The Kronecker product is widely utilized to construct higher-dimensional spaces from lower-dimensional ones, making it an indispensable tool for efficiently analyzing multi-dimensional systems across various fields. This paper investigates the representation of analytic functions within hyper-elliptical regions through infinite series expansions involving sequences of Kronecker product bases of polynomials. Additionally, we examine the growth order and type and $ T_{\rho} $-property of series composed of Kronecker product bases that represent entire functions. We also delve into the convergence properties of Kronecker product bases associated with special functions, including Bessel, Chebyshev, Bernoulli, Euler, and Gontcharoff polynomials. The obtained results extend and enhance the existing findings of such representations in hyper-spherical regions.
Citation: Mohra Zayed, Gamal Hassan. Kronecker product bases and their applications in approximation theory[J]. Electronic Research Archive, 2025, 33(2): 1070-1092. doi: 10.3934/era.2025048
The Kronecker product is widely utilized to construct higher-dimensional spaces from lower-dimensional ones, making it an indispensable tool for efficiently analyzing multi-dimensional systems across various fields. This paper investigates the representation of analytic functions within hyper-elliptical regions through infinite series expansions involving sequences of Kronecker product bases of polynomials. Additionally, we examine the growth order and type and $ T_{\rho} $-property of series composed of Kronecker product bases that represent entire functions. We also delve into the convergence properties of Kronecker product bases associated with special functions, including Bessel, Chebyshev, Bernoulli, Euler, and Gontcharoff polynomials. The obtained results extend and enhance the existing findings of such representations in hyper-spherical regions.
| [1] |
F. Ding, T. Chen, Iterative least-squares solutions of coupled Sylvester matrix equations, Syst. Control Lett., 54 (2005), 95–107. https://doi.org/10.1016/j.sysconle.2004.06.008 doi: 10.1016/j.sysconle.2004.06.008
|
| [2] |
F. Ding, T. Chen, On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 44 (2006), 2269–2284. https://doi.org/10.1137/S036301290444135 doi: 10.1137/S036301290444135
|
| [3] |
P. M. Bentler, S. Y. Lee, Matrix derivatives with chain rule and rules for simple, Hadamard, and Kronecker products, J. Math. Psychol., 17 (1978), 255–262. https://doi.org/10.1016/0022-2496(78)90020-2 doi: 10.1016/0022-2496(78)90020-2
|
| [4] | A. Graham, Kronecker Products and Matrix Calculus with Applications, John Wiley & Sons, 1982. |
| [5] |
J. R. Magnus, H. Neudecker, Matrix differential calculus with applications to simple, Hadamard, and Kronecker products, J. Math. Psychol., 29 (1985), 474–492. https://doi.org/10.1016/0022-2496(85)90006-9 doi: 10.1016/0022-2496(85)90006-9
|
| [6] | W. H. Steeb, Y. Hardy, Matrix Calculus and Kronecker Product: A Practical Approach to Linear and Multilinear Algebra, World Scientific Publishing Company, 2011. https://doi.org/10.1142/8030 |
| [7] |
F. Ding, Transformations between some special matrices, Comput. Math. Appl., 59 (2010), 2676–2695. https://doi.org/10.1016/j.camwa.2010.01.036 doi: 10.1016/j.camwa.2010.01.036
|
| [8] |
Y. Shi, H. Fang, M. Yan, Kalman filter-based adaptive control for networked systems with unknown parameters and randomly missing outputs, Int. J. Robust Nonlinear Control, 19 (2009), 1976–1992. https://doi.org/10.1002/rnc.1390 doi: 10.1002/rnc.1390
|
| [9] |
Y. Shi, B. Yu, Output feedback stabilization of networked control systems with random delays modeled by Markov chains, IEEE Trans. Autom. Control, 54 (2009), 1668–1674. https://doi.org/10.1109/TAC.2009.2020638 doi: 10.1109/TAC.2009.2020638
|
| [10] | X. L. Xiong, W. Fan, R. Ding, Least-squares parameter estimation algorithm for a class of input nonlinear systems, J. Appl. Math., 2012, 684074. https://doi.org/10.1155/2012/684074 |
| [11] |
M. Dehghan, M. Hajarian, An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations and its optimal approximation, Appl. Math. Comput., 202 (2008), 571–588. https://doi.org/10.1016/j.amc.2008.02.035 doi: 10.1016/j.amc.2008.02.035
|
| [12] |
L. Jodar, H. Abou-Kandil, Kronecker products and coupled matrix Riccati differential systems, Linear Algebra Appl., 121 (1989), 39–51. https://doi.org/10.1016/0024-3795(89)90690-3 doi: 10.1016/0024-3795(89)90690-3
|
| [13] | P. A. Regaliat, S. K. Mitra, Kronecker products, unitary matrices and signal processing applications, SIAM Rev. 31 (1989), 586–613. https://doi.org/10.1137/1031127 |
| [14] |
J. G. Nagy, M. K. Ng, L. Perrone, Kronecker product approxmations for image restoration with reflexive boundary conditions, SIAM J. Matrix Anal. Appl., 25 (2004), 829–841. https://doi.org/10.1137/S0895479802419580 doi: 10.1137/S0895479802419580
|
| [15] |
F. M. Fernández, The Kronecker product and some of its physical applications, Eur. J. Phys., 37 (2016), 065403. https://doi.org10.1088/0143-0807/37/6/065403 doi: 10.1088/0143-0807/37/6/065403
|
| [16] | J. R. Magnus, H. Neudeckery, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons, 2019. https://doi.org/10.1002/9781119541219 |
| [17] |
C. C. Santos, C. C. Dias, Matrix Multiplication without size restrictions: An approach to the Kronecker product for applications in statistics, J. Math. Stat. Res., 4 (2022), 156. https://doi.org/10.36266/JMSR/156 doi: 10.36266/JMSR/156
|
| [18] |
E. Tyrtyshnikov, Kronecker-product approximations for some function-related matrices, Linear Algebra Appl., 379 (2004), 423–437. https://doi.org/10.1016/j.laa.2003.08.013 doi: 10.1016/j.laa.2003.08.013
|
| [19] |
H. Zhang, F. Ding, On the Kronecker products and their applications, J. Appl. Math., 2013 (2013), 296185. https://doi.org/10.1155/2013/296185 doi: 10.1155/2013/296185
|
| [20] |
B. Cannon, On the convergence of series of polynomials, Proc. London Math. Soc., 43 (1937), 348–365. https://doi.org/10.1112/plms/s2-43.5.348 doi: 10.1112/plms/s2-43.5.348
|
| [21] |
B. Cannon, On the representation of integral functions by general basic series, Math. Z., 45 (1939), 185–208. https://doi.org/10.1007/BF01580282 doi: 10.1007/BF01580282
|
| [22] | J. M. Whittaker, On Series of poynomials, Q. J. Math., 5 (1934), 224–239. https://doi.org/10.1093/qmath/os-5.1.224 |
| [23] | J. M. Whittaker, Interpolatory Function Theory, Cambridge Tracts in Math, 1935. |
| [24] | J. M. Whittaker, Sur Les Se Ries De Base De Polynomes Quelconques, AGauthier-Villars, 1949. |
| [25] | A. El-Sayed Ahmed, On Some Classes and Spaces of Holomorphic and Hyperholomorphic Functions, Ph.D thesis, Bauhaus University Weimar-Germany, 2003. |
| [26] | A. El-Sayed Ahmed, Z. M. G. Kishka, On the effectiveness of basic sets of polynomials of several complex variables in elliptical regions, in Progress in Analysis, (2003), 265–278. https://doi.org/10.1142/9789812794253_0032 |
| [27] | Z. M. G. Kishka, A. El-Sayed Ahmed, On the order and type of basic and composite sets of polynomials in complete reinhardt domains, Period. Math. Hung. 46 (2003), 67–79. https://doi.org/10.1023/A: 1025705824816 |
| [28] |
Z. G. Kishka, M. A. Saleem, M. A. Abul-Dahab, On Simple Exponential Sets of Polynomials, Mediterr. J. Math., 11 (2014), 337–347. https://doi.org/10.1007/s00009-013-0296-7 doi: 10.1007/s00009-013-0296-7
|
| [29] |
M. Nassif, Composite sets of polynomials of several complex variables, Publicationes Math. Debrecen, 18 (1971), 43–52. https://doi.org/10.5486/PMD.1971.18.1-4.05 doi: 10.5486/PMD.1971.18.1-4.05
|
| [30] |
M. A. Abul-Ez, D. Constales, Basic sets of polynomials in Clifford analysis, Complex Variables Theory Appl. Int. J., 14 (1990), 177–185. https://doi.org/10.1080/17476939008814416 doi: 10.1080/17476939008814416
|
| [31] |
M. A. Abul-Ez, D. Constales, On the order of basic series representing Clifford valued functions, Appl. Math. Comput., 142 (2003), 575–584. https://doi.org/10.1016/S0096-3003(02)00350-8 doi: 10.1016/S0096-3003(02)00350-8
|
| [32] |
G. F. Hassan, M. Zayed, Approximation of monogenic functions by hypercomplex Ruscheweyh derivative bases, Complex Var. Elliptic Equations, 68 (2022), 2073–2092. https://doi.org/10.1080/17476933.2022.2098279 doi: 10.1080/17476933.2022.2098279
|
| [33] |
G. F. Hassan, M. Zayed, Expansions of generalized bases constructed via Hasse derivative operator in Clifford analysis, AIMS Math., 8 (2023), 26115–26133. https://doi.org/10.3934/math.20231331 doi: 10.3934/math.20231331
|
| [34] |
G. F. Hassan, E. Abdel-salam, R. Rashwan, Approximation of functions by complex conformable derivative bases in Fréchet spaces, Math. Method. Appl. Sci., 46 (2022), 2636–2650. https://doi.org/10.1002/mma.8664 doi: 10.1002/mma.8664
|
| [35] |
M. Zayed, G. F. Hassan, On the approximation of analytic functions by infinite series of fractional Ruscheweyh derivatives bases, AIMS Math., 9 (2024), 8712–8731. https://doi.org/10.3934/math.2024422 doi: 10.3934/math.2024422
|
| [36] |
M. Zayed, G. F. Hassan, E. A. B. Abdel-Salam, On the convergence of series of fractional Hasse derivative bases in Fréchet spaces, Math. Meth. Appl. Sci., 47 (2024), 8366–8384. https://doi.org/10.1002/mma.10018 doi: 10.1002/mma.10018
|
| [37] | A. El-Sayed Ahmed, Hadamard product of simple sets of polynomials in $\mathrm{C}^n$, Theory Appl. Math. Comput. Sci., 4 (2014), 26–30. |
| [38] |
M. A. Abel Dahab, A. M. Saleem, Z. M. Kishka, Effectiveness of Hadamard product of basic sets of polynomials of several complex variables in hyperelliptical regions, Electrumic J. Math. Anal. Appl., 3 (2015), 52–65. https://doi.org/10.21608/ejmaa.2015.310695 doi: 10.21608/ejmaa.2015.310695
|
| [39] |
H. V. Henderson, F. Pukelsheim, S. R. Searle, On the History of the Kronecker product, Linear Multilinear Algebra, 14 (1983), 113–120. https://doi.org/10.1080/03081088308817548 doi: 10.1080/03081088308817548
|
| [40] |
B. Holmquist, The direct product permuting matrices, Linear Multilinear Algebra, 17 (1985), 117–141. https://doi.org/10.1080/03081088508817648 doi: 10.1080/03081088508817648
|
| [41] | R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511840371 |
| [42] | A. A. Abd-El-Monem, M. Nassif, On the convergence of certain classes of Gontcharoff polynomials, Indagationes Math., 68 (1965), 615–621. https://doi.org/1010.1016/s1385-7258(65)50062-7 |
| [43] |
M. Abdalla, M. A. Abul-Ez, J. Morais, On the construction of generalized monogenic Bessel polynomials, Math. Methods Appl. Sci., 41 (2018), 9335–9348. https://doi.org/10.1002/mma.5274 doi: 10.1002/mma.5274
|
| [44] |
M. A. Abul-Ez, Bessel polynomial expansions in spaces of holomorphic functions, J. Math. Anal. Appl., 221 (1998), 177–190. https://doi.org/10.1006/jmaa.1997.5840 doi: 10.1006/jmaa.1997.5840
|
| [45] |
M. A. Abul-Ez, M. Zayed, Criteria in Nuclear Fréchet spaces and Silva spaces with refinement of the Cannon-Whittaker theory, J. Funct. Spaces, 2020 (2020), 15. https://doi.org/10.1155/2020/8817877 doi: 10.1155/2020/8817877
|
| [46] |
G. F. Hassan, L. Aloui, Bernoulli and Euler polynomials in Clifford analysis, Adv. Appl. Clifford Algebras, 25 (2015), 351–376. https://doi.org/10.1007/s00006-014-0511-z doi: 10.1007/s00006-014-0511-z
|
| [47] | M. Nassif, A class of a Gontcharoff polynomials, Assiut Univ. Bull. Sci. Technol., 1 (1958), 1–8. |
| [48] | K. A. M. Sayyed, Basic Sets of Polynomials of Two Complex Variables and Their Convergence Properties, Ph.D thesis, Assiut University, 1975. |