The compatibility between waste plastic polymers and bitumen is the most challenging issue hindering the improvement of modified bitumen performance. The current practice of recycled waste plastics includes the use of polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), etc. This study was designed to investigate the compatibility of different waste plastic polymers with bitumen binders by conducting molecular dynamics (MD) simulations at different temperatures. The molecular models of these materials were constructed in this study for the compatibility analysis, and they include the base bitumen, polymers (PVC, PP, and PE), polymer- bitumen blending systems. Using the output and related calculations of these MD models, the properties of these blending systems were measured at different temperatures through the calculation of the solubility parameter (δ) and interaction energies. The compatibility analysis is discussed in the context of these simulation results. The simulation results for the solubility parameters and interaction energies show consistent trends. The results showed that PVC and PP had better compatibility with bitumen at 433.15 K and that PE and bitumen had good compatibility at 393.15 K. Moreover, it can be deduced that the order of compatibility of the three polymers with bitumen is as follows: PVC > PE > PP. In addition, these research results can be referenced for the industry and research development of modified bitumen.
Citation: Hui Yao, Xin Li, Hancheng Dan, Qingli Dai, Zhanping You. Compatibility investigation of waste plastics in bitumen via a molecular dynamics method[J]. Electronic Research Archive, 2023, 31(12): 7224-7243. doi: 10.3934/era.2023366
[1] | Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523 |
[2] | Joachim von Below, José A. Lubary . Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4(3): 453-468. doi: 10.3934/nhm.2009.4.453 |
[3] | Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55 |
[4] | Caihong Gu, Yanbin Tang . Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005 |
[5] | Giuseppe Maria Coclite, Lorenzo di Ruvo . H1 solutions for a modified Korteweg-de Vries-Burgers type equation. Networks and Heterogeneous Media, 2024, 19(2): 724-739. doi: 10.3934/nhm.2024032 |
[6] | Kota Kumazaki, Adrian Muntean . Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks and Heterogeneous Media, 2019, 14(3): 445-469. doi: 10.3934/nhm.2019018 |
[7] | Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar . On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks and Heterogeneous Media, 2019, 14(3): 471-487. doi: 10.3934/nhm.2019019 |
[8] | Debora Amadori, Stefania Ferrari, Luca Formaggia . Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks and Heterogeneous Media, 2007, 2(1): 99-125. doi: 10.3934/nhm.2007.2.99 |
[9] | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025 |
[10] | Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639 |
The compatibility between waste plastic polymers and bitumen is the most challenging issue hindering the improvement of modified bitumen performance. The current practice of recycled waste plastics includes the use of polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), etc. This study was designed to investigate the compatibility of different waste plastic polymers with bitumen binders by conducting molecular dynamics (MD) simulations at different temperatures. The molecular models of these materials were constructed in this study for the compatibility analysis, and they include the base bitumen, polymers (PVC, PP, and PE), polymer- bitumen blending systems. Using the output and related calculations of these MD models, the properties of these blending systems were measured at different temperatures through the calculation of the solubility parameter (δ) and interaction energies. The compatibility analysis is discussed in the context of these simulation results. The simulation results for the solubility parameters and interaction energies show consistent trends. The results showed that PVC and PP had better compatibility with bitumen at 433.15 K and that PE and bitumen had good compatibility at 393.15 K. Moreover, it can be deduced that the order of compatibility of the three polymers with bitumen is as follows: PVC > PE > PP. In addition, these research results can be referenced for the industry and research development of modified bitumen.
The 3D incompressible resistive Hall-Magnetohydrodynamics system (Hall-MHD in short) is the following system of PDEs for
ut+u⋅∇u−B⋅∇B+∇p−μΔu=0, | (1a) |
Bt+u⋅∇B−B⋅∇u+curl((curlB)×B)−νΔB=0, | (1b) |
divu=0,divB=0, | (1c) |
where
The Hall-MHD recently has been studied intensively. The Hall-MHD can be derived from either two fluids model or kinetic models in a mathematically rigorous way [1]. Global weak solution, local classical solution, global solution for small data, and decay rates are established in [4,5,6]. There have been many follow-up results of these papers; see [7,8,12,13,14,15,16,18,29,30,31,32,34,35] and references therein.
We note that the Hall term
Bt+curl((curlB)×B)+ΛβB=0,divB=0, | (2) |
where we take
Bt+curl((curlB)×B)+ΛB=0,divB=0. | (3) |
However, we can show the existence of solutions globally in time if initial data is sufficiently small.
Theorem 1.1. Let
‖B(t)‖2Hk+(1−Cϵ0)∫t0‖Λ12B(s)‖2Hkds≤‖B0‖2Hkforallt>0. |
Moreover,
‖ΛlB(t)‖L2≤C0(1+t)l,0<l≤k, | (4) |
where
Remark 1. The decay rate (4) is consistent with the decay rates of the linear part of (3).
Remark 2. After this work was completed, the referee pointed out that the same result is proved in [37,Theorem 1.1]. Compared to the proof in [37] where they use the Littlewood-Paley decomposition, we use the standard energy energy estimates and classical commutator estimates.
As one of a minimal modification of (3) to show the existence of unique local in time solutions, we now take a logarithmic correction of (3):
Bt+curl((curlB)×B)+ln(2+Λ)ΛB=0, | (5) |
where the Fourier symbol of
Theorem 1.2. Let
‖B(t)‖Hk≤ln(1e−‖B0‖Hk−Ct),0<t<T∗=exp(−‖B0‖Hk)C. | (6) |
In this paper, we also deal with 2D models closely related to the
B(t,x,y)=(−ψy(t,x,y),ψx(t,x,y),Z(t,x,y)), | (7) |
we can rewrite (3) as
ψt+Λψ=[ψ,Z], | (8a) |
Zt+ΛZ=[Δψ,ψ], | (8b) |
where
Although (8) is defined in 2D and has nice cancellation properties (18), the local well-posedness seems unreachable. But, suppose that we redistribute the power of the fractional Laplacians in (8) in such a way that (8b) has the full Laplacian and (8a) is inviscid:
ψt=[ψ,Z],Zt−ΔZ=[Δψ,ψ]. | (9) |
(9) has no direct link to (2), but we may interpret (9) as the
E(t)=‖ψ(t)‖2H4+‖Z(t)‖2H3,E0=‖ψ0‖2H4+‖Z0‖2H3. | (10) |
Theorem 1.3. There exists
E(t)≤E011−CtE0forall 0<t≤T∗<1CE0. |
Moreover, we have the following blow-up criterion:
E(t)+∫t0‖∇Z(s)‖2H2ds<∞⟺∫t0(‖∇2Z(s)‖L∞+‖∇2ψ(s)‖2L∞)ds<∞. |
Since there is no dissipative effect in the equation of
ψt+ψ=[ψ,Z],Zt−ΔZ=[Δψ,ψ]. | (11) |
In this case, we can show the existence of global in time solutions with small initial data having regularity one higher than the regularity in Theorem 1.3. Moreover, we can find decay rates of
F(t)=‖ψ(t)‖2H5+‖Z(t)‖2H4,F0=‖ψ0‖2H5+‖Z0‖2H4,N1(t)=‖∇ψ(t)‖2H4+‖∇Z(t)‖2H4. |
Theorem 1.4. There exists a constant
F(t)+(1−Cϵ0)∫t0N1(s)ds≤F0forallt>0. |
Moreover,
‖ψ(t)‖L2≤‖ψ0‖L2e−t,‖Λkψ(t)‖L2≤Fk−180‖∇ψ0‖5−k4L2e−(5−k)(1−Cϵ0)4t |
with
As another way to redistribute the derivatives in (8), we also deal with
ψt−Δψ=[ψ,Z],Zt=[Δψ,ψ]. | (12) |
Let
Theorem 1.5. There exists
E(t)≤E01−CtE0forall 0<t≤T∗<1CE0. |
Moreover, we have the following blow-up criterion
E(t)+∫t0‖∇ψ‖2H4ds<∞⟺∫t0‖∇2ψ‖2L∞ds. |
We now add a damping term to the equation of
ψt−Δψ=[ψ,Z],Zt+Z=[Δψ,ψ]. | (13) |
In this case, we can use the same regularity used in Theorem 1.5 because the dissipative effect in
Theorem 1.6. There exists a constant
E(t)+(1−Cϵ0)∫t0N2(s)ds≤E0forallt>0. |
Remark 3. Compared to Theorem 1.3, we only need one term in the blow-up criterion in Theorem 1.5 which is due to the dissipative effect in the equation of
All constants will be denoted by
The fractional Laplacian
^Λβf(ξ)=|ξ|βˆf(ξ). |
For
‖f‖Hs=‖f‖L2+‖f‖˙Hs,‖f‖˙Hs=‖Λsf‖L2. |
In the energy spaces, we have the following interpolations: for
‖f‖˙Hs≤‖f‖θ˙Hs0‖f‖1−θ˙Hs1,s=θs0+(1−θ)s1. | (14) |
We begin with two inequalities in 3D:
‖f‖L∞≤C‖f‖Hs,s>32, | (15a) |
‖f‖Lp≤C‖f‖˙Hs,1p=12−s3. | (15b) |
We also provide the following inequalities in 2D
‖f‖L4≤C‖f‖12L2‖∇f‖12L2,‖f‖L∞≤C‖f‖12L2‖Δf‖12L2 |
which will be used repeatedly in the proof of Theorem 1.3, Theorem 1.4, Theorem 1.5, and Theorem 1.6. We also recall
‖∇2f‖L2=‖Δf‖L2 |
which holds in any dimension.
We finally provide the Kato-Ponce commutator cstimate [22]
‖[Λk,f]g‖L2=‖Λk(fg)−fΛkg‖L2≤C‖∇f‖L∞‖Λk−1g‖L2+C‖g‖L∞‖Λkf‖L2 | (16) |
and the fractional Leibniz rule [11]: for
‖Λs(fg)‖Lp≤C‖Λsf‖Lp1‖g‖Lq1+C‖f‖Lp2‖Λsg‖Lq2,1p=1p1+1q1=1p2+1q2. | (17) |
We recall the commutator
Δ[f,g]=[Δf,g]+[f,Δg]+2[fx,gx]+2[fy,gy], | (18a) |
∫f[f,g]=0, | (18b) |
∫f[g,h]=∫g[h,f]. | (18c) |
We recall (3):
Bt+curl((curlB)×B)+ΛB=0. | (19) |
We first approximate (19) by putting
Bt+curl((curlB)×B)+ΛB=ϵΔB. | (20) |
We then mollify (20) as follows
∂tB(ϵ)+curl(Jϵ(curlJϵB(ϵ))×JϵB(ϵ))+ΛJ2ϵB(ϵ)=ϵJ2ϵΔB(ϵ),B(ϵ)0=JϵB0, | (21) |
where
We begin with the
12ddt‖B‖2L2+‖Λ12B‖2L2=0. | (22) |
We now take
12ddt‖ΛkB‖2L2+‖Λ12+kB‖2L2=−∫Λkcurl((curlB)×B)⋅ΛkB=∫([Λ12+k,B]×curlB)⋅Λk−12curlB≤‖[Λ12+k,B]×curlB‖L2‖Λ12+kB‖L2. |
By (16) and (15a) with
‖[Λ12+k,B]×curlB‖L2≤C‖∇B‖L∞‖Λk−12curlB‖L2≤C‖B‖Hk‖Λ12+kB‖2L2. | (23) |
So, we obtain
ddt‖ΛkB‖2L2+‖Λ12+kB‖2L2≤C‖B‖Hk‖Λ12+kB‖2L2. | (24) |
By (22) and (24),
ddt‖B‖2Hk+‖Λ12B‖2Hk≤C‖B‖Hk‖Λ12+kB‖2L2. |
If
‖B(t)‖2Hk+(1−Cϵ0)∫t0‖Λ12B(s)‖2Hkds≤‖B0‖2Hkforallt>0. | (25) |
Let
Bt+ΛB+curl((curlB1)×B)−curl((curlB)×B2)=0 | (26) |
with
12ddt‖B‖2L2+‖Λ12B‖2L2=−∫(curl((curlB1)×B))⋅B=−∫Λ12(((curlB1)×B))⋅Λ−12curlB≤C‖∇B1‖L∞‖Λ12B‖2L2+C‖∇Λ12B1‖L6‖B‖L3‖Λ12B‖L2≤C‖∇B1‖L∞‖Λ12B‖2L2+C‖Λ52B1‖L2‖Λ12B‖2L2≤C‖B1‖Hk‖Λ12B‖2L2, |
where we use (15b) to control
By (14), it is enough to derive the decay rate with
‖ΛkB‖2k+1kL2≤‖B‖1kL2‖Λ12+kB‖2L2≤‖B0‖1kL2‖Λ12+kB‖2L2 |
by (14) and (22), we create the following ODE from (24)
ddt‖ΛkB‖2L2+1−Cϵ0‖B0‖1kL2‖ΛkB‖2k+1kL2≤0. |
By solving this ODE, we find the following decay rate
‖ΛkB(t)‖L2≤((2k)k‖B0‖L2‖ΛkB0‖L2)(2k‖B0‖1kL2+(1−Cϵ0)‖ΛkB0‖1kL2t)k. | (27) |
We recall (5):
Bt+curl((curlB)×B)+ln(2+Λ)ΛB=0, |
The the uniqueness part of Theorem 1.2 is the same as that of Theorem 1.1 and we only derive a priori bounds. Let
‖√ln(2+Λ)Λsf‖2L2=∫(ln(2+|ξ|))|ξ|2s|ˆf(ξ)|2dξ. |
We begin with the
12ddt‖B‖2L2+‖√ln(2+Λ)Λ12B‖2L2=0. | (28) |
Following the computations in the proof of Theorem 1.1, we also have
ddt‖ΛkB‖2L2+‖√ln(2+Λ)Λ12+kB‖2L2≤C‖B‖Hk‖Λ12+kB‖2L2. | (29) |
For each
‖Λ12+kB‖2L2=∫|ξ|≤2N|ξ|2k+1|ˆB(ξ)|2dξ+∫|ξ|≥2N|ξ|2k+1|ˆB(ξ)|2dξ≤2N∫|ξ|≤2N|ξ|2k|ˆB(ξ)|2dξ+1ln(2+2N)∫|ξ|≥2Nln(2+|ξ|)|ξ|2k+1|ˆB(ξ)|2dξ≤2N‖ΛkB‖2L2+1ln(2+2N)‖√ln(2+Λ)Λ12+kB‖2L2. |
So, (29) is replaced by
ddt‖ΛkB‖2L2+‖√ln(2+Λ)Λ12+kB‖2L2≤C2N‖ΛkB‖2L2‖B‖Hk+C‖B‖Hkln(2+2N)‖√ln(2+Λ)Λ12+kB‖2L2. |
We now choose
12ln(2+2N)<C‖B‖Hk<ln(2+2N) |
and so
ddt‖ΛkB‖2L2≤Cexp(‖B‖Hk)‖B‖Hk‖ΛkB‖L2. | (30) |
By (28) and (30), we obtain
ddt‖B‖2Hk≤Cexp(‖B‖Hk)‖B‖2Hk |
and so we have
ddt‖B‖Hk≤Cexp(‖B‖Hk)‖B‖Hk≤Cexp(‖B‖Hk). |
By solving this ODE, we can derive (6).
We recall (9):
ψt=[ψ,Z], | (31a) |
Zt−ΔZ=[Δψ,ψ]. | (31b) |
We first approximate (31a) by putting
∂tψ(ϵ)=Jϵ[Jϵψ(ϵ),JϵZ(ϵ)]+ϵJ2ϵΔψ(ϵ),∂tZ(ϵ)−ΔJ2ϵZ(ϵ)=Jϵ[ΔJϵψ(ϵ),Jϵψ(ϵ)] | (32) |
with
We first note that
12ddt‖ψ‖2L2=∫ψ[ψ,Z]=0. | (33) |
We next multiply (31a) by
12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇Z‖2L2=∫(−Δψ[ψ,Z]+Z[Δψ,ψ])=0. | (34) |
We also multiply (31a) by
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R. | (35) |
We now compute the right-hand side of (35). By (18a), (18b), and (18c),
R=2∫Δ2ψ[Δψ,ΔZ]+4∫Δ2ψ[ψx,ΔZx]+4∫Δ2ψ[ψy,ΔZy]+4∫Δ2ψ[Δψx,Zx]+4∫Δ2ψ[Δψy,Zy]+4∫Δ2ψ[ψxx,Zxx]+8∫Δ2ψ[ψxy,Zxy]+4∫Δ2ψ[ψyy,Zyy]−2∫Δ2Z[Δψx,ψx]−2∫Δ2Z[Δψy,ψy]. | (36) |
So, we find that the number of derivatives acting on
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C∫|∇4ψ||∇4ψ||∇2Z|+C∫|∇3ψ||∇4ψ||∇3Z|+C∫|∇4ψ||∇2ψ||∇4Z|≤C‖Δ2ψ‖2L2‖∇2Z‖L∞+C‖∇3ψ‖L4‖Δ2ψ‖L2‖∇3Z‖L4+C‖Δ2ψ‖L2‖∇2ψ‖L∞‖Δ2Z‖L2≤C‖Δ2ψ‖2L2‖∇2Z‖L∞+C‖Δ2ψ‖32L2‖∇Δψ‖12L2‖Δ2Z‖L2+C‖Δ2ψ‖L2‖∇2ψ‖L∞‖Δ2Z‖L2≤CE2+14‖Δ2Z‖2L2+δ‖∇2Z‖2L∞≤CE2+12‖Δ2Z‖2L2+14‖∇Z‖2L2, |
where we use
‖∇2Z‖2L∞≤C‖ΔZ‖L2‖Δ2Z‖L2≤C‖∇Z‖23L2‖Δ2Z‖43L2≤C‖∇Z‖2L2+C‖Δ2Z‖2L2 |
with
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤CE2+12‖∇Z‖2L2. | (37) |
By (33), (34), and (37), we derive
E(t)≤E01−CtE0forall 0<t≤T∗<1CE0. | (38) |
Let
ψt=[ψ,Z1]+[ψ2,Z],Zt−ΔZ=[Δψ,ψ1]+[Δψ2,ψ] |
with
12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇Z‖2L2=−∫Δψ[ψ,Z1]−∫Δψ[ψ2,Z]+∫Z[Δψ,ψ1]+∫Z[Δψ2,ψ]=(I)+(II)+(III)+(IV). |
The first term is bounded using the definition of
(I)=∫(∇⊥Z1⋅∇ψ)Δψ=−∫(∇⊥∂lZ1⋅∇ψ)∂lψ≤C‖∇2Z1‖L∞‖∇ψ‖2L2. |
We next bound
(II)+(III)=−∫Z[Δψ,ψ]≤C‖∇2ψ‖L∞‖∇ψ‖L2‖∇Z‖L2≤C(‖∇2ψ1‖2L∞+‖∇2ψ2‖2L∞)‖∇ψ‖2L2+14‖∇Z‖2L2. |
The last term is bounded as
(IV)≤C‖∇2ψ2‖L∞‖∇ψ‖L2‖∇Z‖L2≤C‖∇2ψ2‖2L∞‖∇ψ‖2L2+14‖∇Z‖2L2. |
So, we have
ddt(‖∇ψ‖2L2+‖Z‖2L2)≤C(‖∇2Z1‖L∞+‖∇2ψ1‖2L∞+‖∇2ψ2‖2L∞)(‖∇ψ‖2L2+‖Z‖2L2). | (39) |
By (38),
∫t0(‖∇Z(s)‖2L2+‖Δ2Z(s)‖2L2)ds<∞for0<t≤T∗2 |
which gives the integrability of the first term in the parentheses on the right-hand side of (39). By repeating the same argument one more time, we have the uniqueness up to
Let
B(s)=‖∇2Z(s)‖L∞+‖∇2ψ(s)‖2L∞. |
We first deal with
12ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖ΔZ‖2L2=∫Δ2ψ[ψ,Z]−∫ΔZ[Δψ,ψ]=2∫Δψ[ψx,Zx]+2∫Δψ[ψy,Zy]≤C‖∇2Z‖L∞‖Δψ‖2L2 |
and so we have
ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖ΔZ‖2L2≤C‖∇2Z‖L∞‖Δψ‖2L2. |
This implies
‖Δψ(t)‖2L+‖∇Z(t)‖2L2+∫t0‖ΔZ(s)‖2L2ds<∞⟺∫t0‖∇2Z(s)‖L∞ds<∞. | (40) |
We also deal with
12ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖∇ΔZ‖2L2=−∫Δ3ψ[ψ,Z]+∫Δ2Z[Δψ,ψ]=−∫Δ2ψ[Δψ,Z]−2∫Δ2ψ([ψx,Zx]+[ψy,Zy])−2∫Δψ([ψx,ΔZx]+[ψy,ΔZy])=(I)+(II)+(III). |
As in Section 4.1.3,
(I)=∫(∇∇⊥Z⋅∇Δψ)⋅∇Δψ≤C‖∇2Z‖L∞‖∇Δψ‖2L2. | (41) |
We next estimate
(II)+(III)=−4∫Δψ([Δψy,Zy]+[ψy,ΔZy]+[ψxy,Zxy]+[ψyy,Zyy])≤C∫|∇2Z||∇3ψ|2+C∫|∇2ψ||∇3ψ||∇3Z|≤C‖∇2Z‖L∞‖∇Δψ‖2L2+C‖∇2ψ‖2L∞‖∇Δψ‖2L2+12‖∇ΔZ‖2L2. | (42) |
By (41) and (42), we have
ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖∇ΔZ‖2L2≤C(‖∇2Z‖L∞+‖∇2ψ‖2L∞)‖∇Δψ‖2L2 |
which implies
‖∇Δψ(t)‖2L2+‖ΔZ(t)‖2L2+∫t0‖∇ΔZ(s)‖2L2ds<∞⟺∫t0B(s)ds<∞. | (43) |
We finally deal with
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R |
with the same
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C‖∇2Z‖L∞‖Δ2ψ‖2L2+C‖∇2ψ‖L∞‖Δ2Z‖L2‖Δ2ψ‖L2+C‖∇ΔZ‖L4‖∇Δψ‖L4‖Δ2ψ‖L2≤C(‖∇2Z‖L∞+‖∇2ψ‖2L∞+‖∇ΔZ‖32L2‖∇Δψ‖32L2)‖Δ2ψ‖2L2+12‖Δ2Z‖2L2 |
which gives
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C(B(s)+‖∇ΔZ‖32L2‖∇Δψ‖32L2)‖Δ2ψ‖2L2. | (44) |
By (40) and (43), (44) implies
‖Δ2ψ(t)‖2L2+‖∇ΔZ(t)‖2L2+∫t0‖Δ2Z(s)‖2L2ds<∞⟺∫t0B(s)ds<∞. |
We recall (11):
ψt+ψ=[ψ,Z],Zt−ΔZ=[Δψ,ψ] |
Since the uniqueness is already proved in Section 4.1.3 even without the damping term, we only focus on the a priori bounds and the decay rates.
We first have
12ddt‖ψ‖2L2+‖ψ‖2L2=0,12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇ψ‖2L2+‖∇Z‖2L2=0. | (45) |
We now consider the highest order part:
12ddt(‖∇Δ2ψ‖2L2+‖Δ2Z‖2L2)+‖∇Δ2ψ‖2L2+‖∇Δ2Z‖2L2=−∫Δ5ψ[ψ,Z]+∫Δ4Z[Δψ,ψ]. |
We compute the right-hand side of this. By (18a), (18b), and (18c),
−∫Δ5ψ[ψ,Z]+∫Δ4Z[Δψ,ψ]=2∫Δ3Z[Δψx,ψx]+2∫Δ3Z[Δψy,ψy]+2∫Δ2Z[Δ2ψx,ψx]+2∫Δ2Z[Δ2ψy,ψy]+2∫ΔZ[Δ2ψx,Δψx]+2∫ΔZ[Δ2ψy,Δψy]−∫Δ3ψ[Δψ,ΔZ]−2∫Δ3ψ[Δψx,Zx]−2∫Δ3ψ[Δψy,Zy]−2∫Δ3ψ[ψx,ΔZx]−2∫Δ3ψ[ψy,ΔZy]−2∫Δ4ψ[ψx,Zx]−2∫Δ4ψ[ψy,Zy]−∫Δ3ψ[Δ2ψ,Z]. | (46) |
We now count the number of derivatives hitting on
(6,2,4)↦(5,2,5), (5,3,4)(4,2,6)↦(5,5,2), (4,3,5)(2,2,8)↦(3,2,7)↦(4,2,6), (3,3,6)↦(5,5,2), (4,3,5)(2,4,6)↦(2,5,5), (3,4,5). |
The last integral is
∫(∇⊥Z⋅∇Δ2ψ)Δ3ψ=−∫(∇⊥∂lZ⋅∇Δ2ψ)∂lΔ2ψ |
and so this gives
(2,5,5), (3,4,5), (4,3,5), (5,2,5), (5,3,4). |
The first and the fourth cases are bounded by
C‖∇2Z‖L∞‖∇Δ2ψ‖2L2≤C‖∇2Z‖2L∞‖∇Δ2ψ‖2L2+16‖∇Δ2ψ‖2L2,C‖∇2ψ‖L∞‖∇Δ2Z‖2L2≤C‖∇2ψ‖L∞‖∇Δ2Z‖2L2+14‖∇Δ2Z‖2L2. |
The second case is bounded by
C‖∇3Z‖L4‖∇4ψ‖L4‖∇Δ2ψ‖L2≤C‖ΔZ‖12L2‖∇Δ2Z‖12L2‖Δ2ψ‖12L2‖∇Δ2ψ‖32L2≤C‖ΔZ‖2L2‖Δ2ψ‖2L2‖∇Δ2Z‖2L2+16‖∇Δ2ψ‖2L2. |
The third case is bounded by
C‖∇4Z‖L4‖∇3ψ‖L4‖∇Δ2ψ‖L2≤C‖Δ2Z‖12L2‖∇Δ2Z‖12L2‖Δψ‖12L2‖∇Δ2ψ‖32L2≤C‖Δψ‖2L2‖Δ2Z‖2L2‖∇Δ2Z‖2L2+16‖∇Δ2ψ‖2L2. |
The last one is bounded by
C‖∇3ψ‖L4‖∇4ψ‖L4‖∇Δ2Z‖L2≤C‖∇Δψ‖12L2‖Δ2ψ‖L2‖∇Δ2ψ‖12L2‖∇Δ2Z‖L2≤C‖∇Δψ‖L2‖∇Δ2ψ‖L2‖∇Δ2Z‖L2≤C‖∇Δψ‖2L2‖∇Δ2ψ‖2L2+14‖∇Δ2Z‖2L2. |
So, we obtain
ddt(‖∇Δ2ψ‖2L2+‖Δ2Z‖2L2)+‖∇Δ2ψ‖2L2+‖∇Δ2Z‖2L2≤C‖∇2Z‖2L∞‖∇Δ2ψ‖2L2+C‖∇2ψ‖2L∞‖∇Δ2Z‖2L2+C‖∇Δψ‖2L2‖∇Δ2ψ‖2L2+C‖ΔZ‖2L2‖Δ2ψ‖2L2‖∇Δ2Z‖2L2+C‖Δψ‖2L2‖Δ2Z‖2L2‖∇Δ2Z‖2L2 | (47) |
By (45) and (47),
F′(t)+N1(t)≤C(F(t)+F2(t))N1(t). |
So, if
F(t)+(1−Cϵ0)∫t0N1(s)ds≤F0forallt>0. |
From (45),
12ddt‖∇ψ‖2L2+‖∇ψ‖2L2=−∫Δψ[ψ,Z]=∫(∇⊥Z⋅∇ψ)Δψ=−∫(∂l∇⊥Z⋅∇ψ)∂lψ≤‖∇2Z‖L∞‖∇ψ‖2L2≤Cϵ0‖∇ψ‖2L2, |
we have
‖∇ψ(t)‖L2≤‖∇ψ0‖L2e−(1−Cϵ0)t. |
By using (14), we also obtain
‖Λkψ(t)‖L2≤Fk−180‖∇ψ0‖5−k4L2e−(5−k)(1−Cϵ0)4t,1≤k<5. |
We recall (12):
ψt−Δψ=[ψ,Z],Zt=[Δψ,ψ]. |
By applying the same approximation and mollification methods in Section 4.1.1, we can show the existence of smooth solutions locally in time when
We first have
12ddt‖ψ‖2L2+‖∇ψ‖2L2=0,12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖Δψ‖2L2=0. | (48) |
We next deal with
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R |
with the same
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤C‖∇2Z‖L2‖Δ2ψ‖2L4+C‖∇ΔZ‖L2‖∇2ψ‖L∞‖∇Δ2ψ‖L2+C‖ΔZ‖L4‖∇3ψ‖L4‖∇Δ2ψ‖L2≤CE21+12‖∇Δ2ψ‖2L2 |
and so we have the following bound
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤CE2. | (49) |
By (48) and (49), we derive
E(t)≤E01−CtE0forall 0<t≤T∗<1CE0. | (50) |
Let
12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖Δψ‖2L2=−∫Δψ[ψ,Z1]−∫Δψ[ψ2,Z]+∫Z[Δψ,ψ1]+∫Z[Δψ2,ψ]=(I)+(II)+(III)+(IV). |
The first term three terms are bounded as
(I)≤‖∇Z1‖L∞‖∇ψ‖L2‖Δψ‖L2≤C‖∇Z1‖2L∞‖∇ψ‖2L2+13‖Δψ‖2L2,(II)+(III)=−∫Z[Δψ,ψ]≤C‖∇Z‖L∞‖∇ψ‖L2‖Δψ‖L2≤C(‖∇Z1‖2L∞+‖∇Z2‖2L∞)‖∇ψ‖2L2+13‖Δψ‖2L2 |
The last term is bounded as
(IV)≤C‖∇3ψ2‖L4‖∇ψ‖L4‖Z‖L2≤C‖∇3ψ2‖L4‖∇ψ‖12L2‖Δψ‖12L2‖Z‖L2≤C‖∇3ψ2‖43L4‖∇ψ‖23L2‖Z‖43L2+13‖Δψ‖2L2≤C‖∇3ψ2‖4L4‖∇ψ‖2L2+C‖Z‖2L2+13‖Δψ‖2L2≤C‖∇Δψ2‖2L2‖Δ2ψ2‖2L2‖∇ψ‖2L2+C‖Z‖2L2+13‖Δψ‖2L2. |
So, we have
ddt(‖∇ψ‖2L2+‖Z‖2L2)≤C(‖∇Z1‖2L∞+‖∇Z2‖2L∞+‖∇Δψ2‖2L2‖Δ2ψ2‖2L2)(‖∇ψ‖2L2+‖Z‖2L2). |
By (50), the terms in the parentheses are integrable up to
To derive the blow-up criterion, we first bound
12ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖∇Δψ‖2L2=∫Δ2ψ[ψ,Z]−∫ΔZ[Δψ,ψ]=2∫Δψ[ψx,Zx]+2∫Δψ[ψy,Zy]≤C‖∇2ψ‖L∞‖∇Z‖L2‖∇Δψ‖L2≤C‖∇2ψ‖2L∞‖∇Z‖2L2+12‖∇Δψ‖2L2 |
and so we have
ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖∇Δψ‖2L2≤C‖∇2ψ‖2L∞‖∇Z‖2L2. |
This implies
‖Δψ(t)‖2L+‖∇Z(t)‖2L2+∫t0‖∇Δψ(s)‖2L2ds<∞⟺∫t0‖∇2ψ(s)‖2L∞ds<∞ | (51) |
We also take
12ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖Δ2ψ‖2L2=−∫Δ3ψ[ψ,Z]+∫Δ2Z[Δψ,ψ]=−∫Δ2ψ[Δψ,Z]−2∫Δ2ψ([ψx,Zx]+[ψy,Zy])−2∫Δψ([ψx,ΔZx]+[ψy,ΔZy])=(I)+(II)+(III). |
By using the computation in (41),
(I)=∫(∇∇⊥Z⋅∇Δψ)⋅∇Δψ≤C‖∇2Z‖L2‖∇3ψ‖2L4≤C‖∇2Z‖2L2‖∇Δψ‖2L2+16‖Δ2ψ‖2L2. |
We next estimate
(II)+(III)≤C∫|∇2Z||∇3ψ|2+C∫|∇2ψ||∇4ψ||∇2Z|≤C‖ΔZ‖2L2‖∇Δψ‖2L2+C‖∇2ψ‖2L∞‖ΔZ‖2L2+13‖Δ2ψ‖2L2 |
So, we have
ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖Δ2ψ‖2L2≤C(‖∇Δψ‖2L2+‖∇2ψ‖2L∞)‖ΔZ‖2L2. | (52) |
By (51), (52) implies
‖∇Δψ(t)‖2L2+‖ΔZ(t)‖2L2+∫‖Δ2ψ(s)‖2L2ds<∞⟺∫t0‖∇2ψ(s)‖2L∞ds<∞. | (53) |
We finally deal with
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ] |
where we count the number of derivatives acting on
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤C‖ΔZ‖2L2‖Δ2ψ‖2L2+C‖∇2ψ‖2L∞‖∇ΔZ‖2L2+C‖ΔZ‖2L4‖∇3ψ‖2L4+12‖∇Δ2ψ‖2L2≤C‖ΔZ‖2L2‖Δ2ψ‖2L2+C‖∇2ψ‖2L∞‖∇ΔZ‖2L2+C‖ΔZ‖2L2‖∇ΔZ‖2L2+C‖∇Δψ‖2L2‖Δ2ψ‖2L2+12‖∇Δ2ψ‖2L2 |
and so we have
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2≤C(‖∇2ψ‖2L∞+‖ΔZ‖2L2)‖∇ΔZ‖2L2+C(‖∇Δψ‖2L2+‖ΔZ‖2L2)‖Δ2ψ‖2L2 | (54) |
By (51) and (53), (54) implies
‖Δ2ψ(t)‖2L2+‖∇ΔZ(t)‖2L2+∫t0‖∇Δ2ψ(s)‖2L2ds<∞⟺∫t0‖∇2ψ(s)‖2L∞ds<∞. |
We recall (13):
ψt−Δψ=[ψ,Z],Zt+Z=[Δψ,ψ]. |
Since the uniqueness is already proved in Section 5.1.2 even without the damping term, we only focus on the a priori bounds.
We first have
12ddt‖ψ‖2L2+‖∇ψ‖2L2=0,12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖Δψ‖2L2+‖Z‖2L2=0. | (55) |
We also have
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2+‖∇ΔZ‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R |
with the same
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2+‖∇ΔZ‖2L2≤C‖∇2Z‖L2‖Δ2ψ‖2L4+C‖∇ΔZ‖L2‖∇2ψ‖L∞‖∇Δ2ψ‖L2+C‖ΔZ‖L4‖∇3ψ‖L4‖∇Δ2ψ‖L2≤C‖∇Z‖12L2‖∇ΔZ‖12L2‖∇Δψ‖12L2‖∇Δ2ψ‖32L2+C‖∇ΔZ‖L2‖∇2ψ‖L∞‖∇Δ2ψ‖L2+C‖ΔZ‖12L2‖∇ΔZ‖12L2‖Δψ‖12L2‖∇Δ2ψ‖32L2≤C(‖∇Z‖2L2‖∇Δψ‖2L2+‖ΔZ‖2L2‖Δψ‖2L2+‖∇2ψ‖2L∞)‖∇ΔZ‖2L2+12‖∇Δ2ψ‖L2. |
So, we obtain
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖∇Δ2ψ‖2L2+‖∇ΔZ‖2L2≤C(‖∇Z‖2L2‖∇Δψ‖2L2+‖ΔZ‖2L2‖Δψ‖2L2+‖∇2ψ‖2L∞)‖∇ΔZ‖2L2 | (56) |
By (55) and (56),
E′(t)+N2(t)≤C(E(t)+E2(t))N2(t). |
So, if
E(t)+(1−Cϵ0)∫t0N2(s)ds≤E0forallt>0. |
H.B. was supported by NRF-2018R1D1A1B07049015. H. B. acknowledges the Referee for his/her valuable comments that highly improve the manuscript.
[1] |
B. Madden, M. Jazbec, N. Florin, Increasing packaging grade recovery rates of plastic milk bottles in Australia: A material flow analysis approach, Sustainable Prod. Consumption, 37 (2023), 65–77. https://doi.org/10.1016/j.spc.2023.02.017 doi: 10.1016/j.spc.2023.02.017
![]() |
[2] |
Y. Chen, Z. Cui, X. Cui, W. Liu, X. Wang, X. Li, et al., Life cycle assessment of end-of-life treatments of waste plastics in China, Resour. Conserv. Recycl., 146 (2019), 348–357. https://doi.org/10.1016/j.resconrec.2019.03.011 doi: 10.1016/j.resconrec.2019.03.011
![]() |
[3] |
W. Leal Filho, U. Saari, M. Fedoruk, A. Iital, H. Moora, M. Klöga, et al., An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe, J. Cleaner Prod., 214 (2019), 550–558. https://doi.org/10.1016/j.jclepro.2018.12.256 doi: 10.1016/j.jclepro.2018.12.256
![]() |
[4] | US EPA O, Plastics: Material-Specific Data, 2017. Available from: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data. |
[5] |
P. He, L. Chen, L. Shao, H. Zhang, F. Lü, Municipal solid waste (MSW) landfill: A source of microplastics? -Evidence of microplastics in landfill leachate, Water Res., 159 (2019), 38–45. https://doi.org/10.1016/j.watres.2019.04.060 doi: 10.1016/j.watres.2019.04.060
![]() |
[6] |
M. Sun, M. Zheng, G. Qu, K. Yuan, Y. Bi, J. Wang, Performance of polyurethane modified asphalt and its mixtures, Constr. Build. Mater., 191 (2018), 386–397. https://doi.org/10.1016/j.conbuildmat.2018.10.025 doi: 10.1016/j.conbuildmat.2018.10.025
![]() |
[7] |
P. J. Yoo, B. S. Ohm, J. Y. Choi, Toughening characteristics of plastic fiber-reinforced hot-mix asphalt mixtures, KSCE J. Civ. Eng. Manage., 16 (2012), 751–758. https://doi.org/10.1007/s12205-012-1384-0 doi: 10.1007/s12205-012-1384-0
![]() |
[8] |
A. Behl, G. Sharma, G. Kumar, A sustainable approach: Utilization of waste PVC in asphalting of roads, Constr. Build. Mater., 54 (2014), 113–117. https://doi.org/10.1016/j.conbuildmat.2013.12.050 doi: 10.1016/j.conbuildmat.2013.12.050
![]() |
[9] |
Z. Leng, R. K. Padhan, A. Sreeram, Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt, J. Cleaner Prod., 180 (2018), 682–688. https://doi.org/10.1016/j.jclepro.2018.01.171 doi: 10.1016/j.jclepro.2018.01.171
![]() |
[10] |
F. Sadiq Bhat, M. Shafi Mir, A study investigating the influence of nano Al2O3 on the performance of SBS modified asphalt binder, Constr. Build. Mater., 271 (2021), 121499. https://doi.org/10.1016/j.conbuildmat.2020.121499 doi: 10.1016/j.conbuildmat.2020.121499
![]() |
[11] |
C. Yang, J. Xie, X. Zhou, Q. Liu, L. Pang, Performance evaluation and improving mechanisms of diatomite-modified asphalt mixture, Materials, 11 (2018), 686. https://doi.org/10.3390/ma11050686 doi: 10.3390/ma11050686
![]() |
[12] |
M. Liang, S. Ren, C. Sun, J. Zhang, H. Jiang, Z. Yao, Extruded tire crumb-rubber recycled polyethylene melt blend as asphalt composite additive for enhancing the performance of binder, J. Mater. Civ. Eng., 32 (2020), 04019373. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003044 doi: 10.1061/(ASCE)MT.1943-5533.0003044
![]() |
[13] |
G. D. Airey, Rheological evaluation of ethylene vinyl acetate polymer modified bitumens, Constr. Build. Mater., 16 (2002), 473–487. https://doi.org/10.1016/S0950-0618(02)00103-4 doi: 10.1016/S0950-0618(02)00103-4
![]() |
[14] |
M. Bai, Investigation of low-temperature properties of recycling of aged SBS modified asphalt binder, Constr. Build. Mater., 150 (2017), 766–773. https://doi.org/10.1016/j.conbuildmat.2017.05.206 doi: 10.1016/j.conbuildmat.2017.05.206
![]() |
[15] |
R. K. Padhan, A. Sreeram, Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives, Constr. Build. Mater., 188 (2018), 772–780. https://doi.org/10.1016/j.conbuildmat.2018.08.155 doi: 10.1016/j.conbuildmat.2018.08.155
![]() |
[16] |
Z. Ren, Y. Zhu, Q. Wu, M. Zhu, F. Guo, H. Yu, et al., Enhanced storage stability of different polymer modified asphalt binders through nano-montmorillonite modification, Nanomaterials, 10 (2020), 641. https://doi.org/10.3390/nano10040641 doi: 10.3390/nano10040641
![]() |
[17] |
D. Lo Presti, Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review, Constr. Build. Mater., 49 (2013), 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007 doi: 10.1016/j.conbuildmat.2013.09.007
![]() |
[18] |
A. Topal, Evaluation of the properties and microstructure of plastomeric polymer modified bitumens, Fuel Process. Technol., 91 (2010), 45–51. https://doi.org/10.1016/j.fuproc.2009.08.007 doi: 10.1016/j.fuproc.2009.08.007
![]() |
[19] | Y. Becker, M. Méndez, Y. Rodriguez, Polymer modified asphalt, Vision Tecnol., 9 (2001), 39–50. |
[20] |
B. Sengoz, A. Topal, G. Isikyakar, Morphology and image analysis of polymer modified bitumens, Constr. Build. Mater., 23 (2009), 1986–1992. https://doi.org/10.1016/j.conbuildmat.2008.08.020 doi: 10.1016/j.conbuildmat.2008.08.020
![]() |
[21] |
C. Li, S. Fan, T. Xu, Method for evaluating compatibility between SBS modifier and asphalt matrix using molecular dynamics models, J. Mater. Civ. Eng., 33 (2021), 04021207. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003863 doi: 10.1061/(ASCE)MT.1943-5533.0003863
![]() |
[22] |
X. Yao, C. Li, T. Xu, Interfacial adhesive behaviors between SBS modified bitumen and aggregate using molecular dynamics simulation, Surf. Interfaces, 33 (2022), 102245. https://doi.org/10.1016/j.surfin.2022.102245 doi: 10.1016/j.surfin.2022.102245
![]() |
[23] |
S. Wu, L. Montalvo, Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review, J. Cleaner Prod., 280 (2021), 124355. https://doi.org/10.1016/j.jclepro.2020.124355 doi: 10.1016/j.jclepro.2020.124355
![]() |
[24] |
C. Vargas, A. El Hanandeh, Systematic literature review, meta-analysis and artificial neural network modelling of plastic waste addition to bitumen, J. Cleaner Prod., 280 (2021), 124369. https://doi.org/10.1016/j.jclepro.2020.124369 doi: 10.1016/j.jclepro.2020.124369
![]() |
[25] |
P. J. Yoo, I. L. Al-Qadi, Pre- and post-peak toughening behaviours of fibre-reinforced hot mix asphalt mixtures, Int. J. Pavement Eng., 15 (2014), 122–132. https://doi.org/10.1080/10298436.2013.839789 doi: 10.1080/10298436.2013.839789
![]() |
[26] |
D. Movilla-Quesada, A. C. Raposeiras, L. T. Silva-Klein, P. Lastra-González, D. Castro-Fresno, Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen, Waste Manage., 87 (2019), 751–760. https://doi.org/10.1016/j.wasman.2019.03.018 doi: 10.1016/j.wasman.2019.03.018
![]() |
[27] |
M. Arabani, M. Pedram, Laboratory investigation of rutting and fatigue in glassphalt containing waste plastic bottles, Constr. Build. Mater., 116 (2016), 378–383. https://doi.org/10.1016/j.conbuildmat.2016.04.105 doi: 10.1016/j.conbuildmat.2016.04.105
![]() |
[28] | V. S. Punith, A. Veeraragavan, S. N. Amirkhanian, Evaluation of reclaimed polyethylene modified asphalt concrete mixtures, Int. J. Pavement Res. Technol., 4 (2011), 1–10. |
[29] |
K. Pinsuwan, P. Opaprakasit, A. Petchsuk, L. Dubas, M. Opaprakasit, Chemical recycling of high-density polyethylene (HDPE) wastes by oxidative degradation to dicarboxylic acids and their use as value-added curing agents for acrylate-based materials, Polym. Degrad. Stab., 210 (2023), 110306. https://doi.org/10.1016/j.polymdegradstab.2023.110306 doi: 10.1016/j.polymdegradstab.2023.110306
![]() |
[30] |
S. Köfteci, P. Ahmedzade, B. Kultayev, Performance evaluation of bitumen modified by various types of waste plastics, Constr. Build. Mater., 73 (2014), 592–602. https://doi.org/10.1016/j.conbuildmat.2014.09.067 doi: 10.1016/j.conbuildmat.2014.09.067
![]() |
[31] |
M. Fakhri, E. Shahryari, T. Ahmadi, Investigate the use of recycled polyvinyl chloride (PVC) particles in improving the mechanical properties of stone mastic asphalt (SMA), Constr. Build. Mater., 326 (2022), 126780. https://doi.org/10.1016/j.conbuildmat.2022.126780 doi: 10.1016/j.conbuildmat.2022.126780
![]() |
[32] | U. Bagampadde, D. Kaddu, B. M. Kiggundu, Evaluation of rheology and moisture susceptibility of asphalt mixtures modified with low density polyethylene, Int. J. Pavement Res. Technol., 6 (2013), 217–224. |
[33] |
Z. Du, C. Jiang, J. Yuan, F. Xiao, J. Wang, Low temperature performance characteristics of polyethylene modified asphalts—A review, Constr. Build. Mater., 264 (2020), 120704. https://doi.org/10.1016/j.conbuildmat.2020.120704 doi: 10.1016/j.conbuildmat.2020.120704
![]() |
[34] |
S. Moubark, F. Khodary, A. Othman, Evaluation of mechanical properties for polypropylene modified asphalt concrete mixtures, Int. J. Sci. Res. Manage., 5 (2017), 7797–7801. https://doi.org/10.18535/ijsrm/v5i12.28 doi: 10.18535/ijsrm/v5i12.28
![]() |
[35] |
E. Sembiring, H. Rahman, Y. M. Siswaya, Utilization of polypropylene to substitute bitumen for asphalt concrete wearing course (AC-WC), Geomate J., 14 (2018), 97–102. https://doi.org/10.21660/2018.42.17347 doi: 10.21660/2018.42.17347
![]() |
[36] |
C. Fang, L. Jiao, J. Hu, Q. Yu, D. Guo, X. Zhou, et al., Viscoelasticity of asphalt modified with packaging waste expended polystyrene, J. Mater. Sci. Technol., 30 (2014), 939–943. https://doi.org/10.1016/j.jmst.2014.07.016 doi: 10.1016/j.jmst.2014.07.016
![]() |
[37] |
M. R. Mohd Hasan, B. Colbert, Z. You, A. Jamshidi, P. A. Heiden, M. O. Hamzah, A simple treatment of electronic-waste plastics to produce asphalt binder additives with improved properties, Constr. Build. Mater., 110 (2016), 79–88. https://doi.org/10.1016/j.conbuildmat.2016.02.017 doi: 10.1016/j.conbuildmat.2016.02.017
![]() |
[38] |
P. Lin, W. Huang, Y. Li, N. Tang, F. Xiao, Investigation of influence factors on low temperature properties of SBS modified asphalt, Constr. Build. Mater., 154 (2017), 609–622. https://doi.org/10.1016/j.conbuildmat.2017.06.118 doi: 10.1016/j.conbuildmat.2017.06.118
![]() |
[39] |
M. García-Morales, P. Partal, F. J. Navarro, C. Gallegos, Effect of waste polymer addition on the rheology of modified bitumen, Fuel, 85 (2006), 936–943. https://doi.org/10.1016/j.fuel.2005.09.015 doi: 10.1016/j.fuel.2005.09.015
![]() |
[40] |
V. O. Bulatović, V. Rek, K. J. Marković, Rheological properties and stability of ethylene vinyl acetate polymer-modified bitumen, Polym. Eng. Sci., 53 (2013), 2276–2283. https://doi.org/10.1002/pen.23462 doi: 10.1002/pen.23462
![]() |
[41] |
M. Singh, P. Kumar, M. R. Maurya, Effect of aggregate types on the performance of neat and EVA-modified asphalt mixtures, Int. J. Pavement Eng., 15 (2014), 163–173. https://doi.org/10.1080/10298436.2013.812211 doi: 10.1080/10298436.2013.812211
![]() |
[42] |
M. Á. Salas, H. Pérez-Acebo, V. Calderón, H, Gonzalo-Orden, Bitumen modified with recycled polyurethane foam for employment in hot mix asphalt, Ing. Invest., 38 (2018), 60–66. https://doi.org/10.15446/ing.investig.v38n1.65631 doi: 10.15446/ing.investig.v38n1.65631
![]() |
[43] |
M. Salas, H. Pérez-Acebo, Introduction of recycled polyurethane foam in mastic asphalt, Gradevinar, 70 (2018), 403–412. https://doi.org/10.14256/JCE.2181.2017 doi: 10.14256/JCE.2181.2017
![]() |
[44] |
B. W. Colbert, Z. You, Properties of modified asphalt binders blended with electronic waste powders, J. Mater. Civ. Eng., 24 (2012), 1261–1267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000504 doi: 10.1061/(ASCE)MT.1943-5533.0000504
![]() |
[45] | B. W. Colbert, A. Diab, Z. You, Using M-E PDG to study the effectiveness of electronic waste materials modification on asphalt pavements design thickness, Int. J. Pavement Res. Technol., 6 (2013), 319–326. |
[46] |
P. K. Singh, S. K. Suman, M. Kumar, Influence of recycled acrylonitrile butadiene styrene (ABS) on the physical, rheological and mechanical properties of bitumen binder, Transp. Res. Procedia, 48 (2020), 3668–3677. https://doi.org/10.1016/j.trpro.2020.08.081 doi: 10.1016/j.trpro.2020.08.081
![]() |
[47] |
J. Li, S. Jin, G. Lan, Z. Xu, L. Wang, N. Wang, Research on the glass transition temperature and mechanical properties of poly (vinyl chloride)/dioctyl phthalate (PVC/DOP) blends by molecular dynamics simulations, Chin. J. Polym. Sci., 37 (2019), 834–840. https://doi.org/10.1007/s10118-019-2249-5 doi: 10.1007/s10118-019-2249-5
![]() |
[48] |
X. Guo, Y. Liu, J. Wang, Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study, Mar. Pollut. Bull., 145 (2019), 547–554. https://doi.org/10.1016/j.marpolbul.2019.06.063 doi: 10.1016/j.marpolbul.2019.06.063
![]() |
[49] |
A. I. Al-Hadidy, Engineering behavior of aged polypropylene-modified asphalt pavements, Constr. Build. Mater., 191 (2018), 187–192. https://doi.org/10.1016/j.conbuildmat.2018.10.007 doi: 10.1016/j.conbuildmat.2018.10.007
![]() |
[50] |
C. Yu, K. Hu, Y. Chen, W. Zhang, Y. Chen, R. Chang, Compatibility and high temperature performance of recycled polyethylene modified asphalt using molecular simulations, Mol. Simul., 47 (2021), 1037–1049. https://doi.org/10.1080/08927022.2021.1944624 doi: 10.1080/08927022.2021.1944624
![]() |
[51] |
C. Yu, K. Hu, Q. Yang, D. Wang, W. Zhang, G. Chen, et al., Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations, Polymers, 13 (2021), 1658. https://doi.org/10.3390/polym13101658 doi: 10.3390/polym13101658
![]() |
[52] |
R. M. Izatt, S. R. Izatt, R. L. Bruening, N. E. Izatt, B. A. Moyer, Challenges to achievement of metal sustainability in our high-tech society, Chem. Soc. Rev., 43 (2014), 2451–2475. https://doi.org/10.1039/C3CS60440C doi: 10.1039/C3CS60440C
![]() |
[53] |
B. J. Alder, T. E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31 (1959), 459–466. https://doi.org/10.1063/1.1730376 doi: 10.1063/1.1730376
![]() |
[54] |
A. Rahman, Correlations in the motion of atoms in liquid argon, Phys. Rev., 136 (1964), A405–A411. https://doi.org/10.1103/PhysRev.136.A405 doi: 10.1103/PhysRev.136.A405
![]() |
[55] |
H. Yao, J. Liu, M. Xu, J. Ji, Q. Dai, Z. You, Discussion on molecular dynamics (MD) simulations of the asphalt materials, Adv. Colloid Interface Sci., 299 (2022), 102565. https://doi.org/10.1016/j.cis.2021.102565 doi: 10.1016/j.cis.2021.102565
![]() |
[56] |
F. Khabaz, R. Khare, Glass transition and molecular mobility in styrene-butadiene rubber modified asphalt, J. Phys. Chem. B, 119 (2015), 14261–14269. https://doi.org/10.1021/acs.jpcb.5b06191 doi: 10.1021/acs.jpcb.5b06191
![]() |
[57] | P. W. Jennings, J. A. Pribanic, M. A. Desando, M. F. Raub, R. Moats, J. A. Smith, et al., Binder Characterization and Evaluation by Nuclear Magnetic Resonance Spectroscopy, 1993, Washington, DC. |
[58] | A. T. Pauli, F. P. Miknis, A. G. Beemer, J. J. Miller, Assessment of physical property prediction based on asphalt average molecular structures, Preprints-American Chemical Society. Division of Petroleum Chemistry, 50 (2005), 255–259. |
[59] |
L. W. Corbett, Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization, Anal. Chem., 41 (1969), 576–579. https://doi.org/10.1021/ac60273a004 doi: 10.1021/ac60273a004
![]() |
[60] |
L. Zhang, M. L. Greenfield, Analyzing properties of model asphalts using molecular simulation, Energy Fuels, 21 (2007), 1712–1716. https://doi.org/10.1021/ef060658j doi: 10.1021/ef060658j
![]() |
[61] |
L. Artok, Y. Su, Y. Hirose, M. Hosokawa, S. Murata, M. Nomura, Structure and reactivity of petroleum-derived asphaltene, Energy Fuels, 13 (1999), 287–296. https://doi.org/10.1021/ef980216a doi: 10.1021/ef980216a
![]() |
[62] |
D. D. Li, M. L. Greenfield, Chemical compositions of improved model asphalt systems for molecular simulations, Fuel, 115 (2014), 347–356. https://doi.org/10.1016/j.fuel.2013.07.012 doi: 10.1016/j.fuel.2013.07.012
![]() |
[63] |
S. Ren, X. Liu, P. Lin, Y. Gao, S. Erkens, Insight into the compatibility behaviors between various rejuvenators and aged bitumen: Molecular dynamics simulation and experimental validation, Mater. Des., 223 (2022), 111141. https://doi.org/10.1016/j.matdes.2022.111141 doi: 10.1016/j.matdes.2022.111141
![]() |
[64] |
X. Xin, Z. Yao, J. Shi, M. Liang, H. Jiang, J. Zhang, et al., Rheological properties, microstructure and aging resistance of asphalt modified with CNTs/PE composites, Constr. Build. Mater., 262 (2020), 120100. https://doi.org/10.1016/j.conbuildmat.2020.120100 doi: 10.1016/j.conbuildmat.2020.120100
![]() |
[65] |
M. N. Rahman, M. Ahmeduzzaman, M. A. Sobhan, T. U. Ahmed, Performance evaluation of waste polyethylene and PVC on hot asphalt mixtures, Am. J. Civil Eng. Archit., 1 (2013), 97–102. https://doi.org/10.12691/ajcea-1-5-2 doi: 10.12691/ajcea-1-5-2
![]() |
[66] |
S. Tapkın, The effect of polypropylene fibers on asphalt performance, Build. Environ., 43 (2008), 1065–1071. https://doi.org/10.1016/j.buildenv.2007.02.011 doi: 10.1016/j.buildenv.2007.02.011
![]() |
[67] |
M. Su, J. Zhou, J. Lu, W. Che, H. Zhang, Using molecular dynamics and experiments to investigate the morphology and micro-structure of SBS modified asphalt binder, Mater. Today Commun., 30 (2022), 103082. https://doi.org/10.1016/j.mtcomm.2021.103082 doi: 10.1016/j.mtcomm.2021.103082
![]() |
[68] |
F. Guo, J. Zhang, J. Pei, W. Ma, Z. Hu, Y. Guan, Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation, Front. Struct. Civ. Eng., 14 (2020), 435–445. https://doi.org/10.1007/s11709-019-0603-x doi: 10.1007/s11709-019-0603-x
![]() |
[69] |
M. Liang, X. Xin, W. Fan, J. Zhang, H. Jiang, Z. Yao, Comparison of rheological properties and compatibility of asphalt modified with various polyethylene, Int. J. Pavement Eng., 22 (2021), 11–20. https://doi.org/10.1080/10298436.2019.1575968 doi: 10.1080/10298436.2019.1575968
![]() |
[70] |
W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules J. Am. Chem. Soc. 1995,117, 5179−5197, J. Am. Chem. Soc., 118 (1996), 2309–2309. https://doi.org/10.1021/ja955032e doi: 10.1021/ja955032e
![]() |
[71] |
M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, et al., NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun., 181 (2010), 1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018 doi: 10.1016/j.cpc.2010.04.018
![]() |
[72] |
H. Yao, J. Liu, M. Xu, A. Bick, Q. Xu, J. Zhang, Generation and properties of the new asphalt binder model using molecular dynamics (MD), Sci. Rep., 11 (2021), 9890. https://doi.org/10.1038/s41598-021-89339-5 doi: 10.1038/s41598-021-89339-5
![]() |
[73] |
X. Yu, J. Wang, J. Si, J. Mei, G. Ding, J. Li, Research on compatibility mechanism of biobased cold-mixed epoxy asphalt binder, Constr. Build. Mater., 250 (2020), 118868. https://doi.org/10.1016/j.conbuildmat.2020.118868 doi: 10.1016/j.conbuildmat.2020.118868
![]() |