A three-dimensional finite element model of a vibratory wheel on soil is established though the use of the ABAQUS software platform to investigate the interaction between the wheel and soil and the resulting dynamic response during vibratory compaction. The extended linear Drucker Prager model is used to reflect the plastic deformation characteristics of the soil. The truncated boundary is treated by using a three-dimensional uniform viscoelastic artificial boundary method. The vibratory responses of the soil under the wheel, including the stress and contact force, are analyzed by using numerical simulations. The results show a decrease in the soil vertical stress at the edge of the vibrating wheel transverse to the wheel path, which may assist in identifying the rolling overlap width of the wheel. Along the wheel path, the vertical stress center is demonstrated to lie ahead of the vibrating wheel mass center, caused by the inclination of the wheel soil contact surface. The contact pressure and total grounding width of the soil under the wheel can be calculated by using the finite element method; only one-third of the total width could produce effective compression deformation.
Citation: Hui Sun, Xiupeng Yue, Haining Wang, Liang Wang, Yuexiang Li. Investigation of the dynamic response of subgrade vibration compaction based on the finite element method[J]. Electronic Research Archive, 2023, 31(5): 2758-2774. doi: 10.3934/era.2023139
[1] | Sherven Sharma, Pournima Kadam, Ram P Singh, Michael Davoodi, Maie St John, Jay M Lee . CCL21-DC tumor antigen vaccine augments anti-PD-1 therapy in lung cancer. AIMS Medical Science, 2021, 8(4): 269-275. doi: 10.3934/medsci.2021022 |
[2] | Payal A. Shah, John Goldberg . Novel Approaches to Pediatric Cancer: Immunotherapy. AIMS Medical Science, 2015, 2(2): 104-117. doi: 10.3934/medsci.2015.2.104 |
[3] | Anuj A. Shukla, Shreya Podder, Sana R. Chaudry, Bryan S. Benn, Jonathan S. Kurman . Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. AIMS Medical Science, 2022, 9(2): 348-361. doi: 10.3934/medsci.2022016 |
[4] | Elif Basaran, Gulali Aktas . The relationship of vitamin D levels with hemogram indices and metabolic parameters in patients with type 2 diabetes mellitus. AIMS Medical Science, 2024, 11(1): 47-57. doi: 10.3934/medsci.2024004 |
[5] | Kwon Yong, Martin Brechbiel . Application of 212Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation. AIMS Medical Science, 2015, 2(3): 228-245. doi: 10.3934/medsci.2015.3.228 |
[6] | Anne A. Adeyanju, Wonderful B. Adebagbo, Olorunfemi R. Molehin, Omolola R. Oyenihi . Exploring the multi-drug resistance (MDR) inhibition property of Sildenafil: phosphodiesterase 5 as a therapeutic target and a potential player in reversing MDR for a successful breast cancer treatment. AIMS Medical Science, 2025, 12(2): 145-170. doi: 10.3934/medsci.2025010 |
[7] | Snigdha Misra, Yang Wai Yew, Tan Seok Shin . Maternal dietary patterns, diet quality and micronutrient status in gestational diabetes mellitus across different economies: A review. AIMS Medical Science, 2019, 6(1): 76-114. doi: 10.3934/medsci.2019.1.76 |
[8] | Marcus Martin, Reinand Thompson, Nikhil Tirupathi . Does vitamin D level have effect on COVID-19 outcomes?. AIMS Medical Science, 2023, 10(2): 141-150. doi: 10.3934/medsci.2023012 |
[9] | Ray Marks . Narrative Review of Vitamin D and Its Specific Impact on Balance Capacity in Older Adults. AIMS Medical Science, 2016, 3(4): 345-358. doi: 10.3934/medsci.2016.4.345 |
[10] | Ahlam Al-Zahrani, Shorooq Al-Marwani . The effectiveness of an educational session about folic acid on pregnant women's knowledge in Yanbu City, Kingdom of Saudi Arabia. AIMS Medical Science, 2022, 9(3): 394-413. doi: 10.3934/medsci.2022019 |
A three-dimensional finite element model of a vibratory wheel on soil is established though the use of the ABAQUS software platform to investigate the interaction between the wheel and soil and the resulting dynamic response during vibratory compaction. The extended linear Drucker Prager model is used to reflect the plastic deformation characteristics of the soil. The truncated boundary is treated by using a three-dimensional uniform viscoelastic artificial boundary method. The vibratory responses of the soil under the wheel, including the stress and contact force, are analyzed by using numerical simulations. The results show a decrease in the soil vertical stress at the edge of the vibrating wheel transverse to the wheel path, which may assist in identifying the rolling overlap width of the wheel. Along the wheel path, the vertical stress center is demonstrated to lie ahead of the vibrating wheel mass center, caused by the inclination of the wheel soil contact surface. The contact pressure and total grounding width of the soil under the wheel can be calculated by using the finite element method; only one-third of the total width could produce effective compression deformation.
[1] | C. Gong, Research and Optimization of Compaction Performance of Vibratory Rollers, Master's thesis, Xiangtan University in China, 2013. |
[2] |
Y. Long, Compaction theory and practice based on chaos science, Constr. Mach., 8 (2004), 64–67. https://doi.org/10.3969/j.issn.1001-554X.2004.08.024 doi: 10.3969/j.issn.1001-554X.2004.08.024
![]() |
[3] | C. Chen, Research on the New Technology of Automatic Continuous Detection of Subgrade Soil Compaction Degree, Master's thesis, Chongqing Jiaotong University in China, 2018. |
[4] |
Y. Ma, F. Chen, T. Ma, X. Huang, Y. Zhang, Intelligent compaction: an improved quality monitoring and control of asphalt pavement construction technology, IEEE Trans. Intell. Transp. Syst., 23 (2022), 14875–14882. https://doi.org/10.1109/TITS.2021.3134699 doi: 10.1109/TITS.2021.3134699
![]() |
[5] |
Y. Ma, Y. Zhang, W. Zhao, X. Ding, Z. Wang, T. Ma, Assessment of intelligent compaction quality evaluation index and uniformity, J. Transp. Eng. Pt. B-Pavements, 148 (2022), 04022024. https://doi.org/10.1061/JPEODX.0000368 doi: 10.1061/JPEODX.0000368
![]() |
[6] | X. Zhao, Study on Intelligent Compaction Control Technology of Subgrade, Master's thesis, Chang'an University in China, 2018. |
[7] |
Z. Fang, Y. Zhu, T. Ma, Y. Zhang, T. Han, J. Zhang, Dynamical response to vibration roller compaction and its application in intelligent compaction, Autom. Constr., 142 (2022), 104473. https://doi.org/10.1016/j.autcon.2022.104473 doi: 10.1016/j.autcon.2022.104473
![]() |
[8] | NCHRP Report 933: Evaluating mechanical properties of earth material during intelligent compaction, 2020. |
[9] |
C. L. Meehan, D. V. Cacciola, F. S. Tehrani, W. J. Baker, Assessing soil compaction using continuous compaction control and location-specific in situ tests, Autom. Constr., 73 (2017), 31–44. https://doi.org/10.1016/j.autcon.2016.08.017 doi: 10.1016/j.autcon.2016.08.017
![]() |
[10] |
D. J. White, M. J. Thompson, Relationships between in situ and roller-integrated compaction measurements for granular soils, J. Geotech. Geoenviron. Eng., 134 (2008), 1763–1770. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1763) doi: 10.1061/(ASCE)1090-0241(2008)134:12(1763)
![]() |
[11] |
S. Sivagnanasuntharam, A. Sounthararajah, J. Ghorbani, D. Bodin, J. Kodikara, A state-of-the-art review of compaction control test methods and intelligent compaction technology for asphalt pavements, Road Mater. Pavement Des., (2021), 1–30. https://doi.org/10.1080/14680629.2021.2015423 doi: 10.1080/14680629.2021.2015423
![]() |
[12] |
M. Shi, J. Wang, T. Guan, W. Chen, X. Wang, Effective compaction power index for real-time compaction quality assessment of coarse-grained geomaterials: Proposal and comparative study, Constr. Build. Mater., 321 (2022), 126375. https://doi.org/10.1016/j.conbuildmat.2022.126375 doi: 10.1016/j.conbuildmat.2022.126375
![]() |
[13] |
P. K. R. Vennapusa, D. J. White, M. D. Morris, Geostatistical analysis for spatially referenced roller-integrated compaction measurements, J. Geotech. Geoenviron. Eng., 136 (2010), 813–822. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000285 doi: 10.1061/(ASCE)GT.1943-5606.0000285
![]() |
[14] | S. Bejan, P. A. Heriberto, Modeling the dynamic interaction between a vibratory-compactor and ground, Rom. J. Acoust. Vib., 13 (2016), 94–97. |
[15] |
A. Fathi, C. Tirado, S. Rocha, M. Mazari, S. Nazarian, Assessing depth of influence of intelligent compaction rollers by integrating laboratory testing and field measurements, Transp. Geotech., 28 (2021), 100509. https://doi.org/10.1016/j.trgeo.2020.100509 doi: 10.1016/j.trgeo.2020.100509
![]() |
[16] | NCHRP Report 145: Extraction of Layer Properties from Intelligent Compaction Data, 2013. |
[17] |
V. Mafra, G. Dienstmann, Cavity expansion solutions applied to help assess the partial drainage behavior characterization of the piezocone test, Comput. Geotech., 152 (2022), 105017. https://doi.org/10.1016/j.compgeo.2022.105017 doi: 10.1016/j.compgeo.2022.105017
![]() |
[18] |
M. Ajmal, D. Ahmed, M. H. Baluch, M. K. Rahman, T. Ayadat, Consistent choice for cohesion and internal friction for concrete constitutive models, Innov. Infrastruct. Solut., 8 (2023), 43. https://doi.org/10.1007/s41062-022-00976-9 doi: 10.1007/s41062-022-00976-9
![]() |
[19] |
K. Rouf, M. J. Worswick, J. Montesano, Experimentally verified dual-scale modelling framework for predicting the strain rate-dependent nonlinear anisotropic deformation response of unidirectional non-crimp fabric composites, Compos. Struct., 303 (2023), 116384. https://doi.org/10.1016/j.compstruct.2022.116384 doi: 10.1016/j.compstruct.2022.116384
![]() |
[20] | G. Liao, X. Huang, Constitutive model of common materials and UMAT, in Application of ABAQUS Finite Element Software in Road Engineering, Southeast University Press, (2008), 78–81. |
[21] | G. Li, Finite Element Analysis of the Compaction Quality about the Small Vibratory Compactor, Master's thesis, Chang'an University in China, 2008. |
[22] | Y. Sun, Study on Granular Dynamic Effect and Fractal Characteristic Under Vibration, Master's thesis, Central South University in China, 2002. |
[23] | F. Zong, Frequency-dispersion characteristics and discretization of the finite element analysis in wave propagation problems, Explos. Shock+, 4 (1984), 16–23. |
[24] |
A. J. Deeks, M. F. Randolph, Axisymmetric time-domain transmitting boundaries, J. Eng. Mech., 120 (1994), 25–42. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:1(25) doi: 10.1061/(ASCE)0733-9399(1994)120:1(25)
![]() |
[25] |
J. Lysmer, A. M. Kuhlemeyer, Finite dynamic model for infinite media, J. Eng. Mech. Div., 95 (1969), 0001144. https://doi.org/10.1061/JMCEA3.0001144 doi: 10.1061/JMCEA3.0001144
![]() |
[26] | S. Bejan, Rheological models of the materials for the road system in the compaction process, Rom. J. Acoust. Vib., 11 (2014), 167–171. |
[27] |
J. Liu, Z. Wang, X. Du, Y. Du, Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems, Eng. Mech., 6 (2005), 46–51. https://doi.org/10.3969/j.issn.1000-4750.2005.06.008 doi: 10.3969/j.issn.1000-4750.2005.06.008
![]() |
[28] |
J. Liu, Z. Wang, K. Zhang, Y. Pei, 3D Finite element analysis of large dynamic machine foundation considering soil-structure interaction, Eng. Mech., 3 (2002), 34–38. https://doi.org/10.3969/j.issn.1000-4750.2002.03.007 doi: 10.3969/j.issn.1000-4750.2002.03.007
![]() |
[29] |
Y. Gu, J. Liu, Y. Du, 3D Consistent viscous-spring artificial boundary and viscous-spring boundary element, Eng. Mech., 12 (2007), 31–37. https://doi.org/10.3969/j.issn.1000-4750.2007.12.006 doi: 10.3969/j.issn.1000-4750.2007.12.006
![]() |
[30] |
B. Kenneally, O. M. Musimbi, J. Wang, M. A. Mooney, Finite element analysis of vibratory roller response on layered soil systems, Comput. Geotech., 67 (2015), 73–82. https://doi.org/10.1016/j.compgeo.2015.02.015 doi: 10.1016/j.compgeo.2015.02.015
![]() |
[31] |
I. Paulmichl, T. Furtmueller, C. Adam, D. Adam, Numerical simulation of the compaction effect and the dynamic response of an oscillation roller based on a hypoplastic soil model, Soil Dyn. Earthq. Eng., 132 (2020), 106057. https://doi.org/10.1016/j.soildyn.2020.106057 doi: 10.1016/j.soildyn.2020.106057
![]() |
[32] |
D. Zhang, H. Yang, Analytical and numerical analyses of local loading forming process of T-shape component by using Coulomb, Tribol. Int., 92 (2015), 259–271. https://doi.org/10.1016/j.triboint.2015.06.009 doi: 10.1016/j.triboint.2015.06.009
![]() |
[33] |
C. Herrera, P. A. Costa, B. Caicedo, Numerical modelling and inverse analysis of continuous compaction control, Transp. Geotech., 17 (2018), 165–177. https://doi.org/10.1016/j.trgeo.2018.09.012 doi: 10.1016/j.trgeo.2018.09.012
![]() |
[34] |
S. S. Nagula, J. Grabe, Coupled eulerian lagrangian based numerical modelling of vibro-compaction with model vibrator, Comput. Geotech., 123 (2020), 103545. https://doi.org/10.1016/j.compgeo.2020.103545 doi: 10.1016/j.compgeo.2020.103545
![]() |
1. | Giacomo Albi, Young-Pil Choi, Massimo Fornasier, Dante Kalise, Mean Field Control Hierarchy, 2017, 76, 0095-4616, 93, 10.1007/s00245-017-9429-x | |
2. | Ertug Olcay, Boris Lohmann, 2019, Extension of the Cucker-Dong Flocking with a Virtual Leader and a Reactive Control Law, 978-3-907144-00-8, 101, 10.23919/ECC.2019.8796225 | |
3. | Giacomo Albi, Mattia Bongini, Emiliano Cristiani, Dante Kalise, Invisible Control of Self-Organizing Agents Leaving Unknown Environments, 2016, 76, 0036-1399, 1683, 10.1137/15M1017016 | |
4. | Mattia Bongini, Giuseppe Buttazzo, Optimal control problems in transport dynamics, 2017, 27, 0218-2025, 427, 10.1142/S0218202517500063 | |
5. | Massimo Fornasier, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, 2014, Mean-field optimal control by leaders, 978-1-4673-6090-6, 6957, 10.1109/CDC.2014.7040482 | |
6. | Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat, Sparse stabilization and control of alignment models, 2015, 25, 0218-2025, 521, 10.1142/S0218202515400059 | |
7. | Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Sparse Jurdjevic–Quinn stabilization of dissipative systems, 2017, 86, 00051098, 110, 10.1016/j.automatica.2017.08.012 | |
8. | Mattia Bongini, Massimo Fornasier, Francesco Rossi, Francesco Solombrino, Mean-Field Pontryagin Maximum Principle, 2017, 175, 0022-3239, 1, 10.1007/s10957-017-1149-5 | |
9. | M. FORNASIER, S. LISINI, C. ORRIERI, G. SAVARÉ, Mean-field optimal control as Gamma-limit of finite agent controls, 2019, 30, 0956-7925, 1153, 10.1017/S0956792519000044 | |
10. | Jong-Ho Kim, Jea-Hyun Park, Fully nonlinear Cucker–Smale model for pattern formation and damped oscillation control, 2023, 120, 10075704, 107159, 10.1016/j.cnsns.2023.107159 | |
11. | Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trelat, 2016, Sparse feedback stabilization of multi-agent dynamics, 978-1-5090-1837-6, 4278, 10.1109/CDC.2016.7798917 | |
12. | Rafael Bailo, Mattia Bongini, José A. Carrillo, Dante Kalise, Optimal consensus control of the Cucker-Smale model, 2018, 51, 24058963, 1, 10.1016/j.ifacol.2018.07.245 | |
13. | Massimo Fornasier, Benedetto Piccoli, Francesco Rossi, Mean-field sparse optimal control, 2014, 372, 1364-503X, 20130400, 10.1098/rsta.2013.0400 | |
14. | Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf, Sparse control of alignment models in high dimension, 2015, 10, 1556-181X, 647, 10.3934/nhm.2015.10.647 | |
15. | Mattia Bongini, Massimo Fornasier, 2017, Chapter 5, 978-3-319-49994-9, 173, 10.1007/978-3-319-49996-3_5 | |
16. | Giacomo Albi, Lorenzo Pareschi, Selective model-predictive control for flocking systems, 2018, 9, 2038-0909, 4, 10.2478/caim-2018-0009 | |
17. | Young-Pil Choi, Dante Kalise, Jan Peszek, Andrés A. Peters, A Collisionless Singular Cucker--Smale Model with Decentralized Formation Control, 2019, 18, 1536-0040, 1954, 10.1137/19M1241799 | |
18. | Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, 2016, Chapter 4, 978-3-319-55794-6, 58, 10.1007/978-3-319-55795-3_4 | |
19. | Mattia Bongini, Francesco Salvarani, Mean field games of controls with Dirichlet boundary conditions, 2024, 30, 1292-8119, 32, 10.1051/cocv/2024020 | |
20. | Emiliano Cristiani, Nadia Loy, Marta Menci, Andrea Tosin, Kinetic description and macroscopic limit of swarming dynamics with continuous leader–follower transitions, 2025, 228, 03784754, 362, 10.1016/j.matcom.2024.09.006 |