Loading [MathJax]/jax/output/SVG/jax.js
Research article

Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations


  • Received: 08 September 2023 Revised: 27 October 2023 Accepted: 07 November 2023 Published: 10 November 2023
  • In this paper, we propose a two-grid algorithm for nonlinear time fractional parabolic equations by H1-Galerkin mixed finite element discreitzation. First, we use linear finite elements and Raviart-Thomas mixed finite elements for spatial discretization, and L1 scheme on graded mesh for temporal discretization to construct a fully discrete approximation scheme. Second, we derive the stability and error estimates of the discrete scheme. Third, we present a two-grid method to linearize the nonlinear system and discuss its stability and convergence. Finally, we confirm our theoretical results by some numerical examples.

    Citation: Jun Pan, Yuelong Tang. Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations[J]. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365

    Related Papers:

    [1] Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang . Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29(1): 1859-1880. doi: 10.3934/era.2020095
    [2] Changling Xu, Tianliang Hou . Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28(2): 897-910. doi: 10.3934/era.2020047
    [3] Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118
    [4] Leilei Wei, Xiaojing Wei, Bo Tang . Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066
    [5] Jingyun Lv, Xiaoyan Lu . Convergence of finite element solution of stochastic Burgers equation. Electronic Research Archive, 2024, 32(3): 1663-1691. doi: 10.3934/era.2024076
    [6] Changling Xu, Huilai Li . Two-grid methods of finite element approximation for parabolic integro-differential optimal control problems. Electronic Research Archive, 2023, 31(8): 4818-4842. doi: 10.3934/era.2023247
    [7] Akeel A. AL-saedi, Jalil Rashidinia . Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation. Electronic Research Archive, 2023, 31(7): 4248-4265. doi: 10.3934/era.2023216
    [8] Victor Ginting . An adjoint-based a posteriori analysis of numerical approximation of Richards equation. Electronic Research Archive, 2021, 29(5): 3405-3427. doi: 10.3934/era.2021045
    [9] Chang Hou, Hu Chen . Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation. Electronic Research Archive, 2025, 33(3): 1476-1489. doi: 10.3934/era.2025069
    [10] Chunmei Wang . Simplified weak Galerkin finite element methods for biharmonic equations on non-convex polytopal meshes. Electronic Research Archive, 2025, 33(3): 1523-1540. doi: 10.3934/era.2025072
  • In this paper, we propose a two-grid algorithm for nonlinear time fractional parabolic equations by H1-Galerkin mixed finite element discreitzation. First, we use linear finite elements and Raviart-Thomas mixed finite elements for spatial discretization, and L1 scheme on graded mesh for temporal discretization to construct a fully discrete approximation scheme. Second, we derive the stability and error estimates of the discrete scheme. Third, we present a two-grid method to linearize the nonlinear system and discuss its stability and convergence. Finally, we confirm our theoretical results by some numerical examples.



    We focus on the following nonlinear time fractional partial differential equation (TFPDE):

    {DαtydivYY=f(y),inJ×Ω,YY=y,inJ×Ω,y=0,onJ×Ω,y(0,x)=y0(x),inΩ, (1.1)

    where J=(0,T] and ΩR2 is a convex polygonal with boundary Ω, the nonlinear function f(y) fulfills

    |f(y)|+|f(y)|M,yR. (1.2)

    The Caputo derivative [1] Dαt defined as follows:

    Dαty(t)=1Γ(1α)t0y(κ)(tκ)αdκ,0<α<1.

    Here, Γ(z)=+0κz1eκdκ is the usual Gamma function.

    Due to the excellent performance in describing memory and genetic properties, TFPDEs have been widely used to model anomalous diffusion, electromagnetic wave, hydrodynamics, signal processing, material science etc. Unfortunately, the analytical solutions of most TFPDEs are almost impossible to calculate. For the past twenty years, many researchers proposed extensive numerical methods of TFPDEs. Related books can be found in [2,3,4]. In the current literatures, we can see finite difference [5,6,7,8], spectral method [9,10], finite volume [11], finite element (FE) [12,13,14], weak FE [15], mixed finite element (MFE) [16,17,18,19], virtual element method [20], fast algorithm [21,22,23], higher-order schemes [24,25,26,27] and so on, which mostly focused on the linear fractional differential equation case. Recently, Zheng et al. [28] established the stability and error estimates of fully discrete FE for a hidden-memory variable-order time-fractional optimal control model.

    In recent years, scholars pay much attention to nonlinear TFPDEs. In [29], Li et al. considered a numerical approximation of nonlinear TFPDEs. In [30], the authors introduced a Newton linearized Galerkin FE approximation for nonlinear TFPDEs with non-smooth solutions. The two-grid method was first proposed by Xu [31] for solving nonsymmetric and nonlinear partial differential equations (PDEs) under finite element approximation. As an effective numerical method, it has been expanded to solve various nonlinear fractional PDEs [32,33,34,35].

    For the classic MFE, its discrete space pairs must satisfy the Ladyženskaja-Babuška-Brezzi (LBB) condition. To avoid the LBB constraints, Pehlivanov et al. [36] developed a least-squares MFE, Pani [37] presented an H1-Galerkin mixed finite element (HMFE) approximation by requiring extra regularity on the solution and Yang [38] proposed a splitting positive definite MFE by separating the pressure equation from flux equation. Recently, Liu and Hou investigated the HMFE approximation of one-dimensional TFPDEs [39,40] and semilinear parabolic integro-differential equations [41], respectively. Our aim of this article is to provide a two-grid algorithm (TGA) for the nonlinear problem (1.1) by HMFE combined with L1 scheme discretization and analyze its stability and convergence.

    The layout of the paper is as follows. We give a fully discrete HMFE approximation scheme (FDHAS) of the problem (1.1) in Section 2. The stability and convergence of the discrete scheme is analyzed in Section 3. The TGA of (1.1) and its stability and convergence are discussed in Section 4. In Section 5, we give several examples to verify our theoretical findings.

    The FDHAS of the nonlinear TFPDE (1.1) will be constructed in this section. Throughout this article, we use standard notations for Sobolev spaces Wm,q(Ω) with a semi-norm |w|m,q and a norm wm,q. For q=2, let Hm(Ω)=Wm,2(Ω), Hm0(Ω)={wHm(Ω):w|Ω=0}, =0,2,m=m,2. Lp(J;Wm,q(Ω)) be all Lp integrable function space from J into Wm,q(Ω) with norm wLp(J;Wm,q(Ω))=(T0||w||pWm,q(Ω)dt)1/pforp[1,), and the standard modification for p=. In addition, c>0 and C>0 are generic constant.

    Let us assume that the Eq (1.1) has a solution y(t,x) such that

    |ly(t,x)tl|ctαl,0l3.

    Set W=H10(Ω) and VV=H(div,Ω) with

    H(div,Ω)={vv(L2(Ω))2:vvL2(Ω)}.

    Like in [42], an H1-Galerkin mixed variational formulation of (1.1) is: Find {y,YY}:(0,T]W×VV, for any vvVV and wW, such that

    (DαtYY,vv)+(divYY,divvv)=(f(y),divvv), (2.1)
    (YY,w)=(y,w), (2.2)
    y(0,x)=y0(x). (2.3)

    Let Th be a uniform rectangular partition of Ω, where h=maxeTh{he} denotes the spatial mesh size and he deotes the diameter of element e. Associated with the rectangular partition Th of Ω, we define subspaces Wh×VVhW×VV as follows [43]:

    Wh:={whC(Ω):wh|eQ1,1(e),eTh,wh|Ω=0},VVh:={vvhVV:vvh|eQ1,0×Q0,1(e),eTh},

    where Qm,n(e) be the space of polynomials with degree no more than m and n in the x1 direction and the x2 direction, respectively.

    Then a semidiscrete HMFE approximation of (1.1) is: Find {yh,YYh}:(0,T]Wh×VVh, for any vvhVVh and whWh, such that

    (DαtYYh,vvh)+(divYYh,divvvh)=(f(yh),divvvh), (2.4)
    (YYh,wh)=(yh,wh), (2.5)
    yh(0,x)=Phy0(x), (2.6)

    where [41] Ph:WWh, which fulfills: For any whWh and φW

    ((Phφφ),wh)=0,φPhφrCh2rφ2,φH2(Ω),r=0,1. (2.7)

    We introduce [43,44] Πh:VVVVh, which fulfills: For any vvhVVh and ψψVV

    (div(Πhψψψψ),divvvh)=0,ψψΠhψψChψψ1,ψψ(H1(Ω))2, (2.8)
    div(ψψΠhψψ)rCh1+rdivψψ1,divψψH1(Ω),r=0,1, (2.9)
    (ψψΠhψψ,vvh)Ch2(ψψ2vvh+ψψ1divvvh),ψψ(H2(Ω))2. (2.10)

    Since the solution may be weakly singular at t=0, we use the graded mesh for time discretization. For n=0,1,,N with NZ+, let tn=T(n/N)γ, where γ1 will be adapted to the strength of the singularity and chosen by the user and the temporal mesh size τ=max{τn}Nn=1 with τn=tntn1. We set φn=φ(tn,x) for n=0,1,,N. The L1 approximation scheme is given by [2]:

    Dαtφn=1Γ(1α)n1k=0φk+1φkτk+1tk+1tkds(tns)α+Rnφ=1Γ(2α)n1k=0φk+1φkτk+1[(tntk)1α(tntk+1)1α]+Rnφ=1Γ(2α)n1k=1(dn,k+1dn,k)φnk+dn,1Γ(2α)φndn,nΓ(2α)φ0+Rnφ:=DαNφn+Rnφ, (2.11)

    where

    dn,k=(tntnk)1α(tntnk+1)1ατnk+1,k=1,2,,n.

    Lemma 2.1. ([22]) If |φ(t)|Ctα2,0<tT, there exists a constant C independent of τ, such that

    |Rnφ|:=|DαtφnDαNφn|Cnr,n=1,2,,N, (2.12)

    where r=min{2α,γα}.

    Then the FDHAS of (1.1) is as follows: Find (ynh,YYnh)Wh×VVh,n=1,2,,N for any vvhVVh and whWh, such that

    (DαNYYnh,vvh)+(divYYnh,divvvh)=(f(ynh),divvvh), (2.13)
    (YYnh,wh)=(ynh,wh), (2.14)
    y0h=Phy0(x). (2.15)

    The stability and convergence of the FDHAS (2.13)–(2.15) will be analyzed in this section. The discrete Grönwall lemma will be used in the following analysis.

    Lemma 3.1. ([26,45]) Let {ξn}Nn=1, {gn}Nn=1 and {λn}N1n=0 be given nonnegative sequences. If there is a constant Λ independent of τ satisfies

    τ1α2Γ(2α)ΛandN1n=0λnΛ.

    Then, for any nonnegative sequence {Vk}Nk=0 and 1nN such that

    DαN(Vn)2nk=1λnk(Vk)2+ξnVn+(gn)2, (3.1)

    it holds that

    Vn2Eα(2Λtαn)(V0+Γ(1α)max1kn{tαkξk}+Γ(1α)max1kn{tα/2kgk}), (3.2)

    where Eα(z)=k=0zkΓ(1+kα) is the Mittag-Leffler function.

    We first show the stability of the solution to (2.13)–(2.15).

    Theorem 3.1. Let (yh,YYh) be the solution of (2.13)–(2.15) and all the conditions in Lemma 3.1 are valid. Then

    YYnhC(YY0h+f(0)), (3.3)
    ynhC(YY0h+f(0)). (3.4)

    Proof. Choosing vvh=2YYnh in (2.13) leads to

    2(DαNYYnh,YYnh)+2(divYYnh,divYYnh)=2(f(0)f(ynh)f(0),divYYnh)2(f(0)f(ynh)divYYnh+f(0)divYYnh)2C(ε)(Mynh2+f(0)2)+4εdivYYnh2, (3.5)

    where we have used the Taylor's formula, ε-Cauchy inequality and the condition (1.2).

    From the definition of DαNYYnh and Hölder inequality, we can derive

    12DαNYYnh2(DαNYYnh,YYnh),for1nN. (3.6)

    Taking wh=ynh in (2.14) and using Hölder's inequality, we have

    ynh2=(YYnh,ynh)CYYnhynh. (3.7)

    Employing the Poincaré inequality and (3.5)–(3.7), we obtain

    DαNYYnh22C(ε)MYYnh2+2C(ε)f(0)2. (3.8)

    Then (3.3) follows from Lemma 3.1 and (3.8). From (3.3) and (3.7), we can easily arrive at (3.4).

    From (2.1)–(2.3), (2.11) and (2.13)–(2.15), we obtain error equations

    (DαN(YYnYYnh),vvh)+(div(YYnYYnh),divvvh)=(f(ynh)f(yn),divvvh)(RnYY,vvh),vvhVVh, (3.9)
    (YYnYYnh,wh)=((ynynh),wh),whWh. (3.10)

    For convenience, we set

    yyh=yPhy+Phyyh:=ζ+η,YYYYh=YYΠhYY+ΠhYYYYh:=θθ+ϑϑ.

    Theorem 3.2. Let (y,YY) and (yh,YYh) be the solutions of (2.1)–(2.3) and (2.13)–(2.15), respectively. Suppose that yL(J;H2(Ω))H2(J;L2(Ω)), YY(L(J;H1(Ω))2(H2(J;H1(Ω)2 and all the conditions in Lemma 2.1 and Theorem 3.1 are valid. Then for n=1,2,,N, there hold

    YYnYYnhC(h+Nr), (3.11)
    ynynhC(h2+Nr). (3.12)

    Proof. From the definitions of the projection operators Ph and Πh and error Eqs (3.9)–(3.10). For any vvhVVh and whWh, we have

    (DαNϑϑn,vvh)+(divϑϑn,divvvh)=(f(ynh)f(yn),divvvh)(RnYY,vvh)(DαNθθn,vvh), (3.13)
    (ϑϑn,wh)=(ηn,wh)(θθn,wh). (3.14)

    Taking vvh=ϑϑn in (3.13), then there yields

    (DαNϑϑn,ϑϑn)+(divϑϑn,divϑϑn)=(f(ynh)f(yn),divϑϑn)(RnYY,ϑϑn)(DαNθθn,ϑϑn). (3.15)

    According to the mean-value theorem, the conditions (1.2) and (2.7), we obtain

    f(ynh)f(yn)Mynynh=M(ynPhyn+Phynynh)M(Ch2yn2+ηn). (3.16)

    It follows from Hölder's inequality and (2.12) that

    (RnYY,ϑϑn)=(DαtYYnDαNYYn,ϑϑn)CDαtYYnDαNYYnϑϑnCnrϑϑn. (3.17)

    From (2.10) and Poincaré inequality, we have

    (DαNθθn,ϑϑn)Ch2(DαNYYn2ϑϑn+DαNYYn1divϑϑn)Ch2(DαNYYn2+DαNYYn1)divϑϑn. (3.18)

    Using (3.15)–(3.18), Hölder's inequality and ε-Cauchy inequality, we get

    (DαNϑϑn,ϑϑn)+divϑϑn2f(ynh)f(yn)divϑϑn+RnYYϑϑn+Ch2(DαNYYn2+DαNYYn1)divϑϑnC(ε)(f(ynh)f(yn)2+h4(DαNYYn2+DαNYYn1)2)+RnYYϑϑn+2εdivϑϑn2C(ε)(Mηn2+h4)+Cnrϑϑn+2εdivϑϑn2. (3.19)

    Noting that (DαNϑϑn,ϑϑn)12DαNϑϑn2, from (3.16)–(3.19), we have

    12DαNϑϑn2+(12ϵ)divϑϑn2C(ε)(Mηn2+h4)+Cnrϑϑn. (3.20)

    Choosing wh=ηn in (3.14), we get

    (ϑϑn,ηn)=(ηn,ηn)(θθn,ηn). (3.21)

    Using (3.21), Cauchy-Schwartz inequality, (2.9) and Poincaré inequality, we derive

    ηn2=(ϑϑn,ηn)(divθθn,ηn)C(ϑϑnηn+divθθn1ηn1)C(ϑϑn+Ch2divYYn1)ηn. (3.22)

    According to (3.22), YY(L(J;H2(Ω))2 and Poincaré inequality, we get

    ηnCηnC(ϑϑn+h2). (3.23)

    Combining (3.20) and (3.23) yields

    DαNϑϑn2CMϑϑn2+C(Mh2+nr)ϑϑn+Ch4. (3.24)

    By (3.24) and Lemma 3.1, we obtain

    ϑϑn=ΠhYYnYYnhC(h2+Nr). (3.25)

    Noting that YY(L(J;H2(Ω))2 and using triangle inequality, (2.8) and (3.25), we derive

    YYnYYnhYYnΠhYYn+ΠhYYnYYnhC(h+Nr). (3.26)

    From (3.23) and (3.25), we have

    ηnC(h2+Nr). (3.27)

    It follows from (2.7), triangle inequality and (3.27) that

    ynynhynPhyn+PhynynhC(h2+Nr). (3.28)

    Thus, the proof is completed.

    A two-grid HMFE algorithm to solve the nonlinear TFPDE (1.1) will be proposed in this section. Let TH and Th be two uniform rectangular partitions of Ω with different size H and h(hH). The fine mesh Th is obtained by uniformly refined the coarse mesh TH. Associated with TH and Th are HMFE spaces WH×VVH and Wh×VVh, respectively. It is obvious that WH×VVHWh×VVh. We show the TGA as follows:

    Two-grid algorithm (TGA).

    Step 1. On TH: Find (ynH,YYnH)WH×VVH for n=0,1,,N and any vvHVVH, wHWH, such that

    (DαNYYnH,vvH)+(divYYnH,divvvH)=(f(ynH),divvvH), (4.1)
    (YYnH,wH)=(ynH,wH), (4.2)
    y0H=PHy0(x). (4.3)

    Step 2. On Th: Given ynH for n=1,2,,N, find (y,nh,YY,nh)Wh×VVh for n=0,1,,N and any vvhVVh, whWh, such that

    (DαNYY,nh,vvh)+(divYY,nh,divvvh)=(f(ynH)+f(ynH)(y,nhynH),divvvh), (4.4)
    (YY,nh,wh)=(y,nh,wh), (4.5)
    y,0h=Phy0(x). (4.6)

    Now, we analyze the stability of the TGA.

    Theorem 4.1. Let (yh,YYh) be the solution of the two-grid algorithm (4.1)–(4.6) and all the conditions in Lemma 3.1 are valid. Then we have

    YY,nhC(YY0H+YY,0h+f(0)), (4.7)
    y,nhC(YY0H+YY,0h+f(0)). (4.8)

    Proof. Setting vvh=2YY,nh in (4.4), we get

    2(DαNYY,nh,YY,nh)+2(divYY,nh,divYY,nh)=2(f(ynH)+f(ynH)(y,nhynH),divYY,nh)=2(f(0)f(ynH)f(0),divYY,nh)+2(f(ynH)(ynHy,nh),divYY,nh)2C(ε)(2MynH2+f(0)2+My,nh2)+6εdivYY,nh2, (4.9)

    where we have used the Taylor's formula, ε-Cauchy inequality and the condition (1.2).

    Choosing wh=y,nh in (4.5) and using Hölder's inequality, we obtain

    y,nh2=(YY,nh,y,nh)CYY,nhy,nh. (4.10)

    Noting 2(DαNYY,nh,YY,nh)DαNYY,nh2 for n=1,2,,N. Applying the Poincaré inequality, (3.7), (4.9) and (4.10), we derive

    DαNYY,nh22C(ε)(2MYYnH2+MYY,nh2+f(0)2). (4.11)

    Then (4.7) follows from (4.11) and Lemma 3.1. According to (4.7) and (4.10), it is easy to get (4.8).

    Subtracting (4.4) and (4.5) from (2.1) and (2.2), for any vvhVVh and whWh, we can obtain equations

    (DαN(YYnYY,nh),vvh)+(div(YYnYY,nh),divvvh)=(f(ynH)f(yn)+f(ynH)(y,nhynH),divvvh)(RnYY,vvh), (4.12)
    (YYnYY,nh,wh)=((yny,nh),wh). (4.13)

    In order to conveniently derive error estimation results, we set

    ΠhYYYYh:=ρρ,Phyyh:=ξ.

    Theorem 4.2. Let (y,YY) and (yh,YYh) be the solutions of (2.1)–(2.3) and (4.1)–(4.6), respectively. Suppose that yL(J;H2(Ω))H2(J;L2(Ω)), YY(L(J;H2(Ω))2(H2(J;L2(Ω)2 and all the conditions in Theorem 3.2 and Theorem 4.1 are valid. Then for n=1,2,,N, there hold

    YYnYY,nhC(h+H2+Nr), (4.14)
    yny,nhC(h2+H2+Nr). (4.15)

    Proof. Subtracting (4.2) from (2.2) and utilizing the definition of PH, we have

    (YYnYYnH,wH)=((PHynynH),wH),wHWH. (4.16)

    Choosing wH=PHynynH in (4.16), we derive

    (PHynynH)2=(YYnYYnH,(PHynynH))CYYnYYnH(PHynynH). (4.17)

    From Poincaré inequality, (4.17) and Theorem 3.2, we obtain

    PHynynH1C(PHynynH)CYYnYYnHC(H+Nr). (4.18)

    According to triangle inequality, (2.7) and (4.18), we arrive at

    ynynH1ynPHyn1+PHynynH1C(H+Nr). (4.19)

    Using (4.12) and (4.13) and the definitions of Ph and Πh, for any vvhVVh and whWh, we get

    (DαNρρn,vvh)+(divρρn,divvvh)=(f(ynH)f(yn)+f(ynH)(y,nhynH),divvvh)(RnYY,vvh)(DαNθθn,vvh), (4.20)
    (ρρn,wh)=(ξn,wh)(θθn,wh). (4.21)

    From the Taylor expansion formula, we have

    f(yn)=f(ynH)+f(ynH)(ynynH)+12f(δ)(ynynH)2, (4.22)

    where δ between yn and ynH.

    Substituting (4.22) into (4.20) and choosing vvh=ρρn yields

    (DαNρρn,ρρn)+(divρρn,divρρn)=(f(ynH)(y,nhyn)12f(δ)(ynynH)2,divρρn)(RnYY,ρρn)(DαNθθn,ρρn). (4.23)

    We can estimate the right-hand side of (4.23) as follows:

    (f(ynH)(y,nhyn)12f(δ)(ynynH)2,divρρn)=(f(ynH)(ynPhyn)f(ynH)(Phyny,nh)12f(δ)(ynynH)2,divρρn)C(ε)M(ξn2+ζn2+12ynynH4L4(Ω))+3εdivρρn2C(ε)M(ξn2+ζn2+12ynynH41)+3εdivρρn2C(ε)Mξn2+C(ε)M(h4+(H+nr)4)+3εdivρρn2 (4.24)

    and

    (RnYY,ρρn)=(DαtYYnDαNYYn,ρρn)CDαtYYnDαNYYnρρnCnrρρn. (4.25)

    and

    (DαNθθn,ρρn)Ch2(DαNθθn2ρρn+θθn1divρρn)Ch2(DαNθθn2+θθn1)divρρnC(ε)h4(DαNθθn2+θθn1)2+εdivρρn2. (4.26)

    where we have used (2.7), (2.10), Lemma 2.1, Hölder inequality, embedding theorem, Theorem 3.2 and Poincaré inequality.

    Taking wh=ξn in (4.21), we get

    (ρρn,ξn)=(ξn,ξn)(θθn,ξn). (4.27)

    From (2.9), (4.27) and Cauchy-Schwartz inequality, we derive

    ξn2=(ρρn,ξn)(divθθn,ξn)C(ρρnξn+divθθn1ξn1)C(ρρn+Ch2divYYn1)ξn. (4.28)

    By (4.28) and Poincaré inequality, we have

    ξnCξnC(ρρn+h2divYYn1). (4.29)

    Combining (4.23)–(4.29) and using (a+b)48(a4+b4) with a,b>0, we yield

    DαNρρn2C(ε)Mρρn2+Cnrρρn+CM(h4+H4+n4r). (4.30)

    It follows from Lemma 3.1 and (4.30) that

    ρρnC(h2+H2+Nr). (4.31)

    Using triangle inequality, (2.8) and (4.31), we arrive at

    YYnYY,nhYYnΠhYYn+ΠhYYnYY,nhC(h+H2+Nr). (4.32)

    From (4.29) and (4.31), we have

    ξnC(h2+H2+Nr). (4.33)

    It follows from (2.7), triangle inequality and (4.33) that

    yny,nhynPhyn+Phyny,nhC(h2+H2+Nr). (4.34)

    We complete the proof of Theorem 4.2.

    Several examples are provided to demonstrate our theoretical findings in this section. All numerical examples will be solved by the FDHAS described as (2.13)–(2.15) and TGA described as (4.1)–(4.6), where the program codes are based on AFEPack [46]. Let J=(0,1] and Ω=(0,1)2. We numerically solve the following nonlinear time fractional equation:

    {DαtydivYY=f(y)+g,inJ×Ω,YY=y,inJ×Ω,y=0,onJ×Ω,y(0,x)=y0(x),inΩ.

    For simplicity, we define |||ψ|||=max0nN{ψn}. The convergence rate are computed by Rate=ln(|||ψk+1|||)ln(|||ψk|||)ln(sk+1)ln(sk), where |||ψk+1|||(|||ψk|||) is the error with the spatial or temporal mesh step sk+1(sk).

    Example 1. The initial condition and the right function g(t,x) are suitably chosen such that y(t,x)=t2sin(πx1)sin(πx2) and the nonlinear term f(y)=y(1y).

    When the spatial step h=1100 and H=h=110 are fixed, in Table 1, we present the errors |||YYhYY||| and |||YYhYY|||, the temporal convergence orders and the CPU time for α=0.4,0.5 and 0.8 by using the general FDHAS (2.13)–(2.15) and TGA (4.1)–(4.6), respectively.

    Table 1.  Errors, convergence rates and CPU time of TGA and FDHAS with h=1100.
    (α,γ) N |||YYhYY||| Rate CPU(s) |||YYhYY||| Rate CPU(s)
    (0.4, 4) 10 3.60838 × 101 65.824 2.85026 × 101 73.826
    20 1.99016 × 101 1.5895 82.139 9.42388 × 102 1.5967 108.85
    40 6.57236 × 102 1.5984 265.74 3.11347 × 102 1.5978 367.74
    80 2.16987 × 102 1.5988 847.65 1.02785 × 102 1.5989 1229.6
    (0.5, 3) 10 3.28475 × 101 51.654 2.51374 × 101 71.685
    20 1.17152 × 101 1.4874 71.294 8.90098 × 102 1.4978 113.89
    40 4.15431 × 102 1.4957 257.65 3.15046 × 102 1.4984 370.96
    80 1.46897 × 102 1.4998 737.5 1.11471 × 102 1.4989 1285.7
    (0.8, 1.5) 10 3.48107 × 101 68.32 3.25583 × 101 76.508
    20 1.52006 × 101 1.1954 84.74 1.42092 × 102 1.1962 120.54
    40 6.62287 × 102 1.1986 286.53 6.19435 × 103 1.1978 388.45
    80 2.88337 × 102 1.1997 852.15 2.69830 × 103 1.1989 1324.6

     | Show Table
    DownLoad: CSV

    The numerical results in Table 1 show that the TGA (4.1)–(4.6) can save significant computational costs compared with FDHAS (2.13)–(2.15) without losing accuracy. Fixed N=1000, γ=2αα and h=H2, the results in Table 2 reflect |||YYhYY|||=O(h), |||yhy|||=O(h2) and |||YYhYY|||=O(h). The convergence rate results in time and space direction are consistent with our theoretical results.

    Table 2.  Errors and convergence rates of TGA and FDHAS with N=1000.
    (α,γ) h |||YYhYY||| Rate |||yhy||| Rate |||YYhYY||| Rate
    (0.4, 4) 1/16 4.28805 × 101 2.87246 × 102 4.21063 × 101
    1/36 1.95527 × 101 0.9684 7.29352 × 103 1.9776 1.90430 × 101 0.9785
    1/64 1.11558 × 101 0.9753 1.84538 × 103 1.9827 1.08269 × 101 0.9814
    1/100 7.18895 × 102 0.9846 7.58503 × 104 1.9922 6.95959 × 102 0.9902
    (0.5, 3) 1/16 4.19853 × 101 2.60964 × 102 4.18365 × 101
    1/36 1.90392 × 101 0.9752 6.58544 × 103 1.9865 1.87850 × 101 0.9874
    1/64 1.08429 × 101 0.9785 1.65908 × 103 1.9889 1.06538 × 101 0.9857
    1/100 6.98731 × 102 0.9848 6.81898 × 104 1.9923 6.84832 × 102 0.9901
    (0.8, 1.5) 1/16 4.30674 × 101 3.31085 × 102 4.22057 × 101
    1/36 1.97049 × 101 0.9642 8.45808 × 103 1.9688 1.92919 × 101 0.9654
    1/64 1.12239 × 101 0.9782 2.13322 × 103 1.9873 1.09357 × 101 0.9785
    1/100 7.23284 × 102 0.9846 8.76696 × 104 1.9925 7.02953 × 103 0.9902

     | Show Table
    DownLoad: CSV

    Example 2. The initial condition and the right function g(t,x) are suitably chosen such that y(t,x)=(Eα(tα)+t3)x1(1x1)x2(1x2) and the nonlinear term f(y)=y3.

    In Table 3, we also give the numerical results with the fixed spatial step h=1100 and H=h=110 for α=0.4,0.5 and 0.8 by utilizing the general FDHAS (2.13)–(2.15) and TGA (4.1)–(4.6), respectively. For fixed N=1000, γ=2αα and h=H2, we show the numerical results in Table 4. The numerical results demonstrate that the TGA is more efficient than the FDHAS. It is agreement with our theoretical analysis.

    Table 3.  Errors, convergence rates and CPU time of TGA and FDHAS with h=1100.
    (α,γ) N |||YYhYY||| Rate CPU(s) |||YYhYY||| Rate CPU(s)
    (0.4, 4) 10 3.85284 × 101 68.245 3.24606 × 101 83.537
    20 1.29005 × 101 1.5785 88.326 1.08064 × 101 1.5868 111.56
    40 4.27094 × 102 1.5948 295.87 3.57072 × 102 1.5976 372.84
    80 1.40967 × 102 1.5992 864.75 1.17880 × 103 1.5989 1228.7
    (0.5, 3) 10 4.28354 × 101 59.582 3.86095 × 101 81.605
    20 1.54007 × 101 1.4758 81.936 1.38047 × 101 1.4838 108.75
    40 5.50875 × 102 1.4832 265.83 4.88950 × 102 1.4974 350.68
    80 1.96091 × 102 1.4902 753.62 1.73002 × 102 1.4989 1184.5
    (0.8, 1.5) 10 4.52136 × 101 70.352 4.10875 × 101 86.452
    20 1.97829 × 101 1.1925 92.875 1.79278 × 102 1.1965 116.48
    40 8.61937 × 102 1.1986 286.53 7.81544 × 103 1.1978 384.56
    80 3.75310 × 102 1.1995 876.14 3.40234 × 103 1.1998 1245.6

     | Show Table
    DownLoad: CSV
    Table 4.  Errors and convergence rates of TGA and FDHAS with N=1000.
    (α,γ) h |||YYhYY||| Rate |||yhy||| Rate |||YYhYY||| Rate
    (0.4, 4) 1/16 6.20865 × 101 3.25801 × 102 6.08254 × 101
    1/36 2.83309 × 101 0.9675 8.32367 × 103 1.9687 2.75559 × 101 0.9764
    1/64 1.61707 × 101 0.9746 2.11465 × 103 1.9768 1.56571 × 101 0.9825
    1/100 1.04150 × 101 0.9858 8.71667 × 104 1.9858 1.00465 × 101 0.9942
    (0.5, 3) 1/16 6.10598 × 101 3.10528 × 102 5.81075 × 101
    1/36 2.76589 × 101 0.9765 7.90547 × 103 1.9738 2.61353 × 101 0.9853
    1/64 1.57505 × 101 0.9787 2.00479 × 103 1.9794 1.48047 × 101 0.9878
    1/100 1.01444 × 101 0.9857 8.26346 × 104 1.9859 9.49957 × 102 0.9943
    (0.8, 1.5) 1/16 6.43177 × 101 3.38926 × 102 6.21307 × 101
    1/36 2.94014 × 101 0.9653 8.69628 × 103 1.9625 2.83258 × 101 0.9686
    1/64 1.67441 × 101 0.9785 2.20671 × 103 1.9785 1.60270 × 101 0.9898
    1/100 1.07844 × 101 0.9859 9.09493 × 104 1.9861 1.02839 × 101 0.9942

     | Show Table
    DownLoad: CSV

    In this paper, we proposed the TGA for the nonlinear TFPDEs (1.1) discretized by H1-Galerkin mixed finite element on spatial rectangular mesh combined with L1 scheme on temporal graded mesh. The stability and optimal convergence of the TGA are rigorously proved. Our theoretical results seem to be new in the literature. Numerical experimental results show that the TGA (4.1)–(4.6) can save a lot of computing cost compared with FDHAS (2.13)–(2.15) without losing accuracy. Although our TGA in this paper focuses on a two-dimensional case, it can be directly applied to three-dimensional problems. Future work includes the developments of two-grid finite element methods combined with some higher-order schemes or fast algorithm for nonlinear TFPDEs.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the Scientific Research Foundation of Hunan Provincial Department of Education (20A211) and the Natural Science Foundation of Hunan Province (2020JJ4323).

    The authors declare that there are no conflicts of interest.



    [1] I. Podlubny, Fractional differential equations, in Mathematics in Science and Engineering, Academic Press, San Diego, 1999.
    [2] Z. Sun, G. Gao, The Finite Difference Methods for Fractional Differential Equations, Science Press, Beijing, 2015.
    [3] C. Li, F. Zeng, Numerical Methods for Fractional Calculas, Chapman and Hall/CRC Press, Boca Raton, 2015. https://doi.org/10.1201/b18503
    [4] F. Liu, P. Zhuang, Q. Liu, Numerical Methods for Fractional Partial Differential Equations and Their Applications, Science Press, Beijing, 2015.
    [5] Y. Lin, C. Xu, Finite difference/spectral approximation for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [6] M. Stynes, E. O'riordan, J. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329
    [7] X. Li, Y. Chen, C. Chen, An improved two-grid technique for the nonlinear time-fractional parabolic equation based on the block-centered finite difference method, J. Comput. Math., 40 (2022), 455–473. https://doi.org/10.4208/jcm.2011-m2020-0124 doi: 10.4208/jcm.2011-m2020-0124
    [8] X. Peng, D. Xu, W. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers' equation, Math. Comput. Simulat., 208 (2023, ) 702–726. https://doi.org/10.1016/j.matcom.2023.02.004
    [9] H. Wang, Y. Chen, Y. Huang, W. Mao, A posteriori error estimates of the Galerkin spectral methods for space-time fractional diffusion equations, Adv. Appl. Math. Mech., 12 (2020), 87–100.
    [10] X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942
    [11] F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871–3878. https://doi.org/10.1016/j.apm.2013.10.007 doi: 10.1016/j.apm.2013.10.007
    [12] C. Huang, M. Stynes, Superconvergence of a finite element method for the multi-term time-fractional diffusion problem, J. Sci. Comput., 82 (2020), 10. https://doi.org/10.1007/s10915-019-01115-w doi: 10.1007/s10915-019-01115-w
    [13] B. Tang, Y. Chen, X. Lin, A posteriori error error estimates of spectral Galerkin methods for multi-term time fractional diffusion equations, Appl. Math. Lett., 120 (2021), 107259. https://doi.org/10.1016/j.aml.2021.107259 doi: 10.1016/j.aml.2021.107259
    [14] H. Liu, X. Zheng, C. Chen, H. Wang, A characteristic finite element method for the time-fractional mobile/immobile advection diffusion model, Adv. Comput. Math., 47 (2021), 41. https://doi.org/10.1007/s10444-021-09867-6 doi: 10.1007/s10444-021-09867-6
    [15] S. Toprakseven, A weak Galerkin finite element method for time fractional reaction-diffusion-convection problems with variable coefficients, Appl. Numer. Math., 168 (2021), 1–12. https://doi.org/10.1016/j.apnum.2021.05.021 doi: 10.1016/j.apnum.2021.05.021
    [16] Y. Zhao, P. Chen, W. Bu, X. Liu, Y. Tang, Two mixed finite element methods for time-fractional diffusion equations, J. Sci. Comput., 70 (2017), 407–428. https://doi.org/10.1007/s10915-015-0152-y doi: 10.1007/s10915-015-0152-y
    [17] Z. Shi, Y. Zhao, F. Liu, Y. Tang, F. Wang, Y. Shi, High accuracy analysis of an H1-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations, Comput. Math. Appl., 74 (2017), 1903–1914. https://doi.org/10.1016/j.camwa.2017.06.057 doi: 10.1016/j.camwa.2017.06.057
    [18] M. Abbaszadeh, M. Dehghan, Analysis of mixed finite element method (MFEM) for solving the generalized fractional reaction-diffusion equation on nonrectangular domains, Comput. Math. Appl., 78 (2019), 1531–1547. https://doi.org/10.1016/j.camwa.2019.03.040 doi: 10.1016/j.camwa.2019.03.040
    [19] X. Li, Y. Tang, Interpolated coefficient mixed finite elements for semilinear time fractional diffusion equations, Fractal Fract., 7 (2023), 482. https://doi.org/10.3390/fractalfract7060482 doi: 10.3390/fractalfract7060482
    [20] M. Li, J. Zhao, C. Huang, S. Chen, Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data, J. Sci. Comput., 81 (2019), 1823–1859. https://doi.org/10.1007/s10915-019-01064-4 doi: 10.1007/s10915-019-01064-4
    [21] S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21 (2017), 650–678. https://doi.org/10.4208/cicp.OA-2016-0136 doi: 10.4208/cicp.OA-2016-0136
    [22] J. Shen, Z. Sun, R. Du, Fast finite difference schemes for time-fractional diffusion equations with a weak singularity at initial time, East Asian J. Appl. Math., 8 (2018), 834–858.
    [23] X. Gu, H. Sun, Y. Zhang, Y. Zhao, Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian, Math. Methods Appl. Sci., 44 (2021), 441–463. https://doi.org/10.1002/mma.6746 doi: 10.1002/mma.6746
    [24] G. Gao, Z. Sun, H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. https://doi.org/10.1016/j.jcp.2013.11.017 doi: 10.1016/j.jcp.2013.11.017
    [25] A. Alikhanov, C. Huang, A high-order L2 type difference scheme for the time-fractional diffusion equation, Appl. Meth. Comput., 411 (2021), 126545. https://doi.org/10.1016/j.amc.2021.126545 doi: 10.1016/j.amc.2021.126545
    [26] J. Ren, H. Liao, J. Zhang, Z. Zhang, Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems, J. Comput. Appl. Math., 389 (2021), 113352. https://doi.org/10.1016/j.cam.2020.113352 doi: 10.1016/j.cam.2020.113352
    [27] R. Feng, Y. Liu, Y. Hou, H. Li, Z. Fang, Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model, Eng. Comput., 38 (2022), 51–68. https://doi.org/10.1007/s00366-020-01032-9 doi: 10.1007/s00366-020-01032-9
    [28] X. Zheng, H. Wang, A hidden-memory variable-order time-fractional optimal control model: Analysis and approximation, SIAM J. Control Optim., 59 (2021), 1851–1880. https://doi.org/10.1137/20M1344962 doi: 10.1137/20M1344962
    [29] C. Li, Z. Zhao, Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62 (2011), 855–875. https://doi.org/10.1016/j.camwa.2011.02.045 doi: 10.1016/j.camwa.2011.02.045
    [30] D. Li, C. Wu, Z. Zhang, Linearized Galerkin fems for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. https://doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0
    [31] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759–1777. https://doi.org/10.1137/S0036142992232949 doi: 10.1137/S0036142992232949
    [32] Q. Li, Y. Chen, Y. Huang, Y. Wang, Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Appl. Numer. Math., 157 (2020), 38–54. https://doi.org/10.1016/j.apnum.2020.05.024 doi: 10.1016/j.apnum.2020.05.024
    [33] Y. Zeng, Z. Tan, Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations, Appl. Math. Comput., 434 (2022), 127408. https://doi.org/10.1016/j.amc.2022.127408 doi: 10.1016/j.amc.2022.127408
    [34] H. Fu, B. Zhang, X. Zheng, A high-order two-grid difference method for nonlinear time-fractional Biharmonic problems and its unconditional α-robust error estimates, J. Sci. Comput., 96 (2023), 54. https://doi.org/10.1007/s10915-023-02282-7 doi: 10.1007/s10915-023-02282-7
    [35] W. Qiu, D. Xu, J. Guo, J. Zhou, A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model, Numer. Algor., 85 (2020), 39–58. https://doi.org/10.1007/s11075-019-00801-y doi: 10.1007/s11075-019-00801-y
    [36] A. Pehlivanov, G. Carey, R. Lazarov, Least-squares mixed finite elements for second-order elliptic problems, SIAM J. Numer. Anal., 31 (1994), 1368–1377. https://doi.org/10.1137/0731071 doi: 10.1137/0731071
    [37] A. Pani, An H1-Galerkin mixed finite element methods for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (1998), 712–727. https://doi.org/10.1137/S0036142995280808 doi: 10.1137/S0036142995280808
    [38] D. Yang, A splitting positive definite mixed finite element method for miscible displacement of compressible flow in porous media, Numer. Methods Partial Differ. Equation, 17 (2001), 229–249. https://doi.org/10.1002/num.3 doi: 10.1002/num.3
    [39] Y. Liu, Y. Du, H. Li, J. Wang, An H1-Galerkin mixed finite element method for time fractional reaction-diffusion equation, J. Appl. Math. Comput., 47 (2015), 103–117. https://doi.org/10.1007/s12190-014-0764-7 doi: 10.1007/s12190-014-0764-7
    [40] J. Wang, T. Liu, H. Li, Y. Liu, S. He, Second-order approximation scheme combined with H1-Galerkin MFE method for nonlinear time fractional convection-diffusion equation, Comput. Math. Appl., 73 (2017), 1182–1196. https://doi.org/10.1016/j.camwa.2016.07.037 doi: 10.1016/j.camwa.2016.07.037
    [41] T. Hou, C. Liu, C. Dai, L. Chen, Y. Yang, Two-grid algorithm of H1-Galerkin mixed finite element methods for semilinear parabolic integro-differential equations, J. Comput. Math., 40 (2022), 667–685. https://doi.org/10.4208/jcm.2101-m2019-0159 doi: 10.4208/jcm.2101-m2019-0159
    [42] M. Tripathy, R. Sinha, Superconvergence of H1-Galerkin mixed finite element methods for parabolic problems, Appl. Anal., 88 (2009), 1213–1231. https://doi.org/10.1080/00036810903208163 doi: 10.1080/00036810903208163
    [43] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991. https:doi.org//10.1007/978-1-4612-3172-1
    [44] R. Ewing, M. Liu, J. Wang, Superconvergence of mixed finite element approximations over quadrilaterals, SIAM J. Numer. Anal., 36 (1999), 772–787. https://doi.org/10.1137/S0036142997322801 doi: 10.1137/S0036142997322801
    [45] C. Huang, M. Stynes, Optimal H1 sptial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation, Adv. Comput. Math., 46 (2020), 63. https://doi.org/10.1007/s10444-020-09805-y doi: 10.1007/s10444-020-09805-y
    [46] R. Li, W. Liu, The AFEPack Handbook, 2006. Available from: http://dsec.pku.edu.cn/rli/software.php
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1245) PDF downloads(79) Cited by(0)

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog