[1]
|
P. S. Chaitanya, S. K. Satpathy, A multilevel de-noising approach for precision edge-based fragmentation in MRI brain tumor segmentation, Trait. Signal, 40 (2023), 1715–1722. https://doi.org/10.18280/ts.400440 doi: 10.18280/ts.400440
|
[2]
|
K. Gong, K. Johnson, G. El Fakhri, Q. Li, T. Pan, PET image denoising based on denoising diffusion probabilistic model, Eur. J. Nucl. Med. Mol. Imaging, 51 (2024), 358–368. https://doi.org/10.1007/s00259-023-06417-8 doi: 10.1007/s00259-023-06417-8
|
[3]
|
H. Aetesam, S. K. Maji, Deep variational magnetic resonance image denoising via network conditioning, Biomed. Signal Process. Control, 95 (2024), 106452. https://doi.org/10.1016/j.bspc.2024.106452 doi: 10.1016/j.bspc.2024.106452
|
[4]
|
A. Sharma, V. Chaurasia, MRI denoising using advanced NLM filtering with non-subsampled shearlet transform, Signal Image Video Process., 15 (2021), 1331–1339. https://doi.org/10.1007/s11760-021-01864-y doi: 10.1007/s11760-021-01864-y
|
[5]
|
S. V. M. Sagheer, S. N. George, A review on medical image denoising algorithms, Biomed. Signal Process. Control, 61 (2020), 102036. https://doi.org/10.1016/j.bspc.2020.102036 doi: 10.1016/j.bspc.2020.102036
|
[6]
|
J. Zhang, W. Gong, L. Ye, F. Wang, Z. Shangguan, Y. Cheng, A review of deep learning methods for denoising of medical low-dose CT images, Comput. Biol. Med., 171 (2024), 108112. https://doi.org/10.1016/j.compbiomed.2024.108112 doi: 10.1016/j.compbiomed.2024.108112
|
[7]
|
J. Pan, Q. Zuo, B. Wang, C. L. P. Chen, B. Lei, S. Wang, DecGAN: Decoupling generative adversarial network for detecting abnormal neural circuits in Alzheimer's disease, IEEE Trans. Artif. Intell., 5 (2024), 5050–5063. https://doi.org/10.1109/TAI.2024.3416420 doi: 10.1109/TAI.2024.3416420
|
[8]
|
M. Li, R. Idoughi, B. Choudhury, W. Heidrich, Statistical model for OCT image denoising, Biomed. Opt. Express, 8 (2017), 3903–3917. https://doi.org/10.1364/BOE.8.003903 doi: 10.1364/BOE.8.003903
|
[9]
|
S. Dolui, A. Kuurstra, I. C. S. Patarroyo, O.V. Michailovich, A new similarity measure for non-local means filtering of MRI images, J. Visual Commun. Image Representation, 24 (2013), 1040–1054. https://doi.org/10.1016/j.jvcir.2013.06.011 doi: 10.1016/j.jvcir.2013.06.011
|
[10]
|
C. Swarup, K. U. Singh, A. Kumar, S. K. Pandey, N. Varshney, T. Singh, Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approaches, Electron. Res. Arch., 31 (2023), 2900–2924. https://doi.org/10.3934/era.2023146 doi: 10.3934/era.2023146
|
[11]
|
K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26 (2017), 3142–3155. https://doi.org/10.1109/TIP.2017.2662206 doi: 10.1109/TIP.2017.2662206
|
[12]
|
C. Tian, Y. Xu, L. Fei, J. Wang, J. Wen, N. Luo, Enhanced CNN for image denoising, CAAI Trans. Intell. Technol., 4 (2019), 17–23. https://doi.org/10.1049/trit.2018.1054 doi: 10.1049/trit.2018.1054
|
[13]
|
K. Zhang, W. Zuo, L. Zhang, FFDNet: Toward a fast and flexible solution for CNN-based image denoising, IEEE Trans. Image Process., 27 (2018), 4608–4622. https://doi.org/10.1109/TIP.2018.2839891 doi: 10.1109/TIP.2018.2839891
|
[14]
|
W. Jifara, F. Jiang, S. Rho, M. Cheng, S. Liu, Medical image denoising using convolutional neural network: A residual learning approach, J. Supercomput., 75 (2019), 704–718. https://doi.org/10.1007/s11227-017-2080-0 doi: 10.1007/s11227-017-2080-0
|
[15]
|
C. Tian, Y. Xu, W. Zuo, Image denoising using deep CNN with batch renormalization, Neural Networks, 121 (2020), 461–473. https://doi.org/10.1016/j.neunet.2019.08.022 doi: 10.1016/j.neunet.2019.08.022
|
[16]
|
M. S. Hema, Sowjanya, N. Sharma, G. Abhishek, G. Shivani, P. P. Kumar, Identification and classification of brain tumor using convolutional neural network with autoencoder feature selection, in International Conference on Emerging Technologies in Computer Engineering, 1591 (2022), 251–258. https://doi.org/10.1007/978-3-031-07012-9_22
|
[17]
|
C. Tian, M. Zheng, W. Zuo, B. Zhang, Y. Zhang, D. Zhang, Multi-stage image denoising with the wavelet transform, Pattern Recognit., 134 (2023), 109050. https://doi.org/10.1016/j.patcog.2022.109050 doi: 10.1016/j.patcog.2022.109050
|
[18]
|
T. Li, Z. Zhang, M. Zhu, Z. Cui, D. Wei, Combining transformer global and local feature extraction for object detection, Complex Intell. Syst., 10 (2024), 4897–4920. https://doi.org/10.1007/s40747-024-01409-z doi: 10.1007/s40747-024-01409-z
|
[19]
|
Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: Efficient channel attention for deep convolutional neural networks, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 11531–11539. https://doi.org/10.1109/CVPR42600.2020.01155
|
[20]
|
D. Hong, C. Huang, C. Yang, J. Li, Y. Qian, C. Cai, FFA-DMRI: A network based on feature fusion and attention mechanism for brain MRI denoising, Front. Neurosci., 14 (2020), 577937. https://doi.org/10.3389/fnins.2020.577937 doi: 10.3389/fnins.2020.577937
|
[21]
|
Y. Chen, R. Xia, K. Yang, K. Zou, MFMAM: Image inpainting via multi-scale feature module with attention module, Comput. Vision Image Understanding, 238 (2024), 103883. https://doi.org/10.1016/j.cviu.2023.103883 doi: 10.1016/j.cviu.2023.103883
|
[22]
|
J. Deng, C. Hu, Recovering a clean background: A new progressive multi-scale CNN for image denoising, Signal Image Video Process., 18 (2024), 4541–4552. https://doi.org/10.1007/s11760-024-03093-5 doi: 10.1007/s11760-024-03093-5
|
[23]
|
M. Duong, B. N. Thi, S. Lee, M. Hong, Multi-branch network for color image denoising using dilated convolution and attention mechanisms, Sensors, 24 (2024), 3608. https://doi.org/10.3390/s24113608 doi: 10.3390/s24113608
|
[24]
|
Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image restoration, IEEE Trans. Pattern Anal. Mach. Intell., 43 (2021), 2480–2495. https://doi.org/10.1109/TPAMI.2020.2968521 doi: 10.1109/TPAMI.2020.2968521
|
[25]
|
F. Gao, Y. Wang, Z. Yang, Y. Ma, Q. Zhang, Single image super-resolution based on multi-scale dense attention network, Soft Comput., 27 (2023), 2981–2992. https://doi.org/10.1007/s00500-022-07456-3 doi: 10.1007/s00500-022-07456-3
|
[26]
|
Y. Li, T. Xie, D. Mei, Application of convolutional neural networks for parallel multi-scale feature extraction in noise image denoising, IEEE Access, 12 (2024), 98599–98610. https://doi.org/10.1109/ACCESS.2024.3427143 doi: 10.1109/ACCESS.2024.3427143
|
[27]
|
Y. Zhang, C. Wang, X. Lv, Y. Song, Attention-driven residual-dense network for no-reference image quality assessment, Signal Image Video Process., 18 (2024), 537–551. https://doi.org/10.1007/s11760-024-03172-7 doi: 10.1007/s11760-024-03172-7
|
[28]
|
Z. Hui, X. Wang, X. Gao, Fast and accurate single image super-resolution via information distillation network, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 723–731. https://doi.org/10.1109/CVPR.2018.00082
|
[29]
|
J. Liu, J. Tang, G. Wu, Residual feature distillation network for lightweight image super-resolution, in European Conference on Computer Vision, 12537 (2020), 41–55. https://doi.org/10.1007/978-3-030-67070-2_2
|
[30]
|
Y. Zhang, Y. Liu, Q. Li, J. Wang, M. Qi, H. Sun, et al., A lightweight fusion distillation network for image deblurring and deraining, Sensors, 21 (2021), 5312. https://doi.org/10.3390/s21165312 doi: 10.3390/s21165312
|
[31]
|
Z. Zong, L. Zha, J. Jiang, X. Liu, Asymmetric information distillation network for lightweight super resolution, in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), (2022), 1248–1257. https://doi.org/10.1109/CVPRW56347.2022.00131
|
[32]
|
Z. Yu, K. Xie, C. Wen, J. He, W. Zhang, A lightweight image super-resolution reconstruction algorithm based on the residual feature distillation mechanism, Sensors, 24 (2024), 1049. https://doi.org/10.3390/s24041049 doi: 10.3390/s24041049
|
[33]
|
M. Jiang, C. You, M. Wang, H. Zhang, Z. Gao, D. Wu, et al., Controllable deep learning denoising model for ultrasound images using synthetic noisy image, in Computer Graphics International Conference, 14495 (2024), 297–308. https://doi.org/10.1007/978-3-031-50069-5_25
|
[34]
|
W. Wu, S. Liu, Y. Xia, Y. Zhang, Dual residual attention network for image denoising, Pattern Recognit., 149 (2024), 110291. https://doi.org/10.1016/j.patcog.2024.110291 doi: 10.1016/j.patcog.2024.110291
|
[35]
|
W. Wu, G. Lv, S. Liao, Y. Zhang, FEUNet: A flexible and effective U-shaped network for image denoising, Signal Image Video Process., 17 (2023), 2545–2553. https://doi.org/10.1007/s11760-022-02471-1 doi: 10.1007/s11760-022-02471-1
|
[36]
|
R. K. Thakur, S. K. Maji, Multi scale pixel attention and feature extraction based neural network for image denoising, Pattern Recognit., 141 (2023), 109603. https://doi.org/10.1016/j.patcog.2023.109603 doi: 10.1016/j.patcog.2023.109603
|
[37]
|
C. Tian, Y. Xu, W. Zuo, B. Du, C. Lin, D. Zhang, Designing and training of a dual CNN for image denoising, Knowl. Based Syst., 226 (2021), 106949. https://doi.org/10.1016/j.knosys.2021.106949 doi: 10.1016/j.knosys.2021.106949
|
[38]
|
J. Yang, H. Xie, N. Xue, A. Zhang, Research on underwater image denoising based on dual-channel residual network, Comput. Eng., 49 (2023), 188–198. https://doi.org/10.19678/j.issn.1000-3428.0064662 doi: 10.19678/j.issn.1000-3428.0064662
|
[39]
|
S. Ghaderi, S. Mohammadi, K. Ghaderi, F. Kiasat, M. Mohammadi, Marker-controlled watershed algorithm and fuzzy C-means clustering machine learning: automated segmentation of glioblastoma from MRI images in a case series, Annal. Med. Surg., 86 (2024), 1460–1475. https://doi.org/10.1097/MS9.0000000000001756 doi: 10.1097/MS9.0000000000001756
|
[40]
|
V. Sivakumar, N. Janakiraman, A novel method for segmenting brain tumor using modified watershed algorithm in MRI image with FPGA, Biosystems, 198 (2020), 104226. https://doi.org/10.1016/j.biosystems.2020.104226 doi: 10.1016/j.biosystems.2020.104226
|
[41]
|
Y. Liang, J. Fu, Watershed algorithm for medical image segmentation based on morphology and total variation model, Int. J. Pattern Recognit Artif Intell., 33 (2019), 1954019. https://doi.org/10.1142/S0218001419540193 doi: 10.1142/S0218001419540193
|
[42]
|
Y. Wu, Q. Li, The algorithm of watershed color image segmentation based on morphological gradient, Sensors, 22 (2022), 8202. https://doi.org/10.3390/s22218202 doi: 10.3390/s22218202
|
[43]
|
T. Yesmin, H. Lohiya, P. P. Acharjya, Detection and segmentation of brain tumor by using modified watershed algorithm and thresholding to reduce over-segmentation, in 2023 IEEE International Conference on Contemporary Computing and Communications (InC4), (2023), 1–6. https://doi.org/10.1109/InC457730.2023.10262891
|
[44]
|
X. Xu, S. Xu, L. Jin, E. Song, Characteristic analysis of Otsu threshold and its applications, Pattern Recognit. Lett., 32 (2011), 956–961. https://doi.org/10.1016/j.patrec.2011.01.021 doi: 10.1016/j.patrec.2011.01.021
|
[45]
|
C. Kumari, A. Mustafi, A novel radial kernel watershed basis segmentation algorithm for color image segmentation, Wireless Pers. Commun., 133 (2023), 2105–2124. https://doi.org/10.1007/s11277-023-10831-4 doi: 10.1007/s11277-023-10831-4
|
[46]
|
C. Zhang, J. Fang, Edge detection based on improved sobel operator, in Proceedings of the 2016 International Conference on Computer Engineering and Information Systems, (2016), 129–132. https://doi.org/10.2991/ceis-16.2016.25
|
[47]
|
B. Chen, W. Wu, Z. Li, T. Han, Z. Chen, W. Zhang, Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detection, Electron. Res. Arch., 32 (2024), 643–669. https://doi.org/10.3934/era.2024031 doi: 10.3934/era.2024031
|
[48]
|
Z. Cai, L. Xu, J. Zhang, Y. Feng, L. Zhu, F. Liu, ViT-DualAtt: An efficient pornographic image classification method based on Vision Transformer with dual attention, Electron. Res. Arch., 32 (2024), 6698–6716. https://doi.org/10.3934/era.2024313 doi: 10.3934/era.2024313
|
[49]
|
Y. Chen, R. Xia, K. Yang, K. Zou, DARGS: Image inpainting algorithm via deep attention residuals group and semantics, J. King Saud Univ. Comput. Inf. Sci., 35 (2023), 101567. https://doi.org/10.1016/j.jksuci.2023.101567 doi: 10.1016/j.jksuci.2023.101567
|
[50]
|
J. Yang, F. Xie, H. Fan, Z. Jiang, J. Liu, Classification for dermoscopy images using convolutional neural networks based on region average pooling, IEEE Access, 6 (2018), 65130–65138. https://doi.org/10.1109/ACCESS.2018.2877587 doi: 10.1109/ACCESS.2018.2877587
|
[51]
|
H. Wu, X. Gu, Max-pooling dropout for regularization of convolutional neural networks, in International Conference on Neural Information Processing, 9489 (2015), 46–54. https://doi.org/10.1007/978-3-319-26532-2_6
|
[52]
|
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90
|
[53]
|
G. Huang, Z. Liu, L. V. D. Maaten, K. Q. Weinberger, Densely connected convolutional networks, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 2261–2269. https://doi.org/10.1109/CVPR.2017.243
|
[54]
|
Z. Feng, Y. Chen, L. Xie, Unsupervised anomaly detection via knowledge distillation with non-directly-coupled student block fusion, Mach. Vision Appl., 34 (2023), 104. https://doi.org/10.1007/s00138-023-01454-7 doi: 10.1007/s00138-023-01454-7
|
[55]
|
X. Zhao, X. Cai, Y. Xue, Y. Liao, L. Lin, T. Zhao, UKD-Net: efficient image enhancement with knowledge distillation, J. Electron. Imaging, 33 (2024), 023024. https://doi.org/10.1117/1.JEI.33.2.023024 doi: 10.1117/1.JEI.33.2.023024
|
[56]
|
Y. Li, J. Cao, Z. Li, S. Oh, N. Komuro, Lightweight single image super-resolution with dense connection distillation network, ACM Trans. Multimedia Comput. Commun. Appl., 17 (2021), 1–17. https://doi.org/10.1145/3414838 doi: 10.1145/3414838
|
[57]
|
D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980.
|
[58]
|
K. A. Johnson, J. A. Becker, The Whole Brain Atlas, 2005. Available from: https://www.med.harvard.edu/aanlib/home.html.
|
[59]
|
S. Roth, M. J. Black, Fields of experts: A framework for learning image priors, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2 (2005), 860–867. https://doi.org/10.1109/CVPR.2005.160
|
[60]
|
True Color Kodak Images, Kodak Lossless True Color Image Suite: PhotoCD PCD0992, 2013. Available from: https://r0k.us/graphics/kodak/.
|
[61]
|
A. Abdelhamed, S. Lin, M. S. Brown, A high-quality denoising dataset for smartphone cameras, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 1692–1700. https://doi.org/10.1109/CVPR.2018.00182
|
[62]
|
M. Lebrun, M. Colom, J. Morel, The noise clinic: A blind image denoising algorithm, Image Process. On Line, 5 (2015), 1–54. https://doi.org/10.5201/ipol.2015.125 doi: 10.5201/ipol.2015.125
|