Research article

Adaptive incremental backstepping control of stratospheric airships using time-delay estimation

  • Published: 13 May 2025
  • This paper proposes an adaptive incremental backstepping control method for stratospheric airship attitude control that combines time delay estimation and incremental backstepping control to enhance robustness under model uncertainties. By integrating incremental control and time delay estimation, a linear time-invariant system relating to the attitude angle tracking error is obtained, where the time-delay estimation error is treated as a disturbance to the system. Meanwhile, an adaptive technique is utilized to reduce the effects of noise and center-of-gravity variations on system robustness. In conclusion, the convergence property of all signals is meticulously examined by employing Lyapunov theory. The proposed scheme is subsequently validated for effectiveness through numerical simulations.

    Citation: Yang Sun, Ming Zhu, Yifei Zhang, Tian Chen. Adaptive incremental backstepping control of stratospheric airships using time-delay estimation[J]. Electronic Research Archive, 2025, 33(5): 2925-2946. doi: 10.3934/era.2025128

    Related Papers:

  • This paper proposes an adaptive incremental backstepping control method for stratospheric airship attitude control that combines time delay estimation and incremental backstepping control to enhance robustness under model uncertainties. By integrating incremental control and time delay estimation, a linear time-invariant system relating to the attitude angle tracking error is obtained, where the time-delay estimation error is treated as a disturbance to the system. Meanwhile, an adaptive technique is utilized to reduce the effects of noise and center-of-gravity variations on system robustness. In conclusion, the convergence property of all signals is meticulously examined by employing Lyapunov theory. The proposed scheme is subsequently validated for effectiveness through numerical simulations.



    加载中


    [1] X. Yang, X. Yang, X. Deng, Horizontal trajectory control of stratospheric airships in wind field using Q-learning algorithm, Aerosp. Sci. Technol., 106 (2020), 106100. https://doi.org/10.1016/j.ast.2020.106100 doi: 10.1016/j.ast.2020.106100
    [2] M. Manikandan, R. S. Pant, A comparative study of conventional and tri-lobed stratospheric airships, Aeronaut. J., 125 (2021), 1434–1466. https://doi.org/10.1017/aer.2021.24 doi: 10.1017/aer.2021.24
    [3] J. H. Kim, S. J. Yoo, Distributed event-triggered adaptive formation tracking of networked uncertain stratospheric airships using neural networks, IEEE Access, 8 (2020), 49977–49988. https://doi.org/10.1109/ACCESS.2020.2979995 doi: 10.1109/ACCESS.2020.2979995
    [4] E. Price, M. J. Black, A. Ahmad, Viewpoint-driven formation control of airships for cooperative target tracking, IEEE Rob. Autom. Lett., 8 (2023), 3653–3660. https://doi.org/10.1109/LRA.2023.3264727 doi: 10.1109/LRA.2023.3264727
    [5] L. Chen, Q. Gao, Y. Deng, J. Liu, Moving-mass-based station keeping of stratospheric airships, Aeronaut. J., 125 (2021), 1231–1244. https://doi.org/10.1017/aer.2021.9 doi: 10.1017/aer.2021.9
    [6] Z. Zheng, Z. Guan, Y. Ma, B. Zhu, Constrained path-following control for an airship with uncertainties, Eng. Appl. Artif. Intell., 85 (2019), 295–306. https://doi.org/10.1016/j.engappai.2019.06.021 doi: 10.1016/j.engappai.2019.06.021
    [7] Y. Yang, A time-specified nonsingular terminal sliding mode control approach for trajectory tracking of robotic airships, Nonlinear Dyn., 92 (2018), 1359–1367. https://doi.org/10.1007/s11071-018-4131-3 doi: 10.1007/s11071-018-4131-3
    [8] Y. Wu, Q. Wang, D. Duan, W. Xie, Y. Wei, Neuroadaptive output-feedback trajectory tracking control for a stratospheric airship with prescribed performance, Aeronaut. J., 124 (2020), 1568–1591. https://doi.org/10.1017/aer.2020.54 doi: 10.1017/aer.2020.54
    [9] J. Yuan, M. Zhu, X. Guo, W. Lou, Finite-time trajectory tracking control for a stratospheric airship with full-state constraint and disturbances, J. Franklin Inst., 358 (2021), 1499–1528. https://doi.org/10.1016/j.jfranklin.2020.12.010 doi: 10.1016/j.jfranklin.2020.12.010
    [10] A. Saeed, Y. Liu, M. Z. Shah, L. Wang, Z. Zuo, Q. Wang, Higher order sliding mode based lateral guidance and control of finless airship, Aerosp. Sci. Technol., 113 (2021), 106670. https://doi.org/10.1016/j.ast.2021.106670 doi: 10.1016/j.ast.2021.106670
    [11] D. Cui, C. K. Ahn, Y. Sun, Z. Xiang, Mode-dependent state observer-based prescribed performance control of switched systems, IEEE Trans. Circuits Syst. II: Express Briefs, 71 (2024), 3810–3814. https://doi.org/10.1109/TCSII.2024.3370865 doi: 10.1109/TCSII.2024.3370865
    [12] X. Wang, E. van Kampen, Q. Chu, P. Lu, Stability analysis for incremental nonlinear dynamic inversion control, J. Guid. Control Dyn., 42 (2019), 1116–1129. https://doi.org/10.2514/1.G003791 doi: 10.2514/1.G003791
    [13] P. Acquatella, E. van Kampen, Q. P. Chu, Incremental backstepping for robust nonlinear flight control, in EuroGNC 2013, 2nd CEAS Specialist Conference on Guidance, Navigation & Control, (2013), 1444–1463.
    [14] W. Li, X. Han, Y. Zhi, B. Wang, L. Liu, H. Fan, Adaptive finite-time incremental backstepping fault-tolerant control for flying-wing aircraft with state constraints, Aerosp. Sci. Technol., 147 (2024), 108968. https://doi.org/10.1016/j.ast.2024.108968 doi: 10.1016/j.ast.2024.108968
    [15] Y. Wang, F. Yan, J. Chen, F. Ju, B. Chen, A new adaptive time-delay control scheme for cable-driven manipulators, IEEE Trans. Ind. Inf., 15 (2019), 3469–3481. https://doi.org/10.1109/TII.2018.2876605 doi: 10.1109/TII.2018.2876605
    [16] G. R. Cho, P. H. Chang, S. H. Park, M. Jin, Robust tracking under nonlinear friction using time-delay control with internal model, IEEE Trans. Control Syst. Technol., 17 (2009), 1406–1414. https://doi.org/10.1109/TCST.2008.2007650 doi: 10.1109/TCST.2008.2007650
    [17] D. K. Han, P. Chang, Robust tracking of robot manipulator with nonlinear friction using time delay control with gradient estimator, J. Mech. Sci. Technol., 24 (2010), 1743–1752. https://doi.org/10.1007/s12206-010-0516-z doi: 10.1007/s12206-010-0516-z
    [18] H. Bae, M. Jin, J. Suh, J. Y. Lee, P. Chang, D. Ahn, Control of robot manipulators using time-delay estimation and fuzzy logic systems, J. Electr. Eng. Technol., 12 (2017), 1271–1279. https://doi.org/10.5370/JEET.2017.12.3.1271 doi: 10.5370/JEET.2017.12.3.1271
    [19] M. Jin, S. H. Kang, P. H. Chang, Robust compliant motion control of robot with nonlinear friction using time-delay estimation, IEEE Trans. Ind. Electron., 55 (2008), 258–269. https://doi.org/10.1109/TIE.2007.906132 doi: 10.1109/TIE.2007.906132
    [20] J. Ma, S. Yu, W. Hu, H. Wu, X. Li, Y. Zheng, et al., Finite-time robust flight control of logistic unmanned aerial vehicles using a time-delay estimation technique, Drones, 8 (2024), 58. https://doi.org/10.3390/drones8020058 doi: 10.3390/drones8020058
    [21] D. K. Schmidt, J. Stevens, J. Roney, Near-space station-keeping performance of a large high-altitude notional airship, J. Aircr., 44 (2007), 611–615. https://doi.org/10.2514/1.24863 doi: 10.2514/1.24863
    [22] Z. Zheng, Y. Zou, Adaptive integral LOS path following for an unmanned airship with uncertainties based on robust RBFNN backstepping, ISA Trans., 65 (2016), 210–219. https://doi.org/10.1016/j.isatra.2016.09.008 doi: 10.1016/j.isatra.2016.09.008
    [23] T. Chen, M. Zhu, Z. Zheng, Asymmetric error-constrained path-following control of a stratospheric airship with disturbances and actuator saturation, Mech. Syst. Signal Process., 119 (2019), 501–522. https://doi.org/10.1016/j.ymssp.2018.10.003 doi: 10.1016/j.ymssp.2018.10.003
    [24] Y. C. Wang, W. S. Chen, S. X. Zhang, J. W. Zhu, L. J. Cao, Command-filtered incremental backstepping controller for small unmanned aerial vehicles, J. Guid. Control Dyn., 41 (2018), 954–967. https://doi.org/10.2514/1.G003001 doi: 10.2514/1.G003001
    [25] J. Pomet, L. Praly, Adaptive nonlinear regulation: Estimation from the lyapunov equation, IEEE Trans. Autom. Control, 37 (1992), 729–740. https://doi.org/10.1109/9.256328 doi: 10.1109/9.256328
    [26] M. Jin, J. Lee, P. H. Chang, C. Choi, Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control, IEEE Trans. Ind. Electron., 56 (2009), 3593–3601. https://doi.org/10.1109/TIE.2009.2024097 doi: 10.1109/TIE.2009.2024097
    [27] Y. Wang, Z. Zhang, C. Li, M. Buss, Adaptive incremental sliding mode control for a robot manipulator, Mechatronics, 82 (2022), 102717. https://doi.org/10.1016/j.mechatronics.2021.102717 doi: 10.1016/j.mechatronics.2021.102717
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(854) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(18)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog