Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation

  • In this paper, we aim to study the stability and convergence of a finite difference scheme for solving the two-dimensional nonlinear multi-term time fractional subdiffusion equation with weakly singular solutions. We apply the L1 scheme to discretize the multi-term temporal Caputo derivatives, a standard central difference method in space, and a backward formula to approximate the nonlinear term on the uniform mesh, respectively. Stability and pointwise-in-time error estimates are obtained for the fully discrete scheme. The global convergence order is α1, and the local convergence order is 1 in the temporal direction. The theoretical analysis is verified by some numerical results.

    Citation: Chang Hou, Hu Chen. Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation[J]. Electronic Research Archive, 2025, 33(3): 1476-1489. doi: 10.3934/era.2025069

    Related Papers:

    [1] Cheng Wang . Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29(5): 2915-2944. doi: 10.3934/era.2021019
    [2] Jun Pan, Yuelong Tang . Two-grid $ H^1 $-Galerkin mixed finite elements combined with $ L1 $ scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365
    [3] Jun Liu, Yue Liu, Xiaoge Yu, Xiao Ye . An efficient numerical method based on QSC for multi-term variable-order time fractional mobile-immobile diffusion equation with Neumann boundary condition. Electronic Research Archive, 2025, 33(2): 642-666. doi: 10.3934/era.2025030
    [4] Mingfa Fei, Wenhao Li, Yulian Yi . Numerical analysis of a fourth-order linearized difference method for nonlinear time-space fractional Ginzburg-Landau equation. Electronic Research Archive, 2022, 30(10): 3635-3659. doi: 10.3934/era.2022186
    [5] Yang Shi, Xuehua Yang . Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers' equation. Electronic Research Archive, 2024, 32(3): 1471-1497. doi: 10.3934/era.2024068
    [6] Jingyun Lv, Xiaoyan Lu . Convergence of finite element solution of stochastic Burgers equation. Electronic Research Archive, 2024, 32(3): 1663-1691. doi: 10.3934/era.2024076
    [7] Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195
    [8] Yunxia Niu, Chaoran Qi, Yao Zhang, Wahidullah Niazi . Numerical analysis and simulation of the compact difference scheme for the pseudo-parabolic Burgers' equation. Electronic Research Archive, 2025, 33(3): 1763-1791. doi: 10.3934/era.2025080
    [9] Shuaikang Wang, Yunzhi Jiang, Yongbin Ge . High-order compact difference methods for solving two-dimensional nonlinear wave equations. Electronic Research Archive, 2023, 31(6): 3145-3168. doi: 10.3934/era.2023159
    [10] Victor Ginting . An adjoint-based a posteriori analysis of numerical approximation of Richards equation. Electronic Research Archive, 2021, 29(5): 3405-3427. doi: 10.3934/era.2021045
  • In this paper, we aim to study the stability and convergence of a finite difference scheme for solving the two-dimensional nonlinear multi-term time fractional subdiffusion equation with weakly singular solutions. We apply the L1 scheme to discretize the multi-term temporal Caputo derivatives, a standard central difference method in space, and a backward formula to approximate the nonlinear term on the uniform mesh, respectively. Stability and pointwise-in-time error estimates are obtained for the fully discrete scheme. The global convergence order is α1, and the local convergence order is 1 in the temporal direction. The theoretical analysis is verified by some numerical results.



    The following two-dimensional nonlinear multi-term time-fractional subdiffusion equations with initial and boundary conditions are considered in this paper:

    Dαtu=Δu+f(u), (x,y)Ω, 0<tT, (1.1)
    u(x,y,0)=g(x,y), (x,y)Ω, (1.2)
    u(x,y,t)=0, (x,y)Ω, 0tT, (1.3)

    where Ω=(0,L1)×(0,L2) with the boundary Ω, fC1(R), and g is a continuous function in Ω. The operator Dαt in (1.1) is defined by

    Dαt=Jl=1blDαlt, 0<αJ<αJ1<<α1<1, and bl>0,

    where Dαlt denotes the Caputo derivative with respect to t, i.e.,

    Dαltu=1Γ(1αl)t0(ts)αlu(x,y,s)sds.

    In order to describe the physical process better, some scholars use multi-term time fractional differential equations for modeling, such as the behavior of viscoelastic fluids[1,2], the dispersion of pollutants[3], and magnetic resonance imaging[4]. The finite difference method[5,6,7,8], the finite volume method [9,10], the fractional predictor-corrector method[11], the finite element method[12], the collocation method [13,14], and the spectral method[15] have been developed for solving the multi-term time fractional equations. The work [16] proposed a fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation using SOE approximation. Recently, a lot of work about the time fractional nonlinear subdiffusion equation has been published. For example, the paper [17] considered a Newton linearized Galerkin finite element method to solve the problem with non-smooth solutions in the time direction and provided an optimal error estimate by using the discrete fractional Gronwall-type inequality on the graded meshes. The paper [18] provided an efficient systematic framework for solving nonlinear fractional partial differential equations on unbounded domains and obtained an error estimate. Jiang et al. [19] proposed an efficient ADI scheme for the nonlinear subdiffusion equation with a weakly singular solution and obtained the pointwise-in-time error estimate. Li et al. [20] proposed a new tool, the refined discrete fractional-type Gr¨onwall inequality, which is used to derive a sharp pointwise-in-time error estimate of the L1 scheme for the problem. However, as far as the authors know, at present there is no work dedicated to the pointwise-in-time error estimate of the L1 scheme for the nonlinear multi-term time-fractional subdiffusion equation with weakly singular solutions. The present work is designed to fill this gap. Following [21,22], in the remainder of our paper, we make the following assumption:

    Assumption 1.1. For all (x,y,t)ˉΩ×(0,T], we assume the solution satisfies

    |lu(x,y,t)xpyq|C, l=0,1,2,3,4,5, l=p+q, (1.4)
    |ku(x,y,t)tk|C(1+tα1k), k=0,1,2, (1.5)

    where C is a positive constant. C in this paper represents a constant independent of time and space step, and C in different positions represents different values.

    This paper consists of the following sections. In Section 2, we construct a fully discrete scheme for the problem (1.1)–(1.3). In Section 3, some lemmas are introduced that will be used in the subsequent analysis. In Section 4, convergence and stability of the fully discrete scheme proposed in Section 2 are given, and we obtain the sharp pointwise-in-time error estimate. In Section 5, the theoretical analysis is verified by four numerical examples.

    Let M1, M2, and N be three positive integers. Divide space and time uniformly into M1×M2 and N parts, respectively. Let {tn|tn=nτ, 0nN} be a uniform partition of [0,T] with the time step τ=T/N. Let h1=L1/M1 and h2=L2/M2 be the spatial steps. So spatial grid points consist of xi=ih1 and yj=jh2, where i=0,1,,M1 and j=0,1,,M2. The spatial grid is represented by Ω={(xi,yj)|i=0,1,,M1,j=0,1,,M2}. Let Ωh=ΩΩ, and Ωh=ΩΩ. Defining uni,j=u(xi,yj,tn), the previous equations (1.1)–(1.3) at the grid point (xi,yj,tn) can be transformed into

    Dατuni,j=δ2xuni,j+δ2yuni,j+f(un1i,j)+Jl=1bl(rl)ni,j+Rni,j+(ˉr)ni,j, (xi,yj)Ωh, 0<tnT, (2.1)
    u0i,j=g(xi,yj), (xi,yj)Ωh, (2.2)
    uni,j=0, (xi,yj)Ωh, 0tnT, (2.3)

    where the notations in (2.1) will be given afterwards.

    Applying an L1 formula for the multi-term time Caputo derivatives, i.e., set

    Dαlτuni,j=dαl1uni,jdαlnu0i,jn1k=1(dαlkdαlk+1)unki,j,

    where dαlk=ταl[k1αl(k1)1αl]Γ(2αl). For simplicity, defining dk=Jl=1bldαlk, it yields that

    Dατuni,j:=Jl=1blDαlτuni,j=d1uni,jdnu0i,jn1k=1(dkdk+1)unki,j. (2.4)

    A standard second-order approximation is used to discretize Δuni,j:

    Δuni,jδ2xuni,j+δ2yuni,j,δ2xuni,j=uni+1,j2uni,j+uni1,jh12,δ2yuni,j=uni,j+12uni,j+uni,j1h22.

    To approximate the nonlinear term f(uni,j), we utilize the backward formula, expressed as

    f(uni,j)=f(un1i,j)+(ˉr)ni,j.

    In (2.1), (rl)ni,j and Rni,j are truncation errors, i.e.,

    (rl)ni,j=Dαlτuni,jDαltuni,j,Rni,j=Δuni,j(δ2xuni,j+δ2yuni,j).

    Leaving out the truncation errors in (2.1) and replacing uni,j by Uni,j, the fully discrete scheme is obtained:

    DατUni,j=δ2xUni,j+δ2yUni,j+f(Un1i,j), (xi,yj)Ωh, 0<tnT, (2.5)
    U0i,j=g(xi,yj), (xi,yj)Ωh, (2.6)
    Uni,j=0, (xi,yj)Ωh, 0tnT. (2.7)

    Lemma 3.1. For (xi,yj)Ωh, 1nN, it holds that

    |(ˉr)ni,j|Cτtα11n.

    Proof. Due to the continuity of f and the boundedness of u, f(ζ) is bounded, where ζ is between uni,j and un1i,j. We obtain

    |(ˉr)ni,j|=|f(uni,j)f(un1i,j)|C|uni,jun1i,j|.

    Then we estimate the truncation error in two cases ([19], page 6). Note the condition (1.5).

    Case A: n2

    |(ˉr)ni,j|C|uni,jun1i,j|=Cτ|u(ih1,jh2,t)t|t=ξ (tn1<ξ<tn)Cτ(1+ξα11)Cτ(1+tα11n1)Cτ(1+tα11n)Cτtα11n,

    where we have used tn1tn for n2 in the penultimate inequality.

    Case B: n=1

    |(ˉr)1i,j|C|t10u(ih1,jh2,s)sds|Ct10|u(ih1,jh2,s)s|dsCt10(1+sα11)ds=C(τ+1α1τα1)Cτα1=Cτtα111.

    The proof is completed.

    Lemma 3.2. For (xi,yj)Ωh, 1nN, we have |Rni,j|C(h21+h22).

    Proof. According to the Taylor expansion, we can see that

    |Rni,j|=|Δuni,j(δ2xuni,j+δ2yuni,j)|=|(uxx(xi,yj,tn)δ2xuni,j)+(uyy(xi,yj,tn)δ2yuni,j)|h2112|4u(x,yj,tn)x4|x=ξ1|+h2212|4u(xi,y,tn)y4|y=ξ2|C(h21+h22),

    where xi1<ξ1<xi+1, and yj1<ξ2<yj+1.

    Lemma 3.3. [23, Lemma 6] |Jl=1bl(rl)ni,j|Cnmin{2α1,α1+1}, for (xi,yj)Ωh, 1nN.

    Define the positive stability multipliers θ0=μ, θn=μnk=1(dkdk+1)θnk, where μ=d11.

    Lemma 3.4. ([24], Lemma 5.1) θn is a monotonically decreasing sequence with respect to n. For n=0,1,,N,

    θnb11Γ(2α1)τα1(n+1)α11.

    Notation. θn here has the following relationship with σαn in Literature [24]: θn=σαn.

    Lemma 3.5. ([24], Lemma 5.2, Corollary 5.1) For n=1,2,,N,

    nj=1jβθnjb11Γ(2α1)τα1[κβ,n(n2)α11+1α1(n2)α1β],

    where β0 and

    κβ,n={1+1n1ββ1,  for  β1,1+lnn,  for  β=1.

    If there exists α_, which satisfies 0<α_α1<1, we have

    nj=1jβθnj{ˆC for β=0,ˆCKβ,nτtα11n for β>1,

    where constant ˆC depends on α_ and T.

    Lemma 3.6. ([25], Lemma 5.1) If {yn} is a non-negative sequence, and it satisfies yna1tη1n+a2tη2n+bτn1j=1tα1njyj, 1nN, we get ynC(a1tη1n+a2tη2n), 1nN, where 0η1,η2<1, a1,a2,b>0, 0<α<1 and N is a positive integer.

    Suppose gj is an arbitrary mesh function; we define an integral operator Bαt, which satisfies  Bαt(g0)=0, Bαt(gn)=nj=1θnjgj, for n=1,2,,N.

    Lemma 3.7. ([23], Lemma 2) For any mesh function {Uj}Nj=0, the following formula holds.

    Bαt(DατUn)=UnU0, for n=1,2,,N.

    Theorem 4.1. If Uni,j is the solution of (2.5)(2.7) at point (xi,yj,tn), and suppose |Uni0,j0|=Un, it holds that

    |Uni0,j0||U0i0,j0|+nk=1θnk|f(Uk1i0,j0)|, for n0. (4.1)

    Proof. From (2.5), it is easy to see that Uni,j satisfies

    (Jl=1bldαl1+2h21+2h22)|Uni,j|=|Uni+1,j+Uni1,jh21+Uni,j+1+Uni,j1h22+Jl=1nk=2bl(dαlk1dαlk)Unk+1i.j+dnU0i,j+f(Un1i,j)|.

    Based on (2.7) and the fact that dαlk1>dαlk, we have

    (Jl=1bldαl1+2h21+2h22)|Uni0,j0||2Uni0,j0h21|+|2Uni0,j0h22|+Jl=1nk=2bl(dαlk1dαlk)|Unk+1i0,j0|+dn|U0i0,j0|+|f(Un1i0,j0)|.

    Then, we obtain

    (Jl=1bldαl1)|Uni0,j0|Jl=1nk=2bl(dαlk1dαlk)|Unk+1i0,j0|+dn|U0i0,j0|+|f(Un1i0,j0)|,

    which, according to the definition of Dατ, is equivalent to the following expression:

    Dατ|Uni0,j0||f(Un1i0,j0)|, 1nN. (4.2)

    By applying the integral operator to both sides of the above formula, we obtain

    Bαt(Dατ|Uni0,j0|)Bαt|f(Un1i0,j0)|.

    Due to Lemma 3.7 and the above definition of Bαt, (4.1) holds for n1. Obviously, (4.1) also holds for n=0.

    Theorem 4.2. Suppose that u is the solution of (1.1)(1.3) and satisfies Assumption 1.1, and that U is the solution of (2.5)(2.7). There exist positive constants τ0 and h0. When τ<τ0 and h1,h2<h0, it holds for m>0 that

    umUmC(τtα11m+h21+h22). (4.3)

    Proof. For m=0, (4.3) holds obviously. Assuming that (4.3) holds for m=0,1,2n1(n1), then for sufficiently small τ, h1, h2, and 1kn, we obtain

    Uk1uk1+uk1Uk1uk1+1.

    Let us discuss whether the inequality (4.3) holds when m=n. Let emi,j=umi,jUmi,j for 0mn. Subtracting (2.5)–(2.7) from (2.1)–(2.3), we obtain

    Dατemi,j=δ2xemi,j+δ2yemi,j+(Rf)mi,j+Jl=1bl(rl)mi,j+Rmi,j+(ˉr)mi,j, (xi,yj)Ωh, 0<tmT,e0i,j=0, (xi,yj)Ωh,emi,j=0, (xi,yj)Ωh, 0tmT,

    where (Rf)mi,j=f(um1i,j)f(Um1i,j). Considering the continuity of f, the boundedness of um1i,j and Um1i,j, we have

    |(Rf)mi,j|=|f(um1i,j)f(Um1i,j)|C|em1i,j|. (4.4)

    Let |emi0,j0|=em. Using Lemmas 3.1–3.3 and inequality (4.4), similar to (4.2), it can be obtained that for 1mn,

    Dατ|emi0,j0|C1|em1i0,j0|+C2mmin{2α1,α1+1}+C3(h21+h22)+C4τtα11m. (4.5)

    Applying the definition of Bαt again, and Lemmas 3.4 and 3.5, we can further obtain

    |emi0,j0|C1mk=1θmk|ek1i0,j0|+C2mk=1θmkkmin{2α1,1+α1}+C3mk=1θmk(h21+h22)+C4τα1mk=1θmkkα11=C1m1k=1θmk1|eki0,j0|+C2mk=1θmkkmin{2α1,1+α1}+C3ˆC(h21+h22)+C4τα1mk=1θmkkα11C1b11Γ(2α1)τα1m1k=1(mk)α11|eki0,j0|+C2ˆCκσ1,mτtα11m+C3ˆC(h21+h22)+C4τ2α1b11Γ(2α1)[(11α1)(m2)α11+m2α11α12α11+1α1(m2)2α11]C(τα1m1k=1(mk)α11|eki0,j0|+τtα11m+(h21+h22)),

    where σ1=min{2α1,α1+1}. From Lemma 3.6, we have

    |emi0,j0|C(τtα11m+h21+h22), for 1mn. (4.6)

    In summary, the inequality (4.3) holds for m=n, which finishes the mathematical induction. The proof is complete.

    Remark 4.1. The global maximum error of the numerical solution is

    max1nNunUnC(τα1+h21+h22).

    When tn is away from 0, the local maximum error is

    unUnC(τ+h21+h22).

    Theorem 4.3. The fully discrete scheme (2.5)(2.7) is stable with respect to the initial value. If ˆUni,j satisfies the following equations,

    Jl=1blDαlτˆUni,j=δ2xˆUni,j+δ2yˆUni,j+f(ˆUn1i,j), (xi,yj)Ωh, 0<tnT, (4.7)
    ˆU0i,j=ˆg(xi,yj), (xi,yj)Ωh, (4.8)
    ˆUni,j=0, (xi,yj)Ωh, 0tnT, (4.9)

    and gˆg is sufficiently small, then

    ˆenCˆe0, for n0, (4.10)

    where ˆeni,j=Uni,jˆUni,j.

    Proof. Subtracting (4.7)–(4.9) from (2.5)–(2.7) and according to Theorem 4.1, we have

    |ˆeni0,j0||ˆe0i0,j0|+nk=1θnk|f(Uk1i0,j0)f(ˆUk1i0,j0)|,

    where ˆeni0,j0=ˆen. (4.10) holds for n=0 obviously. Suppose that (4.10) holds when n=0,1,2,,m1(m1), we have ˆUrˆer+UrCˆe0+Ur1+Ur on the condition that ˆe0 is small, for rm1. According to (4.3), Uri,j is bounded. Then, combining the continuity of f and the boundedness of ˆUri,j, it holds that

    |ˆemi0,j0||ˆe0i0,j0|+mk=1θmk|f(Uk1i0,j0)f(ˆUk1i0,j0)||ˆe0i0,j0|+Cmk=1θmk|ˆek1i0,j0|C|ˆe0i0,j0|+Cm1k=1θmk1|ˆeki0,j0|C|ˆe0i0,j0|+Cτm1k=1tα11mk|ˆeki0,j0|.

    Due to Lemma 3.6, we have

    ˆemCˆe0.

    Therefore, the mathematical induction ends, and the proof is complete.

    Example 5.1. We first consider the following two-term time-fractional nonlinear subdiffusion equation with b1=b2=1.

    Dα1tu+Dα2tu=Δu+u(1u2)+h(x,y,t), (x,y)Ω, 0<tT, (5.1)
    u(x,y,0)=g(x,y), (x,y)Ω, (5.2)
    u(x,y,t)=0, (x,y)Ω, 0tT, (5.3)

    where h(x,y,t) and g(x,y) are up to the exact solution. We set the exact solution to tα1sin(πx)sin(πy), which satisfies Assumption 1.1. We consider the spatial domain Ω=(0,1)×(0,1) and set T=1.

    Above all, we compute the convergence order in spatial direction. We set N=1000 so that the influence of errors in temporal direction can be ignored compared with errors in spatial direction. The maximum errors at tn=1 and rates, when α1=0.4 and α2=0.3, are presented in Table 5.1. Numerical results show that the spatial accuracy is O(h21+h22). For studying temporal convergence rates, we define global errors EG and local errors EL by

    EG=max1nNUnun, EL=UNuN.
    Table 5.1.  maximum errors at tn=1 and spatial convergence rates for Example 5.1.
    M1=M2 4 8 16 32 64
    E 4.5780e-02 1.1335e-02 2.8363e-03 7.1957e-04 1.9089e-04
    rate 2.0140 1.9987 1.9788 1.9144 *

     | Show Table
    DownLoad: CSV

    Global errors and rates in Table 5.2 show that the global temporal convergence order is α1. When tn is far away from 0, results are shown in Table 5.3, and we get the local temporal accuracy O(τ). All in all, numerical results are consistent with the theoretical analysis in Remark 1.

    Table 5.2.  global maximum errors and temporal convergence rates for Example 5.1.
    N=M21=M22 α1=0.3,α2=0.1 α1=0.5,α2=0.3 α1=0.7,α2=0.5
    EG rate EG rate EG rate
    128 1.6333e-02 0.1690 1.0008e-02 0.3361 5.2012e-03 0.8184
    256 1.4528e-02 0.1931 7.9278e-03 0.3660 2.9494e-03 0.6130
    512 1.2708e-02 0.1926 6.1514e-03 0.3744 1.9284e-03 0.6260
    1024 1.1120e-02 0.2038 4.7453e-03 0.4003 1.2496e-03 0.6518
    2048 9.6547e-03 * 3.5956e-03 * 7.9532e-04 *

     | Show Table
    DownLoad: CSV
    Table 5.3.  local maximum errors at tn=1 and temporal convergence rates for Example 5.1.
    N=M21=M22 α1=0.3,α2=0.1 α1=0.5,α2=0.3 α1=0.7,α2=0.5
    EL rate EL rate EL rate
    128 5.0943e-03 0.8339 5.1615e-03 0.8359 5.2012e-03 0.8374
    256 2.8579e-03 1.0536 2.8916e-03 1.0534 2.9109e-03 1.0531
    512 1.3768e-03 0.9473 1.3933e-03 0.9477 1.4028e-03 0.9480
    1024 7.1403e-04 1.0464 7.2235e-04 1.0460 7.2716e-04 1.0456
    2048 3.4571e-04 * 3.4984e-04 * 3.5227e-04 *

     | Show Table
    DownLoad: CSV

    Example 5.2. Secondly, we consider a two-dimensional three-term time-fractional nonlinear subdiffusion equation with b1=b2=b3=1.

    Dα1tu+Dα2tu+Dα3tu=Δu+u(1u2)+h(x,y,t), (x,y)Ω, 0<tT, (5.4)
    u(x,y,0)=g(x,y), (x,y)Ω, (5.5)
    u(x,y,t)=0, (x,y)Ω, 0tT, (5.6)

    where Ω=(0,1)×(0,1) and T=1. We calculate h(x,y,t) and g(x,y) based on the exact solution

    tα1sin(πx)sin(πy).

    Numerical results are shown in Tables 5.4 and 5.5, which verify the theoretical analysis as well.

    Table 5.4.  global maximum errors and temporal convergence rates for Example 5.2.
    N=M21=M22 α1=0.3,α2=0.2,α3=0.1 α1=0.5,α2=0.4,α3=0.3 α1=0.7,α2=0.6,α2=0.5
    EG rate EG rate EG rate
    128 1.7505e-02 0.1822 1.0842e-02 0.3657 4.9545e-03 0.7240
    256 1.5428e-02 0.2052 8.4150e-03 0.3942 2.9994e-03 0.6375
    512 1.3382e-02 0.2040 6.4030e-03 0.4000 1.9282e-03 0.6436
    1024 1.1618e-02 0.2159 4.8524e-03 0.4227 1.2342e-03 0.6639
    2048 1.0003e-02 * 3.6200e-03 * 7.7897e-04 *

     | Show Table
    DownLoad: CSV
    Table 5.5.  local maximum errors at tn=1 and temporal convergence rates for Example 5.2.
    N=M21=M22 α1=0.3,α2=0.2,α3=0.1 α1=0.5,α2=0.4,α3=0.3 α1=0.7,α2=0.6,α2=0.5
    EL rate EL rate EL rate
    128 4.8786e-03 0.8333 4.9371e-03 0.8351 4.9545e-03 0.8362
    256 2.7380e-03 1.0534 2.7675e-03 1.0532 2.7751e-03 1.0529
    512 1.3193e-03 0.9470 1.3337e-03 0.9474 1.3376e-03 0.9476
    1024 6.8430e-04 1.0463 6.9158e-04 1.0460 6.9355e-04 1.0455
    2048 3.3134e-04 * 3.3495e-04 * 3.3600e-04 *

     | Show Table
    DownLoad: CSV

    Example 5.3. Thirdly, we investigate the scenario in which the nonlinear term is represented by f(u)=sin(u), which satisfies Lipschitz condition. The corresponding equation is formulated as follows:

    Dα1tu+Dα2tu+Dα3tu=Δu+sin(u)+h(x,y,t), (x,y)Ω, 0<tT, (5.7)
    u(x,y,0)=g(x,y), (x,y)Ω, (5.8)
    u(x,y,t)=0, (x,y)Ω, 0tT, (5.9)

    where Ω=(0,1)×(0,1) and T=1. Similarly, we derive h(x,y,t) and g(x,y) based on the exact solution

    tα1sin(πx)sin(πy).

    The corresponding numerical results are presented in Tables 5.6 and 5.7. The global convergence order is α1, and the local convergence order is 1 in the temporal direction.

    Table 5.6.  global maximum errors and temporal convergence rates for Example 5.3.
    N=M21=M22 α1=0.3,α2=0.2,α3=0.1 α1=0.5,α2=0.4,α3=0.3 α1=0.7,α2=0.6,α2=0.5
    EG rate EG rate EG rate
    128 1.7753e-02 0.1908 1.0852e-02 0.3664 4.8924e-03 0.7058
    256 1.5554e-02 0.2101 8.4178e-03 0.3945 2.9995e-03 0.6375
    1024 1.1650e-02 0.2175 4.8527e-03 0.4227 1.2342e-03 0.6639
    2048 1.0019e-02 * 3.6201e-03 * 7.7897e-04 *

     | Show Table
    DownLoad: CSV
    Table 5.7.  local maximum errors at tn=1 and temporal convergence rates for Example 5.3.
    N=M21=M22 α1=0.3,α2=0.2,α3=0.1 α1=0.5,α2=0.4,α3=0.3 α1=0.7,α2=0.6,α2=0.5
    EL rate EL rate EL rate
    128 5.0640e-03 0.8278 4.9983e-03 0.8256 4.8924e-03 0.8229
    256 2.8530e-03 1.0552 2.8204e-03 1.0557 2.7656e-03 1.0561
    512 1.3730e-03 0.9454 1.3568e-03 0.9449 1.3301e-03 0.9441
    1024 7.1295e-04 1.0478 7.0484e-04 1.0484 6.9132e-04 1.0489
    2048 3.4485e-04 * 3.4079e-04 * 3.3415e-04 *

     | Show Table
    DownLoad: CSV

    Example 5.4. Finally, we consider a two-dimensional two-term time-fractional nonlinear subdiffusion equation with b1=b2=1, whose exact solution is unknown.

    Dα1tu+Dα2tu=Δu+u(1u), (x,y)Ω, 0<tT, (5.10)
    u(x,y,0)=12sin(πx)sin(πy), (x,y)Ω, (5.11)
    u(x,y,t)=0, (x,y)Ω, 0tT, (5.12)

    where Ω=(0,1)×(0,1) and T=1.

    The two-mesh method[26] is applied to compute errors and convergence rates. We take M1=M2=60. EL is redefined by

    EL=UNW2N,

    in which Wn is the numerical solution of Example 5.4 with τ=T/2N. The local errors are shown in Table 5.8. The local temporal convergence rate O(τ) is consistent with Remark 1.

    Table 5.8.  local maximum errors at tn=1 and temporal convergence rates for Example 5.4.
    N α1=0.3,α2=0.1 α1=0.5,α2=0.3 α1=0.7,α2=0.5
    EL rate EL rate EL rate
    32 6.8318e-05 1.0203 1.2027e-04 1.0285 1.4785e-04 1.0455
    64 3.3682e-05 1.0103 5.8957e-05 1.0154 7.1633e-05 1.0270
    128 1.6722e-05 1.0053 2.9166e-05 1.0086 3.5152e-05 1.0173
    256 8.3302e-06 1.0027 1.4496e-05 1.0050 1.7367e-05 1.0117
    512 4.1572e-06 * 7.2231e-06 * 8.6132e-06 *

     | Show Table
    DownLoad: CSV

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The research is supported in part by the Natural Science Foundation of Shandong Province under Grant ZR2023MA077, Fundamental Research Funds for the Central Universities (No. 202264006), and the National Natural Science Foundation of China under Grant 11801026.

    The authors declare there are no conflicts of interest.



    [1] C. Ming, F. Liu, L. Zheng, I. Turner, V. Anh, Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid, Comput. Math. Appl., 72 (2016), 2084–2097. https://doi.org/10.1016/j.camwa.2016.08.012 doi: 10.1016/j.camwa.2016.08.012
    [2] L. Feng, F. Liu, I. Turner, L. Zheng, Novel numerical analysis of multi-term time fractional viscoelastic non-newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid, Fract. Calc. Appl. Anal., 21 (2018), 1073–1103. https://doi.org/10.1515/fca-2018-0058 doi: 10.1515/fca-2018-0058
    [3] H. Li, G. ur Rahman, H. Naz, J. F. Gómez-Aguilar, Modeling of implicit multi term fractional delay differential equation: Application in pollutant dispersion problem, Alex. Eng. J., 94 (2024), 1–22. https://doi.org/10.1016/j.aej.2024.03.021 doi: 10.1016/j.aej.2024.03.021
    [4] S. Qin, F. Liu, I. Turner, V. Vegh, Q. Yu, Q. Yang, Multi-term time-fractional Bloch equations and application in magnetic resonance imaging, J. Comput. Appl. Math., 319 (2017), 308–319. https://doi.org/10.1016/j.cam.2017.01.018 doi: 10.1016/j.cam.2017.01.018
    [5] Y. Wang, Y. Zhao, H. Chen, Discrete comparison principle of a finite difference method for the multi-term time fractional diffusion equation, Numer. Algorithms, 93 (2023), 1581–1593. https://doi.org/10.1007/s11075-022-01480-y doi: 10.1007/s11075-022-01480-y
    [6] R. Du, Z. Sun, Temporal second-order difference methods for solving multi-term time fractional mixed diffusion and wave equations, Numer. Algorithms, 88 (2021), 191–226. https://doi.org/10.1007/s11075-020-01037-x doi: 10.1007/s11075-020-01037-x
    [7] J. Wang, X. Jiang, X. Yang, H. Zhang, A compact difference scheme for mixed-type time-fractional black-scholes equation in european option pricing, Math. Methods Appl. Sci., 2025. https://doi.org/10.1002/mma.10717
    [8] X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan. J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
    [9] X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [10] X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
    [11] Y. Mahatekar, A. S. Deshpande, A generalized NPCM for solving multi-term fractional differential equations, Int. J. Appl. Comput. Math., 8 (2022), 115. https://doi.org/10.1007/s40819-022-01305-5 doi: 10.1007/s40819-022-01305-5
    [12] Y. Wei, Y. Zhao, Z. Shi, F. Wang, Y. Tang, Spatial high accuracy analysis of fem for two-dimensional multi-term time-fractional diffusion-wave equations, Acta Math. Appl. Sin. Engl. Ser., 34 (2018), 828–841. https://doi.org/10.1007/s10255-018-0795-1 doi: 10.1007/s10255-018-0795-1
    [13] X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
    [14] X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
    [15] Z. Liu, F. Liu, F. Zeng, An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations, Appl. Numer. Math., 136 (2019), 139–151. https://doi.org/10.1016/j.apnum.2018.10.005 doi: 10.1016/j.apnum.2018.10.005
    [16] P. Lyu, Y. Liang, Z. Wang, A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation, Appl. Numer. Math., 151 (2020), 448–471. https://doi.org/10.1016/j.apnum.2019.11.012 doi: 10.1016/j.apnum.2019.11.012
    [17] D. Li, C. Wu, Z. Zhang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. https://doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0
    [18] D. Li, J. Zhang, Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain, J. Comput. Phys., 322 (2016), 415–428. https://doi.org/10.1016/j.jcp.2016.06.046 doi: 10.1016/j.jcp.2016.06.046
    [19] Y. Jiang, H. Chen, T. Sun, C. Huang, Efficient L1-ADI finite difference method for the two-dimensional nonlinear time-fractional diffusion equation, Appl. Math. Comput., 471 (2024), 128609. https://doi.org/10.1016/j.amc.2024.128609 doi: 10.1016/j.amc.2024.128609
    [20] D. Li, H. Qin, J. Zhang, Sharp pointwise-in-time error estimate of L1 scheme for nonlinear subdiffusion equations, J. Comput. Math., 42 (2024), 662–678. https://doi.org/10.4208/jcm.2205-m2021-0316 doi: 10.4208/jcm.2205-m2021-0316
    [21] B. Jin, B. Li, Z. Zhou, Numerical analysis of nonlinear subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1–23. https://doi.org/10.1137/16M1089320 doi: 10.1137/16M1089320
    [22] C. Huang, X. Liu, X. Meng, M. Stynes, Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial-boundary value problem, Comput. Methods Appl. Math., 20 (2020), 815–825. https://doi.org/10.1515/cmam-2019-0042 doi: 10.1515/cmam-2019-0042
    [23] D. Cao, H. Chen, Pointwise-in-time error estimate of an ADI scheme for two-dimensional multi-term subdiffusion equation, J. Appl. Math. Comput., 69 (2023), 707–729. https://doi.org/10.1007/s12190-022-01759-2 doi: 10.1007/s12190-022-01759-2
    [24] H. Chen, M. Stynes, Using complete monotonicity to deduce local error estimates for discretisations of a multi-term time-fractional diffusion equation, Comput. Methods Appl. Math., 22 (2022), 15–29. https://doi.org/10.1515/cmam-2021-0053 doi: 10.1515/cmam-2021-0053
    [25] M. Al-Maskari, S. Karaa, Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data, SIAM J. Numer. Anal., 57 (2019), 1524–1544. https://doi.org/10.1137/18M1189750 doi: 10.1137/18M1189750
    [26] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman and Hall/CRC, 2000. https://doi.org/10.1201/9781482285727
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(322) PDF downloads(25) Cited by(0)

Figures and Tables

Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog