π(θ)L(θ|z)dγdα


−1/ρ

. (3.4)

The complexity of the ratio of integrals, as shown in (3.3) and (3.4) means that the Bayes estimators
for the REn cannot be computed in closed forms. The same issue arises when attempting to obtain the
Bayes estimators for the other entropy indices TEn and SEn. To address this issue, we propose using the
MCMC technique to construct a posterior distribution of Q(θ|z) depending on the produced samples,
which may then be used to make additional statistical inferences. To apply the MCMC technique, we
first derive the fully conditional distributions of γ and α from (3.2) as follows, respectively,

Q1(γ|α, z) ∝ γν+a1−1 exp
[
−γ

(∑ν

i=1
z−αi + b1

)
+ (n − ν)ϕ(τ; θ)

]
, (3.5)

and

Q2(α|γ, z) ∝ αν+a2−1

× exp
[
−γ

∑ν

i=1
z−αi − α

(∑ν

i=1
log(zi) + b2

)
+ (n − ν)ϕ(τ; θ)

]
. (3.6)

By generating one Unified-HCS random sample from IW(0.5, 1.5) when n = 100, (m1,m2) =
(40, 80) and (T1,T2) = (2.5, 5.5), Figure 1 shows that the fully conditional distributions of γ (3.5)
and α (3.6) using this collected sample behave similarly to the normal density.
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Figure 1. The normal and posterior density curves of γ (left) and α (right).

We use Metropolis-Hastings (M-H) sampling to acquire samples from the posterior distribution due
to the nonstandard fully posterior distributions of γ and α as seen from (3.5) and (3.6). To utilize the
M-H procedure, we take the normal (N) distribution as the proposal distribution and then apply the
next steps for getting the requisite samples

Step 1. Set c = 1 and determine the starting values (γ(0), α(0)) = (γ̂, α̂).

Step 2. Get γ(c) from (3.5) via the M-H algorithm with N(γ̂, v̂ar(γ̂)).

Step 3. Simulate α(c) from (3.6) based on the M-H steps with N(α̂, v̂ar(α̂)).

Step 4. Set c = c + 1.

Step 5. Redo steps 2–4,M times to acquire.{
γ(1), γ(2), . . . , γ(M)

}
and

{
α(1), α(2), . . . , α(M)

}
.

Before obtaining the Bayes estimates and the BCIs, we remove the first B samples as a burn-in
period to eliminate the impact of the initial values. Then, the Bayes estimates for the entropy measures,
for example, the REn, based on both SEL and GEL functions can be computed as

ẼR.S EL =
1

M − B

M∑
c=B+1

E
(c)
R

and

ẼR.GEL =

 1
M − B

M∑
c=B+1

[
E

(c)
R

]−ρ
−1/ρ

,
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where

E
(c)
R =

log
(
ξγ(c)

)
α(c) − log(α(c)) +

log
[
Γ
[
φ(α(c); ξ)

]]
− ξ log(ξ)

1 − ξ
.

On the other hand, to compute the BCI of the REn, for example, we first sort the MCMC sample
E

(c)
R , c = B+ 1, . . . ,M, indicated by E[B+1]

R , . . . ,E[M]
R . Thus, the 100(1− ϵ)% BCI of the REn is given by{

E
[ϵ(M−B)/2]
R , E[(1−ϵ/2)(M−B)]

R

}
.

4. Monte Carlo simulations

In this part, we offer some simulation findings that compare the effectiveness of point and
interval estimates of ER, ET , and ES developed by various strategies proposed in terms of root
mean squared errors (RMSEs), mean absolute biases (MABs), average interval lengths (AILs), and
coverage percentages (CPs). To achieve this objective, utilizing different options of n(size of full
experimental items), m1(m2)(lower (upper) failure data size), and T1(T2)(thresholds), we simulate large
2,000 Unified-HCS samples based on two different sets from IW(γ, α) population, such as IW(0.5, 1.5)
(say, Set-1) and IW(1.5, 2.5) (say, Set-2). It is better to mention here that the values used are chosen
based on their theoretical domains. Subsequently, the plausible value of (ER, EQ, ES ) is taken as
(2.0216,3.1123,1.0944) for Set-1, while for Set-2, it is taken as (1.5571,2.1605,1.0539). Without loss
of generality, for sets 1 and 2, all fitted estimates of ER and ET are obtained when ξ = ζ = 0.6. In
Table 1, different simulation tests are provided.

Table 1. Seven simulation scenarios for each n.

Test↓ n→ 40 80
m1 m2 T1 T2 m1 m2 T1 T2

1 10 30 0.5 1.5 1 20 50 0.5 1.5
2 15 30 0.5 1.5 2 40 50 0.5 1.5
3 10 35 0.5 1.5 3 20 60 0.5 1.5
4 18 38 0.5 1.5 4 45 70 0.5 1.5
5 10 30 1.0 1.5 5 40 50 1.0 1.5
6 10 30 0.5 2.5 6 40 50 0.5 2.5
7 10 30 1.4 2.8 7 40 50 1.4 2.8

After collecting 2,000 Unified-HCS samples, we install the ’maxLik’ package (by Henningsen and
Toomet [35]) and ’coda’ package (by Plummer et al. [36]) to evaluate the likelihood and Bayes’
MCMC estimates of the same unknown entropies. From SEL and GEL (from ρ(= −2, 2)), all Bayes’
computations of ER, EQ, or ES are implemented when the first 2,000 (of 12,000) MCMC iterations
are ignored as burn-in. To assign values to the hyper-parameters ai and bi for i = 1, 2, following the
past sample idea, we generate 10,000 complete samples (with n = 50) from each given set of the IW
population. As a result, the values of (a1, a2, b1, b2) are taken as (27.4089,76.4457,54.6755,49.5563)
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for Set-1 and (44.1015,76.4458,28.6406,29.7338) for Set-2. For more information on the idea of past
sample information, based on different types of censoring techniques, one can refer to Elshahhat
and Elemary [37] and Alotaibi et al. [38] (for Type-II adaptive progressive); Nassar et al. [39] (for
adaptive Type-I progressive) and Alotaibi et al. [40] (for progressive first-failure); Elbatal et al. [41],
Alotaibi et al. [42], Nassar and Elshahhat [43] (for improved adaptive Type-II progressive), among
others.

From Tables 2–7, in terms of the lowest RMSEs, MABs, and AILs as well as the highest CPs, we
report the following comments:

• The general aspect is that the offered estimates of ER, ET , or ES perform well.
• As expected, Bayes’ findings of all unknown IW entropies ER, ET , and ES outperform frequentist

estimates due to gamma knowledge. One can see that the Bayes estimates of the entropy measures
have the smallest RMSEs in all the cases when compared with those acquired based on the
classical approach. A similar observation is found with BCI estimates when compared to ACI
estimates.
• As n increases, all point (or interval) estimates of ER, ET , or ES are pretty satisfactory. The same

behavior is also noted when Ti (or mi) for i = 1, 2 grow.
• All estimates developed from the Bayes approach using GEL-based are superior compared to

those developed from the Bayes approach using SEL-based; moreover, both are better compared
to those developed from the likelihood approach.
• As m1 increases (for fixed m2 and Ti, i = 1, 2), the RMSEs, MABs, and AILs of ER, ET , and ES

decrease while their CPs increase. This observation is also achieved when m2 increases (for fixed
m1 and Ti, i = 1, 2).
• As T1 increases (for fixed T2 and mi, i = 1, 2), the RMSEs, MABs, and AILs of ER, ET , and ES

decrease while their CPs increase. This observation is also achieved when T2 increases (for fixed
T1 and mi, i = 1, 2).
• As mi, i = 1, 2 increase (for fixed Ti, i = 1, 2), the RMSEs, MABs, and AILs of ER, ET , and ES

decrease while their CPs increase. This observation is also achieved when Ti, i = 1, 2 increase
(for fixed mi, i = 1, 2).
• In summary, the Bayesian procedure is recommended to achieve more accurate estimates of REn,

SEn, or TEn measures of the IW model in the context of uniform hybrid censoring.
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Table 2. The RMSEs (left) and MABs (right) of ER.

n Test MLE SEL GEL(ρ = −2) GEL(ρ = 2)

Set-1

40 1 0.6694 0.6693 0.6579 0.6252 0.6154 0.6102 0.4690 0.3691
2 0.6608 0.6608 0.6507 0.6160 0.6041 0.6003 0.4640 0.3631
3 0.6402 0.6401 0.6311 0.6067 0.5963 0.5961 0.4617 0.3600
4 0.6218 0.6218 0.6111 0.5789 0.5681 0.5678 0.4432 0.3505
5 0.6278 0.6278 0.6161 0.5831 0.5723 0.5719 0.4502 0.3529
6 0.6316 0.6314 0.6234 0.5969 0.5861 0.5858 0.4591 0.3573
7 0.6177 0.6175 0.6091 0.5764 0.5642 0.5620 0.4291 0.3416

80 1 0.6136 0.6134 0.6064 0.5724 0.5622 0.5604 0.3587 0.2730
2 0.6069 0.6068 0.6015 0.5701 0.5574 0.5573 0.3503 0.2703
3 0.5990 0.5990 0.5942 0.5624 0.5497 0.5495 0.3399 0.2689
4 0.4894 0.4823 0.4825 0.4543 0.4456 0.4453 0.3122 0.2505
5 0.5150 0.4877 0.4878 0.4659 0.4498 0.4496 0.3174 0.2533
6 0.5830 0.5899 0.5659 0.5518 0.5386 0.5385 0.3290 0.2641
7 0.4695 0.4615 0.4617 0.4347 0.4264 0.4261 0.3096 0.2474

Set-2

40 1 0.6787 0.6219 0.6221 0.5975 0.6108 0.5913 0.5917 0.5725
2 0.6397 0.6134 0.6135 0.5974 0.6074 0.5895 0.5899 0.5686
3 0.6397 0.6106 0.6109 0.5857 0.5997 0.5774 0.5780 0.5618
4 0.5986 0.5860 0.5788 0.5632 0.5553 0.5547 0.5358 0.5444
5 0.6252 0.5894 0.5840 0.5632 0.5788 0.5547 0.5553 0.5479
6 0.6381 0.5894 0.5897 0.5707 0.5810 0.5647 0.5652 0.5546
7 0.5819 0.5815 0.5709 0.5544 0.5463 0.5456 0.5253 0.5238

80 1 0.5722 0.5718 0.5616 0.5443 0.5382 0.5378 0.5036 0.4891
2 0.5711 0.5707 0.5602 0.5430 0.5261 0.5353 0.4850 0.4691
3 0.5565 0.5563 0.5528 0.5425 0.5141 0.5314 0.4643 0.4255
4 0.5350 0.5348 0.5319 0.5216 0.4697 0.5165 0.4375 0.3641
5 0.5524 0.5522 0.5485 0.5380 0.4852 0.5232 0.4425 0.3767
6 0.5524 0.5522 0.5485 0.5380 0.5033 0.5274 0.4540 0.3952
7 0.5104 0.5101 0.5079 0.4974 0.4593 0.4924 0.4227 0.3399
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Table 3. The RMSEs (left) and MABs (right) of ET .

n Test MLE SEL GEL(ρ = −2) GEL(ρ = 2)

Set-1

40 1 1.3267 1.3267 1.2797 1.2270 1.1922 1.1920 1.1431 0.8394
2 1.3121 1.3120 1.2670 1.2100 1.1747 1.1744 1.1307 0.8284
3 1.2747 1.2746 1.2372 1.1986 1.1673 1.1673 1.1280 0.8221
4 1.2372 1.2371 1.1987 1.1485 1.1232 1.1226 1.0202 0.7843
5 1.2472 1.2471 1.2120 1.1559 1.1306 1.1430 1.1130 0.8068
6 1.2599 1.2597 1.2229 1.1807 1.1554 1.1548 1.1181 0.8174
7 1.2358 1.2315 1.1927 1.1409 1.1166 1.1106 0.9912 0.7675

80 1 1.2286 1.2283 1.1834 1.1388 1.1107 1.1063 0.7877 0.6288
2 1.2172 1.2171 1.1704 1.1311 1.1006 1.1003 0.7677 0.6184
3 1.2034 1.2033 1.1552 1.1173 1.0866 1.0863 0.7566 0.6084
4 0.9919 0.9916 0.9742 0.9219 0.9106 0.8995 0.7162 0.5642
5 1.0019 1.0017 0.9836 0.9302 0.9574 0.9271 0.7249 0.5769
6 1.1876 1.1875 1.0987 1.0976 1.0653 1.0651 0.7492 0.5920
7 0.9532 0.9529 0.9385 0.8854 0.8644 0.8639 0.7125 0.5577

Set-2

40 1 1.2519 1.0289 1.1104 1.0091 1.0292 0.9987 0.9762 0.9856
2 1.2338 1.0156 1.0158 0.9860 1.0095 0.9747 0.9725 0.9706
3 1.2282 1.0126 1.0130 0.9684 0.9872 0.9654 0.9545 0.9496
4 1.0251 0.9755 0.9757 0.9393 0.9359 0.9348 0.9203 0.8900
5 1.1988 0.9816 0.9820 0.9493 0.9456 0.9398 0.9265 0.9208
6 1.2108 0.9816 0.9820 0.9563 0.9622 0.9476 0.9370 0.9343
7 1.0140 0.9702 0.9707 0.9275 0.9439 0.9254 0.9064 0.8659

80 1 0.9631 0.9558 0.9563 0.9217 0.9298 0.9165 0.8973 0.8267
2 0.9548 0.9543 0.9275 0.9109 0.8908 0.9070 0.8790 0.7667
3 0.9315 0.9312 0.9218 0.9084 0.8859 0.8988 0.8627 0.7383
4 0.8993 0.8990 0.8892 0.8874 0.8451 0.8643 0.8285 0.6491
5 0.9215 0.9252 0.9040 0.8989 0.8577 0.8766 0.8378 0.6716
6 0.9255 0.9252 0.9160 0.9019 0.8789 0.8881 0.8426 0.7147
7 0.8620 0.8862 0.8530 0.8638 0.8328 0.8577 0.8216 0.6272
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Table 4. The RMSEs (left) and MABs (right) of ES .

n Test MLE SEL GEL(ρ = −2) GEL(ρ = 2)

Set-1

40 1 0.3716 0.3716 0.3593 0.3371 0.3170 0.3116 0.2784 0.2160
2 0.3648 0.3647 0.3515 0.3216 0.3105 0.3103 0.2724 0.2140
3 0.3541 0.3540 0.3442 0.3105 0.3085 0.3044 0.2705 0.2132
4 0.3336 0.3330 0.3269 0.3007 0.2906 0.2903 0.2602 0.2078
5 0.3367 0.3365 0.3300 0.3041 0.2981 0.2937 0.2628 0.2098
6 0.3471 0.3469 0.3390 0.3085 0.3037 0.3033 0.2642 0.2108
7 0.3282 0.3302 0.3227 0.2931 0.2776 0.2828 0.2548 0.2025

80 1 0.3302 0.3271 0.3207 0.2912 0.2776 0.2775 0.2241 0.1861
2 0.3227 0.3227 0.3190 0.2876 0.2714 0.2743 0.2126 0.1789
3 0.3170 0.3169 0.3140 0.2823 0.2692 0.2690 0.2011 0.1621
4 0.2472 0.2385 0.2309 0.2142 0.2063 0.2060 0.1839 0.1478
5 0.2669 0.2541 0.2342 0.2366 0.2174 0.2272 0.1876 0.1495
6 0.3106 0.3106 0.3087 0.2759 0.2461 0.2610 0.1934 0.1552
7 0.2306 0.2236 0.2238 0.2009 0.1930 0.1927 0.1823 0.1459

Set-2

40 1 0.4937 0.4788 0.4845 0.4705 0.4684 0.4843 0.4478 0.4563
2 0.4749 0.4671 0.4735 0.4532 0.4623 0.4464 0.4468 0.4319
3 0.4671 0.4567 0.4574 0.4464 0.4525 0.4373 0.4378 0.4188
4 0.4401 0.4350 0.4351 0.4276 0.4189 0.4183 0.4172 0.3734
5 0.4457 0.4457 0.4416 0.4276 0.4285 0.4265 0.4219 0.3846
6 0.4569 0.4525 0.4519 0.4308 0.4463 0.4302 0.4273 0.3987
7 0.4351 0.4247 0.4275 0.4203 0.4114 0.4108 0.3970 0.3607

80 1 0.4274 0.4142 0.4122 0.4120 0.4092 0.4079 0.3828 0.3459
2 0.4263 0.4104 0.4091 0.4054 0.4030 0.4041 0.3777 0.3359
3 0.4168 0.4082 0.4062 0.4006 0.4013 0.3971 0.3720 0.3231
4 0.3992 0.3903 0.3855 0.3764 0.3638 0.3691 0.3521 0.2742
5 0.4027 0.4014 0.3910 0.3851 0.3854 0.3782 0.3585 0.2860
6 0.4127 0.4034 0.3980 0.3976 0.3934 0.3820 0.3682 0.3068
7 0.3786 0.3694 0.3647 0.3676 0.3582 0.3582 0.3451 0.2499
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Table 5. The AILs (left) and CPs (right) of ER.

n Test Set-1 Set-2
ACI BCI ACI BCI

40 1 1.735 0.919 0.805 0.941 2.235 0.927 1.623 0.951
2 1.718 0.921 0.788 0.944 2.123 0.930 1.461 0.955
3 1.700 0.922 0.766 0.946 1.922 0.933 1.256 0.958
4 1.639 0.927 0.714 0.952 1.348 0.943 0.946 0.964
5 1.652 0.926 0.736 0.951 1.562 0.940 1.005 0.962
6 1.685 0.924 0.756 0.948 1.723 0.937 1.145 0.961
7 1.608 0.930 0.698 0.954 1.147 0.945 0.884 0.967

80 1 1.485 0.935 0.674 0.956 0.929 0.948 0.741 0.970
2 1.428 0.939 0.658 0.958 0.896 0.951 0.680 0.973
3 1.376 0.944 0.648 0.960 0.875 0.953 0.597 0.978
4 1.236 0.953 0.617 0.964 0.821 0.961 0.438 0.986
5 1.285 0.950 0.628 0.962 0.836 0.958 0.485 0.984
6 1.330 0.947 0.633 0.961 0.852 0.955 0.525 0.981
7 1.199 0.955 0.611 0.965 0.809 0.962 0.398 0.989

Table 6. The AILs (left) and CPs (right) of ET .

n Test Set-1 Set-2
ACI BCI ACI BCI

40 1 4.277 0.895 1.438 0.927 2.260 0.915 0.724 0.956
2 4.161 0.901 1.387 0.931 2.126 0.918 0.717 0.957
3 4.076 0.904 1.368 0.933 2.059 0.920 0.691 0.959
4 3.636 0.914 1.282 0.940 1.710 0.926 0.657 0.963
5 3.872 0.911 1.303 0.938 1.888 0.925 0.668 0.962
6 3.938 0.908 1.328 0.937 1.932 0.923 0.679 0.961
7 3.534 0.916 1.246 0.941 1.696 0.928 0.636 0.965

80 1 3.395 0.920 1.226 0.943 1.662 0.930 0.624 0.966
2 3.195 0.924 1.209 0.944 1.639 0.932 0.620 0.966
3 2.953 0.927 1.189 0.945 1.613 0.933 0.615 0.967
4 2.598 0.937 1.139 0.947 1.545 0.937 0.580 0.971
5 2.675 0.934 1.143 0.947 1.560 0.936 0.593 0.970
6 2.795 0.931 1.165 0.946 1.593 0.935 0.605 0.968
7 2.396 0.940 1.127 0.949 1.524 0.939 0.561 0.973
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Table 7. The AILs (left) and CPs (right) of ES .

n Test Set-1 Set-2
ACI BCI ACI BCI

40 1 1.107 0.927 0.755 0.948 0.960 0.931 0.388 0.962
2 0.997 0.931 0.735 0.950 0.946 0.933 0.380 0.963
3 0.965 0.933 0.715 0.952 0.939 0.935 0.375 0.964
4 0.946 0.936 0.689 0.960 0.929 0.938 0.370 0.966
5 0.921 0.938 0.653 0.956 0.900 0.941 0.367 0.965
6 0.913 0.937 0.629 0.955 0.875 0.938 0.363 0.964
7 0.906 0.940 0.603 0.962 0.838 0.946 0.357 0.967

80 1 0.885 0.941 0.578 0.964 0.814 0.948 0.344 0.969
2 0.865 0.942 0.547 0.967 0.796 0.950 0.323 0.971
3 0.847 0.944 0.535 0.969 0.764 0.953 0.312 0.972
4 0.818 0.948 0.515 0.977 0.759 0.960 0.305 0.976
5 0.796 0.946 0.495 0.974 0.742 0.957 0.286 0.975
6 0.777 0.945 0.473 0.972 0.729 0.955 0.276 0.973
7 0.768 0.949 0.431 0.980 0.703 0.962 0.269 0.978

5. Real Applications

In this section, we examine two distinct applications from engineering and medical to demonstrate
the value of the supplied estimating methodologies and the applicability of the offered estimators in
real-world scenarios.

5.1. Mechanical data

This application examines the failure time points of 20 mechanical components (MCs) reported by
Murthy et al. [44] and re-discussed by Mohammed et al. [45]. Table 8 simplifies the MCs data by
multiplying each point by ten. The Kolmogorov–Smirnov (KS) distance with its P-value is used to
determine whether the IW distribution’s fit to the MCs data is adequate. To achieve this purpose, use
Table 8 to fit the MLEs (with their standard errors (Std.Errs)) of γ and α as 0.7019 (0.1821) and 3.7841
(0.6867), respectively. Futhermore, the KS (P-value) is 0.1141 (0.957). Clearly, the IW model fits the
MCs satisfactorily.

Table 8. Times to failure of 20 MCs.

0.67 0.68 0.76 0.81 0.84 0.85 0.85 0.86 0.89 0.98
0.98 1.14 1.14 1.15 1.21 1.25 1.31 1.49 1.60 4.85

Figure 2(a) provides the contour diagram of the log-likelihood for γ and α and indicates that the
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calculated MLEs of γ and α exist and are unique. It also stands that the best starting points of γ and
α are 0.7019 and 3.7841, respectively. Figure 2(b) represents the empirical and estimated reliability
lines, which supports the same fitting result.
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Figure 2. Contour and empirical/fitted RF from MCs data.

Using the full MCs times, by fixing (m1,m2) = (5, 10), we generate six Unified-HCS samples based
on various options of Ti, i = 1, 2; see Table 9. For each data set in Table 9, the maximum likelihood
and MCMC estimates (with their Std.Errs) as well as 95% ACI/BCI estimates (with their interval
lengths (ILs)) of the unknown IW parameters (γ, α) as well as of the unknown IW entropies (ER (at
ξ(= 0.4, 0.8)), ET (at ζ(= 0.4, 0.8)), ES ) are obtained.

Via the suggested MCMC sampler, fusing noninformative joint prior, from 50,000 MCMC samples
with 10,000 burn-in, the Bayes results of γ, α, ER, ET , and ES are developed under SEL and GEL
(for ρ(= −3, 3)) functions. The more frequent values of γ and α are selected as initial guesses to run
the M-H algorithm. In Tables 10 and 11, the point and interval findings of all unknown quantities are
listed. It is clear, from Tables 10 and 11, that the calculated point (or interval) estimates of γ, α, ER,
ET , or ES obtained by likelihood and Bayes methods are close to being similar. It also shows that the
Bayes MCMC estimates behave better compared to others in terms of minimum Std.Errs. A similar
observation is also reached when comparing ACIs and BCIs in terms of minimum ILs.
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Table 9. Artificial Unified-HCS samples from MCs data.

Sample m1 m2 T1(d1) T2(d2) τ ν

1 5 10 1.18(14) 1.28(16) 1.18 14
2 5 10 0.85(7) 0.95(9) 0.95 9
3 5 10 0.87(8) 1.17(14) 0.98 10
4 5 10 0.78(3) 0.88(8) 0.88 8
5 5 10 0.78(3) 1.28(16) 0.98 10
6 5 10 0.72(2) 0.82(4) 0.84 5

Table 10. Point evaluations for parameters and entropies of IW model from MCs data.

Sample Par. MLE SEL GEL

ρ→ -3 -3

1 γ 0.6698 0.1901 0.6782 3.3646 0.6946 3.3465 0.6432 3.3979
α 4.0411 0.8368 4.0399 3.3732 4.0452 3.3754 4.0291 3.3593
ES 0.2244 0.2651 0.2255 0.0576 0.2394 0.0150 0.0037 0.2206
ER(ξ = 0.4) 1.0244 0.4019 1.0271 0.0775 1.0329 0.0085 1.0153 0.0091
ER(ξ = 0.8) 0.3553 0.2794 0.3566 0.0595 0.3663 0.0110 0.3342 0.0211
ET (ζ = 0.4) 1.4150 0.7430 1.4233 0.1443 1.4379 0.0228 1.3944 0.0207
ET (ζ = 0.8) 0.3683 0.3000 0.3700 0.0640 0.3808 0.0125 0.3452 0.0230

2 γ 0.6106 0.2141 0.6207 3.7446 0.6372 3.7267 0.5858 3.7781
α 4.3639 1.1236 4.3626 3.7550 4.3677 3.7571 4.3525 3.7419
ES 0.1231 0.3279 0.1252 0.0537 0.1452 0.0221 0.0076 0.1230
ER(ξ = 0.4) 0.8752 0.4758 0.8780 0.0704 0.8836 0.0084 0.8666 0.0086
ER(ξ = 0.8) 0.2489 0.3439 0.2507 0.0563 0.2627 0.0138 0.0329 0.2160
ET (ζ = 0.4) 1.1511 0.8044 1.1584 0.1198 1.1707 0.0196 1.1337 0.0174
ET (ζ = 0.8) 0.2552 0.3615 0.2574 0.0592 0.2704 0.0152 0.0329 0.2223

3 γ 0.6128 0.2042 0.6228 3.7350 0.6392 3.7172 0.5881 3.7683
α 4.3564 1.0587 4.3552 3.7453 4.3602 3.7474 4.3451 3.7322
ES 0.1257 0.3086 0.1273 0.0546 0.1474 0.0217 0.0008 0.1249
ER(ξ = 0.4) 0.8788 0.4485 0.8816 0.0704 0.8872 0.0083 0.8702 0.0086
ER(ξ = 0.8) 0.2516 0.3237 0.2533 0.0562 0.2652 0.0136 0.1227 0.1290
ET (ζ = 0.4) 1.1572 0.7599 1.1644 0.1200 1.1767 0.0195 1.1398 0.0174
ET (ζ = 0.8) 0.2580 0.3404 0.2602 0.0592 0.2730 0.0150 0.1231 0.1349

4 γ 0.4995 0.2068 0.5048 4.5283 0.5157 4.5167 0.4814 4.5510
α 5.0324 1.3385 5.0317 4.5334 5.0337 4.5342 5.0278 4.5284
ES 0.0619 0.3315 0.0629 0.0347 0.0789 0.0170 0.0046 0.0619
ER(ξ = 0.4) 0.6174 0.4501 0.6179 0.0424 0.6208 0.0034 0.6120 0.0055
ER(ξ = 0.8) 0.0558 0.3451 0.0560 0.0373 0.0739 0.0181 0.0042 0.0557
ET (ζ = 0.4) 0.7473 0.6519 0.7489 0.0615 0.7539 0.0065 0.7385 0.0088
ET (ζ = 0.8) 0.0561 0.3490 0.0565 0.0377 0.0746 0.0186 0.0000 0.0560

5 γ 0.6128 0.2042 0.6228 3.7350 0.6392 3.7172 0.5881 3.7683
α 4.3564 1.0587 4.3552 3.7453 4.3602 3.7474 4.3451 3.7322
ES 0.1257 0.3086 0.1273 0.0546 0.1474 0.0217 0.0008 0.1249
ER(ξ = 0.4) 0.8788 0.4485 0.8816 0.0704 0.8872 0.0083 0.8702 0.0086
ER(ξ = 0.8) 0.2516 0.3237 0.2533 0.0562 0.2652 0.0136 0.1227 0.1290
ET (ζ = 0.4) 1.1572 0.7599 1.1644 0.1200 1.1767 0.0195 1.1398 0.0174
ET (ζ = 0.8) 0.2580 0.3404 0.2602 0.0592 0.2730 0.0150 0.1231 0.1349

6 γ 0.6673 0.3112 0.6739 3.4963 0.6878 3.4811 0.6444 3.5245
α 4.1689 1.4668 4.1676 3.5025 4.1713 3.5040 4.1601 3.4928
ES 0.1910 0.4662 0.1917 0.0492 0.2035 0.0125 0.0040 0.1870
ER(ξ = 0.4) 0.9708 0.6872 0.9725 0.0639 0.9767 0.0059 0.9640 0.0068
ER(ξ = 0.8) 0.3198 0.4897 0.3206 0.0506 0.3284 0.0086 0.3026 0.0172
ET (ζ = 0.4) 1.3175 1.2305 1.3227 0.1149 1.3326 0.0152 1.3028 0.0147
ET (ζ = 0.8) 0.3303 0.5221 0.3314 0.0539 0.3399 0.0097 0.3116 0.0186
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Table 11. Interval evaluations for parameters and entropies of IW model from MCs data.

Sample Par. 95% ACI 95% BCI

Low. Upp. IL Low. Upp. IL

1 γ 0.2972 1.0425 0.7452 0.4770 0.8938 0.4169
α 2.4010 5.6812 3.2801 3.7503 4.3263 0.5760
ES 0.0000 0.7440 0.7440 0.1131 0.3384 0.2253
ER(ξ = 0.4) 0.2368 1.8121 1.5752 0.8805 1.1835 0.3030
ER(ξ = 0.8) 0.0000 0.9029 0.9029 0.2407 0.4735 0.2328
ET (ζ = 0.4) 0.0000 2.8714 2.8714 1.1601 1.7236 0.5635
ET (ζ = 0.8) 0.0000 0.9562 0.9562 0.2465 0.4967 0.2501

2 γ 0.1910 1.0301 0.8391 0.4315 0.8312 0.3998
α 2.1616 6.5662 4.4046 4.0703 4.6549 0.5847
ES 0.0000 0.7657 0.7657 0.0204 0.2324 0.2120
ER(ξ = 0.4) 0.0000 1.8077 1.8077 0.7430 1.0201 0.2771
ER(ξ = 0.8) 0.0000 0.9229 0.9229 0.1398 0.3618 0.2220
ET (ζ = 0.4) 0.0000 2.7276 2.7276 0.9362 1.4070 0.4708
ET (ζ = 0.8) 0.0000 0.9636 0.9636 0.1418 0.3752 0.2334

3 γ 0.2125 1.0131 0.8006 0.4337 0.8329 0.3992
α 2.2813 6.4315 4.1502 4.0631 4.6474 0.5842
ES 0.0000 0.7305 0.7305 0.0195 0.2348 0.2154
ER(ξ = 0.4) 0.0000 1.7578 1.7578 0.7467 1.0236 0.2769
ER(ξ = 0.8) 0.0000 0.8861 0.8861 0.1428 0.3641 0.2214
ET (ζ = 0.4) 0.0000 2.6465 2.6465 0.9420 1.4135 0.4715
ET (ζ = 0.8) 0.0000 0.9253 0.9253 0.1448 0.3777 0.2329

4 γ 0.0942 0.9048 0.8106 0.3619 0.6577 0.2958
α 2.4089 7.6559 5.2470 4.8379 5.2241 0.3862
ES 0.0000 0.7117 0.7117 0.0046 0.1361 0.1315
ER(ξ = 0.4) 0.0000 1.4996 1.4996 0.5334 0.6996 0.1662
ER(ξ = 0.8) 0.0000 0.7322 0.7322 -0.0193 0.1267 0.1461
ET (ζ = 0.4) 0.0000 2.0251 2.0251 0.6286 0.8693 0.2407
ET (ζ = 0.8) 0.0000 0.7401 0.7401 -0.0193 0.1284 0.1476

5 γ 0.2125 1.0131 0.8006 0.4337 0.8329 0.3992
α 2.2813 6.4315 4.1502 4.0631 4.6474 0.5842
ES 0.0000 0.7305 0.7305 0.0195 0.2348 0.2154
ER(ξ = 0.4) 0.0000 1.7578 1.7578 0.7467 1.0236 0.2769
ER(ξ = 0.8) 0.0000 0.8861 0.8861 0.1428 0.3641 0.2214
ET (ζ = 0.4) 0.0000 2.6465 2.6465 0.9420 1.4135 0.4715
ET (ζ = 0.8) 0.0000 0.9253 0.9253 0.1448 0.3777 0.2329

6 γ 0.0575 1.2772 1.2197 0.4906 0.8695 0.3789
α 1.2940 7.0438 5.7498 3.9240 4.4131 0.4890
ES 0.0000 1.1048 1.1048 0.0937 0.2870 0.1933
ER(ξ = 0.4) 0.0000 2.3178 2.3178 0.8477 1.0991 0.2514
ER(ξ = 0.8) 0.0000 1.2797 1.2797 0.2199 0.4188 0.1989
ET (ζ = 0.4) 0.0000 3.7292 3.7292 1.1049 1.5562 0.4513
ET (ζ = 0.8) 0.0000 1.3535 1.3535 0.2248 0.4368 0.2121

To show the optimal starting points and highlight the existence and uniqueness features of the
offered estimates of α̂ and γ̂, Figure 3 depicts the profile log-likelihoods of α and γ based on all
datasets Si for i = 1, 2, ..., 6, presented in Table 9. It supports the point estimation results provided
in Table 10 and indicates that the calculated estimates of α̂ and γ̂ from Si, i = 1, 2, ..., 6, exist and
are unique. As a result, we advocate adopting these starting points as the basis for all adhering to
computational iterations.

To highlight the convergence of the staying 40,000 MCMC outputs, using sample 1 as an example,
trace and Gaussian kernel plots of γ, α, ER, ET , or ES are displayed in Figure 4. This shows that the
MCMC strategy converges fairly effectively and demonstrates that removing the first 10,000 samples
is a proper amount to ignore the influence of the beginning values.
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Figure 3. Profile log-likelihoods for α (left) and γ (right) from MCs data.
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(a) γ (b) α

(c) ES (d) ER(ξ = 0.4)

(e) ER(ξ = 0.8) (f) ET (ζ = 0.4)

(g) EQ(ζ = 0.8)

Figure 4. The MCMC plots for parameters and entropies of IW model from MCs data.

5.2. Head-neck cancer data

To demonstrate the importance of the offered estimators in real-world medical scenarios, we use
a real data set provided by Efron [46] that depicts the survival times (in days) for forty-four head
and neck cancer patients (HNCPs) who were treated with radiotherapy and chemotherapy. Table 12
displays the HNCPs data. Elshahhat and Nassar [47] have also analyzed this data.
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Table 12. Survival time points of 44 HNCPs data.

12.20 23.56 23.74 25.87 31.98 37.00 41.35 47.38 55.46 58.36 63.47
68.46 78.26 74.47 81.43 84.00 92.00 94.00 110.0 112.0 119.0 127.0
130.0 133.0 140.0 146.0 155.0 159.0 173.0 179.0 194.0 195.0 209.0
249.0 281.0 319.0 339.0 432.0 469.0 519.0 633.0 725.0 817.0 1776

From Table 12, the MLEs (along with their Std.Errs) of γ and α are 80.821 (36.973) and 1.0134
(0.1119), respectively, while the KS (P-value) is 0.0901 (0.836). This result shows that the IW
model fits the HNCPs data adequately. To highlight this fitting, using the full HNCPs data points,
Figure 5(a) displays the contour plot of the log-likelihood as well as Figure 5(b) provides the empirical
and estimated RF lines. Consequently, Figure 5(a) shows that the acquired MLEs γ̂ ≃ 0.80.821 and
α̂ ≃ 1.0134 existed and are also unique.
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Figure 5. Contour and empirical/fitted RF from HNCPs data.

From the complete HNCPs data, by fixing (m1,m2) = (10, 20), different Unified-HCS samples are
created; see Table 13. For each Unified-HCS data set, the point estimations (with their Std.Errs) as
well as the interval estimations (with their ILs) of γ, α, ER (at ξ(= 0.7, 0.9)), ET (at ζ(= 0.7, 0.9)), ES )
are calculated; see Tables 14 and 15.
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Table 13. Artificial Unified-HCS samples from HNCPs data.

Sample m1 m2 T1(d1) T2(d2) τ ν

1 10 20 145(25) 205(32) 145 25
2 10 20 70(12) 90(16) 90 16
3 10 20 70(12) 175(29) 112 20
4 10 20 50(8) 100(18) 100 18
5 10 20 50(8) 175(29) 112 20
6 10 20 30(4) 55(8) 58.36 10

Table 14. Point evaluations for parameters and entropies of IW model from HNCPs data.

Sample Par. MLE SEL GEL

ρ→ -3 -3

1 γ 50.908 8.7074 50.902 50.015 50.903 50.015 50.900 50.013
α 0.8874 0.0554 0.8902 50.018 0.8918 50.016 0.8870 50.021
ES 6.7759 0.2724 6.7664 0.2578 6.7762 0.0003 6.7468 0.0291
ER(ξ = 0.4) 7.9778 0.3969 7.9683 0.3503 7.9837 0.0059 7.9376 0.0402
ER(ξ = 0.8) 7.0226 0.2918 7.0129 0.2727 7.0235 0.0009 6.9918 0.0308
ET (ζ = 0.4) 33.166 4.3455 33.265 3.8837 33.720 0.5533 32.395 0.7715
ET (ζ = 0.8) 10.183 0.5889 10.171 0.5506 10.201 0.0178 10.112 0.0713

2 γ 37.744 5.8044 37.748 36.947 37.749 36.948 37.746 36.945
α 0.8013 0.0552 0.8034 36.941 0.8053 36.939 0.7997 36.945
ES 7.0504 0.3284 7.0470 0.3000 7.0598 0.0094 7.0215 0.0288
ER(ξ = 0.4) 8.5064 0.5124 8.5077 0.4378 8.5303 0.0239 8.4630 0.0434
ER(ξ = 0.8) 7.3366 0.3551 7.3336 0.3204 7.3476 0.0109 7.3056 0.0310
ET (ζ = 0.4) 39.439 6.5752 39.830 5.7853 40.674 1.2351 38.269 1.1695
ET (ζ = 0.8) 10.827 0.7396 10.831 0.6690 10.873 0.0457 10.749 0.0776

3 γ 43.234 11.618 43.238 42.398 43.239 42.398 43.236 42.395
α 0.8408 0.0757 0.8431 42.391 0.8448 42.390 0.8398 42.395
ES 6.9167 0.3242 6.9115 0.2739 6.9223 0.0057 6.8898 0.0269
ER(ξ = 0.4) 8.2442 0.5308 8.2414 0.3855 8.2594 0.0152 8.2055 0.0388
ER(ξ = 0.8) 7.1833 0.3549 7.1783 0.2911 7.1901 0.0067 7.1547 0.0287
ET (ζ = 0.4) 36.204 6.2957 36.437 4.6643 37.036 0.8319 35.304 0.9001
ET (ζ = 0.8) 10.510 0.7279 10.508 0.5979 10.542 0.0323 10.441 0.0694

4 γ 40.981 13.984 40.985 40.160 40.986 40.160 40.983 40.157
α 0.8255 0.0924 0.8277 40.153 0.8294 40.151 0.8242 40.156
ES 6.9659 0.3645 6.9621 0.2850 6.9738 0.0079 6.9388 0.0271
ER(ξ = 0.4) 8.3405 0.6378 8.3402 0.4067 8.3600 0.0195 8.3008 0.0397
ER(ξ = 0.8) 7.2399 0.4046 7.2363 0.3036 7.2490 0.0091 7.2109 0.0290
ET (ζ = 0.4) 37.362 7.7870 37.665 5.0896 38.355 0.9929 36.374 0.9884
ET (ζ = 0.8) 10.626 0.8345 10.629 0.6274 10.666 0.0392 10.555 0.0714

5 γ 43.234 11.618 43.238 42.398 43.239 42.398 43.236 42.395
α 0.8408 0.0757 0.8431 42.391 0.8448 42.390 0.8398 42.395
ES 6.9167 0.3242 6.9115 0.2739 6.9223 0.0057 6.8898 0.0269
ER(ξ = 0.4) 8.2442 0.5308 8.2414 0.3855 8.2594 0.0152 8.2055 0.0388
ER(ξ = 0.8) 7.1833 0.3549 7.1783 0.2911 7.1901 0.0067 7.1547 0.0287
ET (ζ = 0.4) 36.204 6.2957 36.437 4.6643 37.036 0.8319 35.304 0.9001
ET (ζ = 0.8) 10.510 0.7279 10.508 0.5979 10.542 0.0323 10.441 0.0694

6 γ 33.890 9.4816 43.238 42.469 43.239 42.469 43.236 42.466
α 0.7699 0.0860 0.8431 33.047 0.8448 33.045 0.8398 33.050
ES 7.1646 0.4354 6.9115 0.3728 6.9223 0.2422 6.8898 0.2748
ER(ξ = 0.4) 8.7407 0.7712 8.2414 0.6308 8.2594 0.4813 8.2055 0.5353
ER(ξ = 0.8) 7.4685 0.4822 7.1783 0.4111 7.1901 0.2785 7.1547 0.3139
ET (ζ = 0.4) 42.554 10.617 36.437 7.6892 37.036 5.5184 35.304 7.2505
ET (ζ = 0.8) 11.103 1.0176 10.508 0.8436 10.542 0.5610 10.441 0.6627
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Table 15. Interval evaluations for parameters and entropies of IW model from HNCPs data.

Sample Par. 95% ACI 95% BCI

Low. Upp. IL Low. Upp. IL

1 γ 33.842 67.974 34.133 50.499 51.292 0.7933
α 0.7787 0.9960 0.2173 0.8195 0.9665 0.1470
ES 6.2420 7.3097 1.0677 6.2756 7.2752 0.9996
ER(ξ = 0.4) 7.1999 8.7556 1.5556 7.3101 8.6690 1.3590
ER(ξ = 0.8) 6.4507 7.5945 1.1438 6.4946 7.5525 1.0579
ET (ζ = 0.4) 24.649 41.683 17.034 26.541 41.578 15.037
ET (ζ = 0.8) 9.0288 11.337 2.3086 9.1450 11.281 2.1364

2 γ 26.368 49.121 22.753 37.369 38.144 0.7745
α 0.6932 0.9094 0.2162 0.7294 0.8812 0.1519
ES 6.4068 7.6939 1.2871 6.4792 7.6639 1.1848
ER(ξ = 0.4) 7.5020 9.5107 2.0087 7.6955 9.4251 1.7296
ER(ξ = 0.8) 6.6406 8.0326 1.3920 6.7283 7.9939 1.2656
ET (ζ = 0.4) 26.551 52.326 25.774 30.203 53.012 22.809
ET (ζ = 0.8) 9.3774 12.277 2.8991 9.5977 12.2418 2.6441

3 γ 20.463 66.006 45.542 42.860 43.634 0.7740
α 0.6925 0.9892 0.2967 0.7714 0.9186 0.1472
ES 6.2812 7.5521 1.2710 6.3904 7.4672 1.0768
ER(ξ = 0.4) 7.2039 9.2845 2.0806 7.5203 9.0366 1.5163
ER(ξ = 0.8) 6.4878 7.8789 1.3912 6.6253 7.7702 1.1449
ET (ζ = 0.4) 23.864 48.543 24.679 28.486 46.813 18.327
ET (ζ = 0.8) 9.0835 11.937 2.8533 9.3970 11.750 2.3528

4 γ 13.573 68.388 54.816 40.606 41.381 0.7756
α 0.6444 1.0067 0.3623 0.7548 0.9043 0.1494
ES 6.2515 7.6803 1.4288 6.4246 7.5428 1.1182
ER(ξ = 0.4) 7.0904 9.5906 2.5002 7.5869 9.1862 1.5993
ER(ξ = 0.8) 6.4470 8.0328 1.5858 6.6649 7.8560 1.1912
ET (ζ = 0.4) 22.100 52.625 30.525 29.128 49.116 19.987
ET (ζ = 0.8) 8.9909 12.262 3.2710 9.4738 11.937 2.4635

5 γ 20.463 66.006 45.542 42.8602 43.634 0.7740
α 0.6925 0.9892 0.2967 0.7714 0.9186 0.1472
ES 6.2812 7.5521 1.2710 6.3904 7.4672 1.0768
ER(ξ = 0.4) 7.2039 9.2845 2.0806 7.5203 9.0366 1.5163
ER(ξ = 0.8) 6.4878 7.8789 1.3912 6.6253 7.7702 1.1449
ET (ζ = 0.4) 23.864 48.543 24.679 28.486 46.813 18.327
ET (ζ = 0.8) 9.0835 11.937 2.8533 9.3970 11.750 2.3528

6 γ 15.306 52.473 37.167 42.860 43.634 0.7740
α 0.6014 0.9384 0.3369 0.7714 0.9186 0.1472
ES 6.3112 8.0179 1.7067 6.3904 7.4672 1.0768
ER(ξ = 0.4) 7.2292 10.252 3.0231 7.5203 9.0366 1.5163
ER(ξ = 0.8) 6.5234 8.4136 1.8903 6.6253 7.7702 1.1449
ET (ζ = 0.4) 21.746 63.362 41.617 28.486 46.813 18.327
ET (ζ = 0.8) 9.1089 13.098 3.9891 9.3970 11.750 2.3528

Figure 6 illustrates the profile log-likelihood functions of α and γ based on all datasets presented in
Table 13. It indicates that the proposed estimates of µi, i = 1, 2 based on samples S i for i = 1, 2, ..., 6,
are existent and are unique, as well as supports the point estimation results of α and γ listed in Table 14.

All Bayes’ iterations developed from HNCPs data are implemented using the same scenario
described in Subsection 5.1. As a consequence, from Tables 14 and 15, the offered estimates suggested
by likelihood and Bayes methods of the IW model parameters γ and α as well as of IW entropies ER,
ET , and ES behave similarly. Moreover, the MCMC and 95& BCI estimates outperform compared to
others in terms of lowest standard error and interval width. For example, using Sample 1 collected from
the HNCPs data, trace and density plots of the simulated Markov variables for all unknown parameters
are depicted in Figure 7. It is also clear that the MCMC iterations of ET (ζ = 0.8) are positively skewed
while those of the other parameters are close to being symmetrical.
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Figure 6. Profile log-likelihoods for α (left) and γ (right) from HNCPs data.
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(a) γ (b) α

(c) ES (d) ER(ξ = 0.4)

(e) ER(ξ = 0.8) (f) ET (ζ = 0.4)

(g) EQ(ζ = 0.8)

Figure 7. The MCMC plots for parameters and entropies of IW model from HNCPs data.

It is evident from the obtained numerical results of the two proposed applications, under the usage
of censored samples, that the proposed estimators perform effectively and satisfactorily while saving
time, cost, and effort compared to complete samples. Using censored samples, we achieve abundant,
accurate, improved, and efficient results while optimizing time and cost. Consequently, the scope of
the proposed applications can be expanded to other practical real-life scenarios.
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6. Concluding remarks

We examine two approaches for estimating Rényi, Tsallis, and Shannon entropies for the inverse
Weibull distribution using unified hybrid censored data. The estimations are achieved based on two
approaches: Maximum likelihood and Bayesian methods. The point estimators are derived using the
invariance property, and the asymptotic confidence intervals are calculated where the variances are
approximated using the delta methods. The Bayesian method offers Bayesian estimates using the
Markov Chain Monte Carlo sampling methodology. This is accomplished using two loss functions:
Squared error and general entropy loss functions. Additionally, we investigate Bayes credible intervals.
Monte Carlo simulations are performed to assess the estimation efficiency of the proposed inferential
approaches. Furthermore, two applications are examined for the same objective. The numerical
research shows that for all three entropy metrics, the Bayesian estimation method produces adequate
point and interval estimates based on some statistical criteria. Using the same entropy measures for the
inverse Weibull distribution and unified hybrid censored samples, some potential future work includes:
(1) Investigating the estimation of entropy measures within a competing risks model; (2) examining
estimation issues for entropy measures in the context of accelerated life tests; and (3) exploring
classical estimation methods other than maximum likelihood, such as least squares, weighted least
squares, and maximum product of spacings methods, among others.
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