Research article Special Issues

Numerical analysis and simulation of the compact difference scheme for the pseudo-parabolic Burgers' equation

  • Received: 21 January 2025 Revised: 14 March 2025 Accepted: 18 March 2025 Published: 26 March 2025
  • In this paper, we analyzed and tested a nonlinear implicit compact finite difference scheme for the pseudo-parabolic Burgers' equation. The discrete conservation laws and boundedness of the scheme were rigorously established. We then proved the unique solvability of the numerical scheme by reformulating it as an equivalent system. Furthermore, using the energy method, we derived an error estimate for the proposed scheme, achieving a convergence order of $ {\mathcal{O}}(\tau^2 + h^4) $ under the discrete $ L^\infty $-norm. The stability of the compact finite difference scheme was subsequently proven using a similar approach. Finally, a series of numerical experiments were performed to validate the theoretical findings.

    Citation: Yunxia Niu, Chaoran Qi, Yao Zhang, Wahidullah Niazi. Numerical analysis and simulation of the compact difference scheme for the pseudo-parabolic Burgers' equation[J]. Electronic Research Archive, 2025, 33(3): 1763-1791. doi: 10.3934/era.2025080

    Related Papers:

  • In this paper, we analyzed and tested a nonlinear implicit compact finite difference scheme for the pseudo-parabolic Burgers' equation. The discrete conservation laws and boundedness of the scheme were rigorously established. We then proved the unique solvability of the numerical scheme by reformulating it as an equivalent system. Furthermore, using the energy method, we derived an error estimate for the proposed scheme, achieving a convergence order of $ {\mathcal{O}}(\tau^2 + h^4) $ under the discrete $ L^\infty $-norm. The stability of the compact finite difference scheme was subsequently proven using a similar approach. Finally, a series of numerical experiments were performed to validate the theoretical findings.



    加载中


    [1] C. Cuesta, J. Hulshof, A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves, Nonlinear Anal., 52 (2003), 1199–1218. https://doi.org/10.1016/S0362-546X(02)00160-8 doi: 10.1016/S0362-546X(02)00160-8
    [2] E. Hopf, The partial differential equation $u_t + uu_x = \mu u_xx$, Commun. Pur. Appl. Math., 3 (1950), 201–230. https://doi.org/10.1002/cpa.3160030302 doi: 10.1002/cpa.3160030302
    [3] C. Cuesta, C. van Duijn, J. Hulshof, Infiltration in porous media with dynamic capillary pressure: Travelling waves, Eur. J. Appl. Math., 11 (2000), 381–397. https://doi.org/10.1017/S0956792599004210 doi: 10.1017/S0956792599004210
    [4] S. Hassanizadeh, W. Gray, Thermodynamic basis of capillary pressure in porous media, Water Resour. Res., 29 (1993), 3389–3405. https://doi.org/10.1029/93WR01495 doi: 10.1029/93WR01495
    [5] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 2013. https://doi.org/10.1097/00010694-197508000-00022
    [6] T. Benjamin, J. Bona, J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser., A 272 (1972), 47–78. https://doi.org/10.1098/rsta.1972.0032 doi: 10.1098/rsta.1972.0032
    [7] K. Koroche, Numerical solution of in-viscid Burger equation in the application of physical phenomena: the comparison between three numerical methods, Int. J. Math. Math., (2022), 1–11. https://doi.org/10.1155/2022/8613490 doi: 10.1155/2022/8613490
    [8] A. Rashid, M. Abbas, A. Md. Ismail, A. Majid, Numerical solution of the coupled viscous Burgers equations by Chebyshev-Legendre pseudo–spectral method, Appl. Math. Comput., 245 (2014), 372–381. https://dx.doi.org/10.1016/j.amc.2014.07.067 doi: 10.1016/j.amc.2014.07.067
    [9] J. Qiu, C. Shu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method Ⅱ: Two dimensional case, Comput. Fluids, 34 (2005), 642–663. https://doi:10.1016/j.compfluid.2004.05.005 doi: 10.1016/j.compfluid.2004.05.005
    [10] F. Lara, E. Ferrer, Accelerating high order discontinuous Galerkin solvers using neural networks: 1D Burgers' equation, Comput. Fluids, 235 (2022), 105274. https://doi.org/10.1016/j.compfluid.2021.105274 doi: 10.1016/j.compfluid.2021.105274
    [11] K. Pavani, K. Raghavendar, K. Aruna, Solitary wave solutions of the time fractional Benjamin Bona Mahony Burger equation, Sci. Rep., 14 (2024), 14596. https://doi.org/10.1038/s41598-024-65471-w doi: 10.1038/s41598-024-65471-w
    [12] R. Li, C. Lai, Y. Wu, Global weak solutions to a generalized Benjamin-Bona-Mahony-Burgers equation, Acta Math. Sci., 38 (2018), 915–925. https://doi.org/10.1007/s40314-021-01449-y doi: 10.1007/s40314-021-01449-y
    [13] L. Wang, X. Liao, H. Yang, A new linearized second-order energy-stable finite element scheme for the nonlinear Benjamin-Bona-Mahony-Burgers equation, Appl. Numer. Math., 201 (2024), 431–445. https://doi.org/10.1016/j.apnum.2024.03.020 doi: 10.1016/j.apnum.2024.03.020
    [14] A. Mohebbi, Z. Faraz, Solitary wave solution of nonlinear Benjamin-Bona-Mahony-Burgers equation using a high-order difference scheme, Comput. Appl. Math., 36 (2017), 915–927. https://doi.org/10.1016/S0252-9602(18)30792-6 doi: 10.1016/S0252-9602(18)30792-6
    [15] Q. Zhang, L. Liu, Convergence and stability in maximum norms of linearized fourth–order conservative compact scheme for Benjamin-Bona-Mahony-Burgers' equation, J. Sci. Comput., 87 (2021), 59. https://doi.org/10.1007/s10915-021-01474-3 doi: 10.1007/s10915-021-01474-3
    [16] Y. Shi, X. Yang, A time two-grid difference method for nonlinear generalized viscous Burgers' equation, J. Math. Chem., 62 (2024), 1323–1356. https://doi.org/10.1007/s10910-024-01592-x doi: 10.1007/s10910-024-01592-x
    [17] M. Li, O. Nikan, W. Qiu, D. Xu, An efficient localized meshless collocation method for the two-dimensional Burgers-type equation arising in fluid turbulent flows, Eng. Anal. Boundary Elem., 144 (2022), 44–45. https://doi.org/10.1016/j.enganabound.2022.08.007 doi: 10.1016/j.enganabound.2022.08.007
    [18] W. Mao, Q. Zhang, D. Xu, Y. Xu, Double reduction order method based conservative compact schemes for the Rosenau equation, Appl. Numer. Math., 197 (2024), 15–45. https://doi.org/10.1016/j.apnum.2023.11.001 doi: 10.1016/j.apnum.2023.11.001
    [19] C. Cuesta, I. Popb, Numerical schemes for a pseudo-parabolic Burgers equation: Discontinuous data and long-time behaviour, J. Comput. Appl. Math., 224 (2009), 269–283. https://doi.org/10.1016/j.cam.2008.05.001 doi: 10.1016/j.cam.2008.05.001
    [20] X. Wang, Q. Zhang, Z. Sun, The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers' equation, Adv. Comput. Math., 47 (2021), 23. https://doi.org/10.1007/s10444-021-09848-9 doi: 10.1007/s10444-021-09848-9
    [21] Z. Chen, H. Zhang, H. Chen, ADI compact difference scheme for the two-dimensional integro-differential equation with two fractional Riemann-Liouville integral kernels, Frac. Frac., 8 (2024), 707. https://doi.org/10.3390/fractalfract8120707 doi: 10.3390/fractalfract8120707
    [22] Y. He, X. Wang, R. Zhong, A new linearized fourth-order conservative compact difference scheme for the SRLW equations, Adv. Comput. Math., 48 (2022), 27. https://doi.org/10.1007/s10444-022-09951-5 doi: 10.1007/s10444-022-09951-5
    [23] K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comput. Appl. Math., 44 (2025), 164.
    [24] X. Wang, H. Cheng, Two structure-preserving schemes with fourth-order accuracy for the modified Kawahara equation, Comput. Appl. Math., 41 (2022), 401. https://doi.org/10.1007/s40314-022-02121-9 doi: 10.1007/s40314-022-02121-9
    [25] X. Shen, X. Yang, H. Zhang, The high-order ADI difference method and extrapolation method for solving the two-dimensional nonlinear parabolic evolution equations, Mathematics, 12 (2024), 3469.
    [26] W. Wang, H. Zhang, X. Jiang, X. Yang, A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor, Ann. Nucl. Energy, 195 (2024), 110163. https://doi.org/10.1016/j.anucene.2023.110163. doi: 10.1016/j.anucene.2023.110163
    [27] W. Wang, H. Zhang, Z. Zhou, X. Yang, A fast compact finite difference scheme for the fourth-order diffusion-wave equation, Int. J. Comput. Math., 101 (2024), 170–193. https://doi.org/10.1080/00207160.2024.2323985. doi: 10.1080/00207160.2024.2323985
    [28] Q. Zhang, D. Li, W. Mao, A family of linearly weighted-$\theta$ compact ADI schemes for sine-Gordon equations in high dimensions, Numerical Algorithms, 98 (2025), 797–838
    [29] Q. Zhang, Y. Qin, Z. Sun, Linearly compact scheme for 2D Sobolev equation with Burgers' type nonlinearity, Numerical Algorithms, 91 (2022), 1–34. https://doi.org/10.1007/s11075-022-01293-z doi: 10.1007/s11075-022-01293-z
    [30] F. Benabbes, N. Boussetila, A. Lakhdari, Two regularization methods for a class of inverse fractional pseudo-parabolic equations with involution perturbation, Fract. Differ. Calc., 14 (2024), 39–59. https://doi.org/10.7153/fdc-2024-14-03 doi: 10.7153/fdc-2024-14-03
    [31] O. Ilhan, A. Esen, H. Bulut, H. Baskonus, Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves, Results Phys., 12 (2019), 1712–1715. https://doi.org/10.1016/j.rinp.2019.01.059 doi: 10.1016/j.rinp.2019.01.059
    [32] H. Di, W. Rong, The regularized solution approximation of forward/backward problems for a fractional pseudo-parabolic equation with random noise, Acta Math. Sci., 43B (2023), 324–348. https://doi.org/10.1007/s10473-023-0118-3 doi: 10.1007/s10473-023-0118-3
    [33] B. Nghia, V. Nguyen, L. Long, On Cauchy problem for pseudo-parabolic equation with Caputo–Fabrizio operator, Demonstr. Math., 56 (2023), 1–20. https://doi.org/10.1515/dema-2022-0180 doi: 10.1515/dema-2022-0180
    [34] E. Abreu, A. Durá, Error estimates for semidiscrete galerkin and collocation approximations to pseudo-parabolic problems with dirichlet conditions, preprint, arXiv: 2002.10813.
    [35] S. Jayachandran, G. Soundararajan, A pseudo-parabolic equation with logarithmic nonlinearity: Global existence and blow up of solutions, Math. Methods Appl. Sci., 47 (2024), 11993–12011. https://doi.org/10.1515/dema-2022-0180 doi: 10.1515/dema-2022-0180
    [36] Q. Zhang, L. Liu, Z. Zhang, Linearly implicit invariant-preserving decoupled difference scheme for the rotation-two-component Camassa-Holm system, SIAM J. Sci. Comput., 44 (2022), 2226–2252. https://doi.org/10.1137/21M1452020 doi: 10.1137/21M1452020
    [37] Q. Zhang, T. Yan, G. Gao, The energy method for high-order invariants in shallow water wave equations, Appl. Math. Lett., 142 (2023), 108626. https://doi.org/10.1016/j.aml.2023.108626 doi: 10.1016/j.aml.2023.108626
    [38] T. Guo, M. Zaky, A. Hendy, W. Qiu, Pointwise error analysis of the BDF3 compact finite difference scheme for viscous Burgers' equations, Appl. Numer. Math., 185 (2023), 260–277.
    [39] X. Peng, W. Qiu, J. Wang, L. Ma, A novel temporal two-grid compact finite difference scheme for the viscous Burgers' equations, Adv. Appl. Math. Mech., 16 (2024), 1358–1380.
    [40] Z. Sun, Q. Zhang, G. Gao, Finite difference methods for nonlinear evolution equations, De Gruyter, Berlin; Science Press, Beijing, 2023. https://doi.org/10.1515/9783110796018
    [41] G. Akrivis, Finite difference discretization of the cubic Schrödinger equation, IMA J. Numer. Anal., 13 (1993), 115–124. https://doi.org/10.1093/imanum/13.1.115 doi: 10.1093/imanum/13.1.115
    [42] Q. Zhang, X. Wang, Z. Sun, The pointwise estimates of a conservative difference scheme for Burgers' equation, Numer. Methods Partial Differ., 36 (2020), 1611–1628. https://doi.org/10.1002/num.22494 doi: 10.1002/num.22494
    [43] H. Cao, X. Cheng, Q. Zhang, Numerical simulation methods and analysis for the dynamics of the time-fractional KdV equation, Phys. D, 460 (2024), 134050. https://doi.org/10.1016/j.physd.2024.134050 doi: 10.1016/j.physd.2024.134050
    [44] T. Liu, H. Zhang, X. Yang The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., (2025), 1–29. https://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
    [45] C. van Duijn, Y. Fan, L. Peletier, I. Pop, Travelling wave solutions for degenerate pseudo-parabolic equations modelling two-phase flow in porous media, Nonlinear Anal., 14 (2013), 1361–1383. https://doi.org/10.1016/j.nonrwa.2012.10.002 doi: 10.1016/j.nonrwa.2012.10.002
    [46] J. Wang, X. Jiang, X. Yang, H. Zhang, A new robust compact difference scheme on graded meshes for the time-fractional nonlinear Kuramoto-Sivashinsky equation, Comput. Appl. Math., 43 (2024), 381. https://doi.org/10.1007/s40314-024-02883-4 doi: 10.1007/s40314-024-02883-4
    [47] J. Wang, X., Yang, X., H. Zhang, A compact difference scheme for mixed-type time-fractional Black-Scholes equation in European option pricing, Math. Method. Appl. Sci., (2025) https://doi.org/10.1002/mma.10717 doi: 10.1002/mma.10717
    [48] X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
    [49] X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
    [50] X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
    [51] X. Yang, Z. Zhang. On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [52] X. Yang, Z. Zhang. Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
    [53] J. Zhang, Y. Qin, Q. Zhang, Maximum error estimates of two linearized compact difference schemes for two-dimensional nonlinear Sobolev equations, Appl. Numer. Math., 184 (2023), 253–272
    [54] M. Zhang, Z. Liu, X. Zhang, Well-posedness and asymptotic behavior for a p-biharmonic pseudo-parabolic equation with logarithmic nonlinearity of the gradient type, Math. Nachr., 297 (2023), 525–548. https://doi.org/10.1002/mana.202200264 doi: 10.1002/mana.202200264
    [55] Q. Zhang, L. Liu, J. Zhang, The numerical analysis of two linearized difference schemes for the Benjamin-Bona-Mahony-Burgers equation, Numer. Methods Partial Differ. Equations, 36 (2020), 1790–1810. https://doi.org/10.1002/num.22504 doi: 10.1002/num.22504
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(899) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog