Research article Special Issues

A study on continuous dependence of layered composite materials in binary mixtures on basic data

  • This paper investigates the continuous dependence of solutions to layered composite materials in binary mixtures on perturbation parameters defined in a semi-infinite cylinder. Due to the fact that the base of the cylinder is easily disturbed by compression, this causes disturbances to the data at the entrance. By introducing auxiliary functions related to the solution of the equations, this article analyzes the impact of these disturbances on the solutions of the binary heat conduction equations and obtains the continuous dependence of the solutions on the base.

    Citation: Yuanfei Li. A study on continuous dependence of layered composite materials in binary mixtures on basic data[J]. Electronic Research Archive, 2024, 32(10): 5577-5591. doi: 10.3934/era.2024258

    Related Papers:

    [1] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [2] Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327
    [3] Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288
    [4] Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345
    [5] Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397
    [6] Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222
    [7] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [8] Fan Wan, Xiping Liu, Mei Jia . Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions. AIMS Mathematics, 2022, 7(4): 6066-6083. doi: 10.3934/math.2022338
    [9] Zaid Laadjal, Fahd Jarad . On a Langevin equation involving Caputo fractional proportional derivatives with respect to another function. AIMS Mathematics, 2022, 7(1): 1273-1292. doi: 10.3934/math.2022075
    [10] Amjad Ali, Kamal Shah, Dildar Ahmad, Ghaus Ur Rahman, Nabil Mlaiki, Thabet Abdeljawad . Study of multi term delay fractional order impulsive differential equation using fixed point approach. AIMS Mathematics, 2022, 7(7): 11551-11580. doi: 10.3934/math.2022644
  • This paper investigates the continuous dependence of solutions to layered composite materials in binary mixtures on perturbation parameters defined in a semi-infinite cylinder. Due to the fact that the base of the cylinder is easily disturbed by compression, this causes disturbances to the data at the entrance. By introducing auxiliary functions related to the solution of the equations, this article analyzes the impact of these disturbances on the solutions of the binary heat conduction equations and obtains the continuous dependence of the solutions on the base.



    Fractional calculus is the generalization of the ordinary differentiation and integration to non-integer order. It has been applied in various fields such as visco-elastic materials, aerodynamics, finance, chaotic dynamics, nonlinear control, signal processing, bioengineering, chemical engineering, and applied sciences. Fractional derivatives provide an excellent instrument for the description of memory and hereditary properties of many materials and processes. However, for the last few years, the fractional calculus was developed by many researchers. There are different definitions of fractional operators (derivative and integral) that have been presented such as Riemann-Liouville, Caputo, Hadamard, Hilfer, Katugampola, and the generalized fractional operators, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14] and references therein.

    The impulsive differential equations have impulsive conditions at points of discontinuity. They have played an important role in discussing the dynamics process of various physical and evolutionary phenomena which have discontinuous jumps and abrupt changes in their state of systems. Such processes and phenomena appear in various applications. For some works on impulsive problems, we refer readers to [15,16,17,18,19] and references cited therein.

    The Langevin differential equation (first introduced by Paul Langevin in 1908 to provide a complex illustration of Brownian motion [20]) is found an effective piece of equipment to explain the evolution of physical phenomena in fluctuating environments of mathematical physics. After that, the ordinary Langevin equation was replaced by the fractional Langevin equation in 1996 [21]. For some works on the fractional Langevin equation, see, for example, [22,23,24,25,26].

    In recent years, many researchers attention studied the exclusive examination of the qualitative theory for fractional differential equations. It is existence and uniqueness theory and stability analysis. One of the most method used to examine the stability analysis of functional differential equations is the Ulam's stability such as Ulam-Hyers (UH) stability, generalized Ulam-Hyers (UH) stability, Ulam-Hyers-Rassias (UHR) stability and generalized Ulam-Hyers-Rassias (UHR) stability [27,28,29,30,31,32,33,34]. It has helpfulness in the field of numerical analysis and optimization because solving the exact solutions of the problems of fractional differential equations is very difficult. Consequently, it is imperative to develop the concepts of Ulam's stability for these problems because we need not get the exact solutions of the purpose problems when we study the properties of Ulam's stability. The qualitative theory encourages us obtain an efficient and reliable technique for approximately finding fractional differential equations because there exists a close exact solution when the purpose problem is Ulam's stable. Recently, many researchers attentively initiated and examined the existence, uniqueness, and different types of Ulam's stability of the solutions for nonlinear fractional differential equations with/without impulsive conditions; see [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49] and references cited therein. To the best of our knowledge, there is no paper on impulsive fractional Langevin differential equations containing the Caputo proportional fractional derivative of a function concerning function.

    Motivated by the papers mentioned above [13,40,47] and a series of papers was devoted to the investigation of existence, uniqueness, and Ulam's stability of solutions of the impulsive fractional Langevin differential equation within different kinds of fractional derivatives, this paper examines the existence results and Ulam's stability of solutions for a class of the following impulsive fractional Langevin differential equation with non-separated boundary conditions under the Caputo proportional derivative type of the form:

    {CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)x(t)=f(t,x(t),x(μt)),ttk,k=0,1,2,,m,x(t+k)x(tk)=φk(x(tk)),k=1,2,,m,CtkDαk,ρ,ψkx(t+k)tk1CDαk1,ρ,ψk1x(tk)=φk(x(tk)),k=1,2,,m,η1x(0)+κ1x(T)=ξ1,η2Ct0Dα0,ρ,ψ0x(0)+κ2CtmDαm,ρ,ψmx(T)=ξ2, (1.1)

    where CtkDν,ρ,ψk denotes the Caputo proportional fractional derivative of order ν with respect to certain continuously differentiable and increasing function ψk with ψ(t)>0 and ν{αk,βk}, αk, βk(0,1), 1<αk+βk<2, tJk=(tk,tk+1]J=[0,T]={0}(m0Jk), k=0,1,,m. 0=t0<t1<<tm<tm+1=T are impulsive points, 0<ρ1, λR, μ(0,1), fC(J×R2,R), φk, φkC(R,R), k=1,2,,m, x(t+k)=limϵ0+x(tk+ϵ), x(tk)=x(tk) and the given constants ηi, κi, ξiR for i=1,2.

    The outline of the paper is as follows: Section 2 contains fundamental concepts from proportional fractional calculus and some basic lemmas needed in the sequel. An auxiliary result useful to transform problem (1.1) into an equivalent integral equation is proved in Section 2. The existence results are presented in Section 3, where the uniqueness result is proved via Banach's fixed point theorem and the existence result with the help of Schaefer's fixed point theorem. Furthermore, we study different types of Ulam's stability results for the problem (1.1). Finally, an illustrative example is constructed in Section 5 to illustrate the usefulness of the main results.

    In this section, we recall some notations, definitions, lemmas, and properties of proportional fractional derivative and fractional integral operators of a function with respect to another function that will be used throughout the remaining part of this paper. For more details, see [13,14,50].

    Definition 2.1. (The proportional derivative of a function with respect to another function [13,14]) Take ρ[0,1] and the let the functions κ0, κ1:[0,1]×R[0,) be continuous such that for all tR we have

    limρ0+κ1(ρ,t)=1,limρ0+κ0(ρ,t)=0,limρ1κ1(ρ,t)=0,limρ1κ0(ρ,t)=1,

    and κ1(ρ,t)0, ρ[0,1), κ0(ρ,t)0, ρ(0,1]. Let ψ(t) be a continuously differentiable and increasing function. Then, the proportional differential operator of order ρ of f with respect to ψ is defined by

    Dρ,ψf(t)=κ1(ρ,t)f(t)+κ0(ρ,t)f(t)ψ(t). (2.1)

    In particular, If κ1(ρ,t)=1ρ and κ0(ρ,t)=ρ, we get

    Dρ,ψf(t)=(1ρ)f(t)+ρf(t)ψ(t). (2.2)

    Definition 2.2. ([13,14]) Take αC, Re(α)>0, ρ(0,1], ψC1([a,b]), ψ>0. The proportional fractional integral of order α of the function fL1([a,b]) with respect to another function ψ is defined by

    aIα,ρ,ψf(t)=1ραΓ(α)taeρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))α1f(s)ψ(s)ds, (2.3)

    where Γ() represents the Gamma function [4].

    Definition 2.3. ([13,14]) Take αC, Re(α)>0, ρ(0,1], ψC([a,b]), ψ(t)>0. The Riemann-Liouvill proportional fractional derivative of order α of the function fCn([a,b]) with respect to another function ψ is defined by

    aDα,ρ,ψf(t)=Dn,ρ,ψaInα,ρ,ψf(t)=Dn,ρ,ψtρnαΓ(nα)taeρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))nα1f(s)ψ(s)ds, (2.4)

    where n=[Re(α)]+1, [Re(α)] represents the integer part of the real number α and Dn,ρ,ψ=Dρ,ψDρ,ψDρ,ψntimes.

    Definition 2.4. ([13,14]) Take αC, Re(α)>0, ρ(0,1], ψC([a,b]), ψ(t)>0. The Caputo proportional fractional derivative of order α of the function f with respect to another function ψ is defined by

    CaDα,ρ,ψf(t)=aInα,ρ,ψDn,ρ,ψf(t)=1ρnαΓ(nα)taeρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))nα1Dn,ρ,ψf(s)ψ(s)ds. (2.5)

    Lemma 2.5. ([13]) Let ρ(0,1], Re(α)>0, Re(β)>0. Then, for f is continuous and defined for ta, we have

    aIα,ρ,ψaIβ,ρ,ψf(t)=aIβ,ρ,ψaIα,ρ,ψf(t)=aIα+β,ρ,ψf(t).

    Lemma 2.6. ([13]) Let 0m<[Re(α)]+1 and f be integrable in each interval [a,t], t>a. Then

    Dm,ρ,ψaIα,ρ,ψf(t)=aIαm,ρ,ψf(t).

    Corollary 2.7. ([13]) Let 0<Re(β)<Re(α) and m1<Re(β)m. Then, we have

    aDβ,ρ,ψaIα,ρ,ψf(t)=aIαβ,ρ,ψf(t).

    Corollary 2.8. Let 0<Re(β)<Re(α) and m1<Re(β)m. Then, we have

    CaDβ,ρ,ψaIα,ρ,ψf(t)=aIαβ,ρ,ψf(t).

    Proof. By the help of Definition 2.4, Lemma 2.5 and Lemma 2.6, we have

    CaDβ,ρ,ψaIα,ρ,ψf(t)=aImβ,ρ,ψDm,ρ,ψaIα,ρ,ψf(t)=aImβ,ρ,ψaIαm,ρ,ψf(t)=aIαβ,ρ,ψf(t).

    The proof is completed.

    Next, the lemma presents the impact of the proportional fractional integral operator on the Caputo proportional fractional derivative operator of the same order.

    Lemma 2.9.([14]) For ρ(0,1] and n=[Re(α)]+1, we have CaDα,ρ,ψaIα,ρ,ψf(t)=f(t), and

    aIα,ρ,ψCaDα,ρ,ψf(t)=f(t)n1k=0Dk,ρ,ψf(a)ρkk!(ψ(t)ψ(a))keρ1ρ(ψ(t)ψ(a)).

    Proposition 2.10. ([14]) Let Re(α)0 and Re(β)>0. Then, for any ρ(0,1] and n=[Re(α)]+1, we have

    (i) (aIα,ρ,ψeρ1ρψ(s)(ψ(s)ψ(a))β1)(t)=Γ(β)ραΓ(β+α)eρ1ρψ(t)(ψ(t)ψ(a))β+α1,Re(α)>0.

    (ii) (aDα,ρ,ψeρ1ρψ(s)(ψ(s)ψ(a))β1)(t)=ραΓ(β)Γ(βα)eρ1ρψ(t)(ψ(t)ψ(a))βα1,Re(α)0.

    (iii) (CaDα,ρ,ψeρ1ρψ(s)(ψ(s)ψ(a))β1)(t)=ραΓ(β)Γ(βα)eρ1ρψ(t)(ψ(t)ψ(a))βα1,Re(β)>n.

    For k=0,1,,n1, we have

    (CaDα,ρ,ψeρ1ρψ(s)(ψ(s)ψ(a))k)(t)=0and(CaDα,ρ,ψeρ1ρψ(s))(t)=0.

    Throughout this paper, let E:=PC(J,R):={x:JR:x(t) is continuous everywhere except for some tk at which x(t+k) and x(tk)=x(tk), k=1,2,,m} the space of piecewise continuous functions. Obviously, (E,x) is a Banach space equipped with the norm x:=suptJ|x(t)|.

    In the following, for the convenience for the reader, we set the functional equation Fx(t)=f(t,x(t),x(μt)), and we express the proportional fractional integral operator defined in (2.3) of a nonlinear function Fx by a subscript notation by

    aIα,ρ,ψFx(t)=1ραΓ(α)taeρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))α1Fx(s)ψ(s)ds=1ραΓ(α)taeρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))α1f(s,x(s),x(μs))ψ(s)ds.

    In the sequel, for nonnegative integers a<b, we use the following notations:

    Φc(ta,tb)=(ψa(tb)ψa(ta))cρcΓ(c+1), (2.6)
    Gi(x)=tiIβi,ρ,ψiFx(ti+1)+φi+1(x(ti+1)), (2.7)
    Hi(x)=tiIαi+βi,ρ,ψiFx(ti+1)λtiIαi,ρ,ψix(ti+1)+φi+1(x(ti+1)), (2.8)

    where i=0,1,2,,m.

    In Lemma 2.11, we prepare an important lemma, which is used as the main results of the problem (1.1).

    Lemma 2.11. Let 0<αk,βk<1, 1<αk+βk<2, 0<ρ1, FxAC(J×R2,R) for any xC(J,R) and Ω1Ω4Ω2Ω3. Then the following boundary value problem:

    {CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)x(t)=Fx(t),ttk,k=0,1,2,,m,x(t+k)x(tk)=φk(x(tk)),k=1,2,,m,CtkDαk,ρ,ψkx(t+k)tk1CDαk1,ρ,ψk1x(tk)=φk(x(tk)),k=1,2,,m,η1x(0)+κ1x(T)=ξ1,η2Ct0Dα0,ρ,ψ0x(0)+κ2CtmDαm,ρ,ψmx(T)=ξ2, (2.9)

    is equivalent to the following integral equation:

    x(t)=tkIαk+βk,ρ,ψkFx(t)λtkIαk,ρ,ψkx(t)+{ki=1Hi1(x)k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+ki=1Gi1(x)k1j=i(Φαj(tj,tj+1)+Φαk(tk,t))k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+Ω1R(x,Fx)Ω3K(x,Fx)Ω5ki=1(Φαi1(ti1,ti)+Φαk(tk,t))ki=1eρ1ρ(ψi1(ti)ψi1(ti1))+Ω4K(x,Fx)Ω2R(x,Fx)Ω5ki=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψk(t)ψk(tk)),tJk, (2.10)

    where

    Ω1=κ1m+1i=1Φαi1(ti1,ti)m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1)), (2.11)
    Ω2=η1+κ1m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1)), (2.12)
    Ω3=η2+κ2(1λm+1i=1Φαi1(ti1,ti))m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1)), (2.13)
    Ω4=η2λκ2λm+1i=1eρ1ρ(ψi1(ti)ψi1(ti1)), (2.14)
    Ω5=Ω1Ω4Ω2Ω3, (2.15)
    K(x,Fx)=ξ1κ1tmIαm+βm,ρ,ψmFx(T)+κ1λtmIαm,ρ,ψmx(T)κ1mi=1Gi1(x)mj=iΦαj(tj,tj+1)mj=ieρ1ρ(ψj(tj+1)ψj(tj))κ1mi=1Hi1(x)mj=ieρ1ρ(ψj(tj+1)ψj(tj)), (2.16)
    R(x,Fx)=ξ2κ2tmIβm,ρ,ψmFx(T)+κ2λtmIαm+βm,ρ,ψmFx(T)κ2λ2tmIαm,ρ,ψmx(T)κ2mi=1Gi1(x)(1λmj=iΦαj(tj,tj+1))mj=ieρ1ρ(ψj(tj+1)ψj(tj))+κ2λmi=1Hi1(x)mj=ieρ1ρ(ψj(tj+1)ψj(tj)), (2.17)

    where Φc(ta,tb), Gi1(x), Hi1(x) are defind by (2.6), (2.7), (2.8), respectively.

    Proof. Firstly, for tJ0=[t0,t1], we transform the problem (2.9) into an integral equation by applying the proportional fractional integral of order β0(0,1) with respect to a function ψ0(t) to both sides of (2.9) and also using Lemma 2.9, we obtain

    Ct0Dα0,ρ,ψ0x(t)=t0Iβ0,ρ,ψ0Fx(t)λx(t)+c1eρ1ρ(ψ0(t)ψ0(t0)),

    where c1R.

    In the same process, taking the proportional fractional integral of order α0(0,1) with respect to a function ψ0(t) to both sides of (2), we get, for c1, c2R,

    x(t)=t0Iα0+β0,ρ,ψ0Fx(t)λt0Iα0,ρ,ψ0x(t)+c1{(ψ0(t)ψ0(t0))α0ρα0Γ(α0+1)}eρ1ρ(ψ0(t)ψ0(t0))+c2eρ1ρ(ψ0(t)ψ0(t0)).

    For tJ1=(t1,t2], by applying the proportional fractional integral of order β1(0,1) with respect to a function ψ1(t) to both sides of (2.9) and again using Lemma 2.9, we have

    Ct1Dα1,ρ,ψ1x(t)=t1Iβ1,ρ,ψ1Fx(t)λx(t)+d1eρ1ρ(ψ1(t)ψ1(t1)), (2.18)

    and the same method, it follows that

    x(t)=t1Iα1+β1,ρ,ψ1Fx(t)λt1Iα1,ρ,ψ1x(t)+d1(ψ1(t)ψ1(t1))α1ρα1Γ(α1+1)eρ1ρ(ψ1(t)ψ1(t1))+d2eρ1ρ(ψ1(t)ψ1(t1)), (2.19)

    where d1, d2R

    By using impulsive conditions x(t+1)=x(t1)+φ1(x(t1)) and Ct1Dα1,ρ,ψ1x(t+1)=Ct0Dα0,ρ,ψ0x(t1)+φ1(x(t1)), then

    d1=t0Iβ0,ρ,ψ0Fx(t1)+c1eρ1ρ(ψ0(t1)ψ0(t0))+φ1(x(t1)),d2=t0Iα0+β0,ρ,ψ0Fx(t1)λt0Iα0,ρ,ψ0x(t1)+c1(ψ0(t1)ψ0(t0))α0ρα0Γ(α0+1)eρ1ρ(ψ0(t1)ψ0(t0))+c2eρ1ρ(ψ0(t1)ψ0(t0))+φ1(x(t1)).

    Substituting d1 and d2 into (2.18) and (2.19), we obtain

    Ct1Dα1,ρ,ψ1x(t)=t1Iβ1,ρ,ψ1Fx(t)λx(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))}eρ1ρ(ψ1(t)ψ1(t1))+c1{eρ1ρ(ψ0(t1)ψ0(t0))}eρ1ρ(ψ1(t)ψ1(t1)),tJ1,x(t)=t1Iα1+β1,ρ,ψ1Fx(t)λt1Iα1,ρ,ψ1x(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))(ψ1(t)ψ1(t1))α1ρα1Γ(α1+1)}eρ1ρ(ψ1(t)ψ1(t1))+{(t0Iα0+β0,ρ,ψ0Fx(t1)λt0Iα0,ρ,ψ0x(t1)+φ1(x(t1)))}eρ1ρ(ψ1(t)ψ1(t1))+c1{((ψ0(t1)ψ0(t0))α0ρα0Γ(α0+1)+(ψ1(t)ψ1(t1))α1ρα1Γ(α1+1))eρ1ρ(ψ0(t1)ψ0(t0))}eρ1ρ(ψ1(t)ψ1(t1))+c2{eρ1ρ(ψ0(t1)ψ0(t0))}eρ1ρ(ψ1(t)ψ1(t1)),tJ1.

    For tJ2=(t2,t3], by using the proportional fractional integral of order β2(0,1) and α2(0,1) with respect to a function ψ2(t) to both sides of (2.9), we have

    Ct2Dα2,ρ,ψ2x(t)=t2Iβ2,ρ,ψ2Fx(t)λx(t)+d1eρ1ρ(ψ2(t)ψ2(t2)), (2.20)
    x(t)=t2Iα2+β2,ρ,ψ2Fx(t)λt2Iα2,ρ,ψ2x(t)+d3(ψ2(t)ψ2(t2))α2ρα2Γ(α2+1)eρ1ρ(ψ2(t)ψ2(t2))+d4eρ1ρ(ψ2(t)ψ2(t2)). (2.21)

    where d3, d4R. In view of the impulsive conditions x(t+2)=x(t2)+φ2(x(t2)) and Ct2Dα2,ρ,ψ2x(t+2)=Ct1Dα1,ρ,ψ1x(t2)+φ2(x(t2)), we obtain

    d3=(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))eρ1ρ(ψ1(t2)ψ1(t1))+t1Iβ1,ρ,ψ1Fx(t2)+φ2(x(t2))+c1eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))],d4=(ψ1(t2)ψ1(t1))α1ρα1Γ(α1+1)(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))eρ1ρ(ψ1(t2)ψ1(t1))+(t0Iα0+β0,ρ,ψ0Fx(t1)λt0Iα0,ρ,ψ0x(t1)+φ1(x(t1)))eρ1ρ(ψ1(t2)ψ1(t1))+(t1Iα1+β1,ρ,ψ1Fx(t2)λt1Iα1,ρ,ψ1x(t2)+φ2(x(t2)))+c1((ψ0(t1)ψ0(t0))α0ρα0Γ(α0+1)+(ψ1(t2)ψ1(t1))α1ρα1Γ(α1+1))eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))]+c2eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))].

    Substituting d3 and d4 into (2.20) and (2.21), we obtain

    Ct2Dα2,ρ,ψ2x(t)=t2Iβ2,ρ,ψ2Fx(t)λx(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))eρ1ρ(ψ1(t2)ψ1(t1))}eρ1ρ(ψ2(t)ψ2(t2))+{(t1Iβ1,ρ,ψ1Fx(t2)+φ2(x(t2)))}eρ1ρ(ψ2(t)ψ2(t2))+c1{eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))]}eρ1ρ(ψ2(t)ψ2(t2)),tJ2,x(t)=t2Iα2+β2,ρ,ψ2Fx(t)λt2Iα2,ρ,ψ2x(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))×((ψ1(t2)ψ1(t1))α1ρα1Γ(α1+1)+(ψ2(t)ψ2(t2))α2ρα2Γ(α2+1))eρ1ρ(ψ1(t2)ψ1(t1))+(t1Iβ1,ρ,ψ1Fx(t2)+φ2(x(t2)))(ψ2(t)ψ2(t2))α2ρα2Γ(α2+1)}eρ1ρ(ψ2(t)ψ2(t2))+{(t0Iα0+β0,ρ,ψ0Fx(t1)λt0Iα0,ρ,ψ0x(t1)+φ1(x(t1)))eρ1ρ(ψ1(t2)ψ1(t1))+(t1Iα1+β1,ρ,ψ1Fx(t2)λt1Iα1,ρ,ψ1x(t2)+φ2(x(t2)))}eρ1ρ(ψ2(t)ψ2(t2))+c1{((ψ0(t1)ψ0(t0))α0ρα0Γ(α0+1)+(ψ1(t2)ψ1(t1))α1ρα1Γ(α1+1)+(ψ2(t)ψ2(t2))α2ρα2Γ(α2+1))×eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))]}eρ1ρ(ψ2(t)ψ2(t2))+c2{eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))]}eρ1ρ(ψ2(t)ψ2(t2)),tJ2.

    By a similar way repeating the same process, for tJk=(tk,tk+1], k=0,1,2,,m, we have the integral equation

    x(t)=tkIαk+βk,ρ,ψkFx(t)λtkIαk,ρ,ψkx(t)+{ki=1Hi1(x)k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+ki=1Gi1(x)k1j=i(Φαj(tj,tj+1)+Φαk(tk,t))k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+c1ki=1(Φαi1(ti1,ti)+Φαk(tk,t))ki=1eρ1ρ(ψi1(ti)ψi1(ti1))+c2ki=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψk(t)ψk(tk)), (2.22)
    CtkDαk,ρ,ψkx(t)=tkIβk,ρ,ψkFx(t)λx(t)+{ki=1Gi1(x)k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+c1ki=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψk(t)ψk(tk)). (2.23)

    From the given boundary conditions, we get the following system

    Ω1c1+Ω2c2=K(x,Fx),Ω3c1+Ω4c2=R(x,Fx).

    Solving the above system for the constants c1 and c2, we have

    c1=Ω1R(x,Fx)Ω3K(x,Fx)Ω1Ω4Ω2Ω3andc2=Ω4K(x,Fx)Ω2R(x,Fx)Ω1Ω4Ω2Ω3,

    where Ω1Ω4Ω2Ω3 are defined by (2.11), (2.12), (2.13) and (2.14), respectively. Substituting these values of c1 and c2 in (2.22), yields the solution in (2.10).

    Conversely, it is easily to shown by direct calculuation that the solution x(t) is given by (2.10) satisfies the problem (2.9) under the given boundary conditions. This completes the proof.

    The fixed point theorems play an important role in studying the existence theory for the problem (1.1). We collect here some well-known fixed point theorems for the sake of essential in the proofs of our existence and uniqueness results.

    Theorem 2.12. (Banach's fixed point theorem [50]) Let D be a non-empty closed subset of a Banach space E. Then any contraction mapping T from D into itself has a unique fixed point.

    Theorem 2.13. (Schaefer's fixed point theorem [50]) Let E be a Banach space and T : EE be a completely continuous operator, and let the set D={xE:x=σTx,0<σ1} be bounded. Then T has a fixed point in E.

    In this section, we discuss the existence and uniqueness results for the problem (1.1) via Banach's and Schaefer's fixed point theorems.

    In view of Lemma 2.11 to establish existence theorems, we consider the operator equation x=Qx, where Q:EE is defined by

    (Qx)(t)=tkIαk+βk,ρ,ψkFx(t)λtkIαk,ρ,ψkx(t)+{ki=1Hi1(x)k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+ki=1Gi1(x)k1j=i(Φαj(tj,tj+1)+Φαk(tk,t))k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+Ω1R(x,Fx)Ω3K(x,Fx)Ω5ki=1(Φαi1(ti1,ti)+Φαk(tk,t))ki=1eρ1ρ(ψi1(ti)ψi1(ti1))+Ω4K(x,Fx)Ω2R(x,Fx)Ω5ki=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψk(t)ψk(tk)),tJk. (3.1)

    It is clear that the problem (1.1) has a solution if and only if the operator Q has fixed points.

    To simplify the computations, we use the following constants:

    Λ1=m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1), (3.2)
    Λ2=m+1i=1Φαi1(ti1,ti), (3.3)
    Λ3=mi=1mj=iΦαj(tj,tj+1), (3.4)
    Λ4=m+1i=1Φβi1(ti1,ti), (3.5)
    Θ1=Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|, (3.6)
    Θ2=1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|, (3.7)
    Θ3=Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|, (3.8)
    Θ4=(|ξ1|(Λ2|Ω3|+|Ω4|)+|ξ2|(Λ2|Ω1|+|Ω2|))1|Ω5|, (3.9)

    By applying classical fixed point theorems, we prove in the next subsections, for the problems (1.1), our main existence and uniqueness results.

    The first result is an existence and uniqueness result for the problem (1.1) by applying Banach's fixed point theorem.

    Theorem 3.1. Let ψkC2(J) with ψk(t)>0 for tJ, k=0,1,2,,m. Assume that fC(J×R2,R), φk, φkC(R,R), k=1,2,,m satisfy the following assumptions:

    (H1) There exist a constant L1>0 such that, for every tJ and x1, x2, y1, y2R, such that

    |f(t,x1,y1)f(t,x2,y2)|L1(|x1x2|+|y1y2|).

    (H2) There exist constants M1,M1>0, for any x,yR, such that

    |φk(x)φk(y)|M1|xy|,|φk(x)φk(y)|M1|xy|,k=1,2,,m.

    Then, the problem (1.1) has a unique solution on J provided that

    2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3<1. (3.10)

    Proof. Observe that the problem (1.1) is equivalent to a fixed point problem x=Qx, where the operator Q is defined by (3.1). Thus, we need to establish that the operator Q has a fixed point. This will be achieved by means of the Banach's fixed point theorem.

    Let K1, K2 and K3 be nonnegative constants such that K1=suptJ|f(t,0,0)|, K2=max{φk(0):k=1,2,,m} and K3=max{φk(0):k=1,2,,m}. Next we set Br1={xE:xr1} with

    r1K1Θ1+mK2Θ2+K3Θ3+Θ41(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3). (3.11)

    Clearly, Br1 is a bounded, closed, and convex subset of E. We complete the proof in two steps.

    Step I. We show that QBr1Br1.

    For any xBr1, we have

    |(Qx)(t)|tmIαm+βm,ρ,ψm|Fx(s)|(T)+|λ|tmIαm,ρ,ψm|x(s)|(T)+{mi=1|Hi1(x)|mj=ieρ1ρ(ψj(tj+1)ψj(tj))+mi=1|Gi1(x)|mj=iΦαj(tj,tj+1)mj=ieρ1ρ(ψj(tj+1)ψj(tj))+|Ω1||R(x,Fx)|+|Ω3||K(x,Fx)||Ω5|m+1i=1Φαi1(ti1,ti)m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))+|Ω4||K(x,Fx)|+|Ω2||R(x,Fx)||Ω5|m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψm(T)ψm(tm)). (3.12)

    By using 0<eρ1ρ(ψa(u)ψa(s))1 for 0suT with (H1) and (H2), we have

    |Gi1(x)||Gi1(x)Gi1(0)|+|Gi1(0)|ti1Iβi1,ρ,ψi1|Fx(s)F0(s)|(ti)+|φi(x(ti))φi(0)|+ti1Iβi1,ρ,ψi1|F0(s)|(ti)+|φi(0)|2L1r1ρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11ψi1(s)ds+M1r1+K1ρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11ψi1(s)ds+K3(2L1(ψi1(ti)ψi1(ti1))βi1ρβi1Γ(βi1+1)+M1)r1+K1(ψi1(ti)ψi1(ti1))βi1ρβi1Γ(βi1+1)+K3=(2L1Φβi1(ti1,ti)+M1)r1+K1Φβi1(ti1,ti)+K3, (3.13)
    |Hi1(x)||Hi1(x)Hi1(0)|+|Hi1(0)|ti1Iαi1+βi1,ρ,ψi1|Fx(s)F0(s)|(ti)+|λ|ti1Iαi1,ρ,ψi1|x(s)|(ti)+|φi(x(ti))φi(0)|+ti1Iαi1+βi1,ρ,ψi1|F0(s)|(ti)+|φi(0)|2L1r1ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds+|λ|r1ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11ψi1(s)ds+M1r1+K2+K1ραi1+βi1Γ(αi1+βi1)titi1,|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds(2L1(ψi1(ti)ψi1(ti1))αi1+βi1ραi1+βi1Γ(αi1+βi1+1)+|λ|(ψi1(ti)ψi1(ti1))αi1ραi1Γ(αi1+1)+M1)r1+K1(ψi1(ti)ψi1(ti1))αi1+βi1ραi1+βi1Γ(αi1+βi1+1)+K2=(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)r1+K1Φαi1+βi1(ti1,ti)+K2. (3.14)

    From the results of the inequalities (3.13)-(3.14) with the similarly process, we obtain,

    |K(x,Fx)||K(x,Fx)K(0,F0)|+|K(0,F0)||ξ1|+|κ1|tmIαm+βm,ρ,ψm|Fx(s)F0(s)|(T)+|κ1||λ|tmIαm,ρ,ψm|x(s)|(T)+|κ1|mi=1|Gi1(x)Gi1(0)|mj=iΦαj(tj,tj+1)+|κ1|mi=1|Hi1(x)Hi1(0)|+|κ1|tmIαm+βm,ρ,ψm|F0(s)|(T)+|κ1|mi=1|Gi1(0)|mj=iΦαj(tj,tj+1)+|κ1|mi=1|Hi1(0)||ξ1|+2L1r1|κ1|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ1||λ|r1ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ1|mi=1(2L1Φβi1(ti1,ti)+M1)r1mj=iΦαj(tj,tj+1)+|κ1|mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)r1+K1|κ1|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ1|mi=1(K1Φβi1(ti1,ti)+K3)mj=iΦαj(tj,tj+1)+|κ1|mi=1(K1Φαi1+βi1(ti1,ti)+K2){2L1(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))+|λ|m+1i=1Φαi1(ti1,ti)+M1mi=1mj=iΦαj(tj,tj+1)+mM1}|κ1|r1+{K1(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))+K3mi=1mj=iΦαj(tj,tj+1)+mK2}|κ1|+|ξ1|=(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|r1+(K1Λ1+K3Λ3+mK2)|κ1|+|ξ1|, (3.15)
    |R(x,Fx)||R(x,Fx)R(0,F0)|+|R(0,F0)||ξ2|+|κ2|tmIβm,ρ,ψm|Fx(s)F0(s)|(T)+|κ2||λ|tmIαm+βm,ρ,ψm|Fx(s)F0(s)|(T)+|κ2|λ2tmIαm,ρ,ψm|x(s)|(T)+|κ2|mi=1|Gi1(x)Gi1(0)|(1+|λ|mj=iΦαj(tj,tj+1))+|κ2||λ|mi=1|Hi1(x)Hi1(0)|+|κ2|tmIβm,ρ,ψm|F0(s)|(T)+|κ2||λ|mi=1|Hi1(0)|+|κ2||λ|tmIαm+βm,ρ,ψm|F0(s)|(T)+|κ2|mi=1|Gi1(0)|(1+|λ|mj=iΦαj(tj,tj+1))|ξ2|+2L1r1|κ2|ρβmΓ(βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))βm1ψm(s)ds+2L1r1|κ2||λ|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ2|λ2r1ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ2|mi=1(2L1Φβi1(ti1,ti)+M1)r1(1+|λ|mj=iΦαj(tj,tj+1))+|κ2||λ|mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)r1+K1|κ2|ρβmΓ(βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))βm1ψm(s)ds+|κ2||λ|mi=1(K1Φαi1+βi1(ti1,ti)+K2)+K1|κ2||λ|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ2|mi=1(K1Φβi1(ti1,ti)+K3)(1+|λ|mj=iΦαj(tj,tj+1)){2L1[|λ|(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))+m+1i=1Φβi1(ti1,ti)]+M1(|λ|mi=1mj=iΦαj(tj,tj+1)+mg)+λ2m+1i=1Φαi1(ti1,ti)+m|λ|M1}|κ2|r1+{K1[m+1i=1Φβi1(ti1,ti)+|λ|(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))]+K3[|λ|mi=1mj=iΦαj(tj,tj+1)+m]+K2m|λ|}|κ2|+|ξ2|=(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|r1+(K1(Λ4+|λ|Λ1)+K3(|λ|Λ3+m)+K2m|λ|)|κ2|+|ξ2|. (3.16)

    Substisuting (3.13), (3.14), (3.15) and (3.16) into (3.12), we obtain

    |(Qx)(t)|tmIαm+βm,ρ,ψm(|Fx(s)F0(s)|+|F0(s)|)(T)+|λ|tmIαm,ρ,ψm|x(s)|(T)+mi=1(|Hi1(x)Hi1(0)|+|Hi1(0)|)+mi=1(|Gi1(x)Gi1(0)|+|Gi1(0)|)mj=iΦαj(tj,tj+1)+(|Ω1|(|R(x,Fx)R(0,F0)|+|R(0,F0)|)+|Ω3|(|K(x,Fx)K(0,F0)|+|K(0,F0)|))×1|Ω5|m+1i=1Φαi1(ti1,ti)+1|Ω5|(|Ω4|(|K(x,Fx)K(0,F0)|+|K(0,F0)|)+|Ω2|(|R(x,Fx)R(0,F0)|+|R(0,F0)|))2L1r1+K1ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|λ|r1ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+mi=1[(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)r1+K1Φαi1+βi1(ti1,ti)+K2]+mi=1[(2L1Φβi1(ti1,ti)+M1)r1+K1Φβi1(ti1,ti)+K3]mj=iΦαj(tj,tj+1)+1|Ω5|m+1i=1Φαi1(ti1,ti)[|Ω1|({2L1[|λ|Λ1+Λ4]+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1}|κ2|r1+{K1(Λ4+|λ|Λ1)+K3(|λ|Λ3+m)+K2m|λ|}|κ2|+|ξ2|)+|Ω3|((2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|r1+(K1Λ1+K3Λ3+mK2)|κ1|+|ξ1|)]+1|Ω5|[|Ω4|((2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|r1+(K1Λ1+K3Λ3+mK2)|κ1|+|ξ1|)+|Ω2|((2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|r1+(K1(Λ4+|λ|Λ1)+K3(|λ|Λ3+m)+K2m|λ|)|κ2|+|ξ2|)]2L1Φαm+βm(tm,T)r1+K1Φαm+βm(tm,T)+|λ|Φαm(tm,T)r1+mi=1[(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)r1+K1Φαi1+βi1(ti1,ti)+K2]+mi=1[(2L1Φβi1(ti1,ti)+M1)r1+K1Φβi1(ti1,ti)+K3]mj=iΦαj(tj,tj+1)+[|Ω1|({2L1[|λ|Λ1+Λ4]+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1}|κ2|r1+{K1(Λ4+|λ|Λ1)+K3(|λ|Λ3+m)+K2m|λ|}|κ2|+|ξ2|)+|Ω3|((2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|r1+(K1Λ1+K3Λ3+mK2)|κ1|+|ξ1|)]Λ2|Ω5|+1|Ω5|[|Ω4|((2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|r1+(K1Λ1+K3Λ3+mK2)|κ1|+|ξ1|)+|Ω2|({2L1[|λ|Λ1+Λ4]+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1}|κ2|r1+{K1(Λ4+|λ|Λ1)+K3(|λ|Λ3+m)+K2m|λ|}|κ2|+|ξ2|)]
    =(2L1[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+(mM1+|λ|Λ2)[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]+M1[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|])r1+K1[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+mK2[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|κ2||λ|(Λ2|Ω1|+|Ω2|))1|Ω5|]+K3[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|]+(|ξ1|(Λ2|Ω3|+|Ω4|)+|ξ2|(Λ2|Ω1|+|Ω2|))1|Ω5|=(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3)r1+K1Θ1+mK2Θ2+K3Θ3+Θ4r1,

    which implies that QBr1Br1.

    Step II. We prove that the operator Q is a contraction.

    Let x,yE. Then, for each tJ, we have

    |(Qx)(t)(Qy)(t)|tmIαm+βm,ρ,ψm|Fx(s)Fy(s)|(T)+|λ|tmIαm,ρ,ψm|x(s)y(s)|(T)+{mi=1|Hi1(x)Hi1(y)|mj=ieρ1ρ(ψj(tj+1)ψj(tj))+mi=1|Gi1(x)Gi1(y)|mj=iΦαj(tj,tj+1)mj=ieρ1ρ(ψj(tj+1)ψj(tj))+(|Ω1||R(x,Fx)R(y,Fy)|+|Ω3||K(x,Fx)K(y,Fy)|)×1|Ω5|m+1i=1Φαi1(ti1,ti)m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))+(|Ω4||K(x,Fx)K(y,Fy)|+|Ω2||R(x,Fx)R(y,Fy)|)×1|Ω5|m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψm(T)ψm(tm)). (3.17)

    By using 0<eρ1ρ(ψa(u)ψa(s))1 for 0suT and (H1)-(H2), we get

    |Gi1(x)Gi1(y)|ti1Iβi1,ρ,ψi1|Fx(s)Fy(s)|(ti)+|φi(x(ti))φi(y(ti))|2L1xyρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11ψi1(s)ds+M1xy(2L1(ψi1(ti)ψi1(ti1))βi1ρβi1Γ(βi1+1)+M1)xy=(2L1Φβi1(ti1,ti)+M1)xy, (3.18)
    |Hi1(x)Hi1(y)|ti1Iαi1+βi1,ρ,ψi1|Fx(s)Fy(s)|(ti)+|λ|ti1Iαi1,ρ,ψi1|x(s)y(s)|(ti)+|φi(x(ti))φi(y(ti))|2L1xyραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds+|λ|xyραi1Γ(αi1)×titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11ψi1(s)ds+M1xy(2L1(ψi1(ti)ψi1(ti1))αi1+βi1ραi1+βi1Γ(αi1+βi1+1)+|λ|(ψi1(ti)ψi1(ti1))αi1ραi1Γ(αi1+1)+M1)xy=(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)xy. (3.19)

    By using the results of the inequalities (3.18) and (3.19), we have

    |K(x,Fx)K(y,Fy)||κ1|tmIαm+βm,ρ,ψm|Fx(s)Fy(s)|(T)+|κ1||λ|tmIαm,ρ,ψm|x(s)y(s)|(T)+|κ1|mi=1|Gi1(x)Gi1(y)|mj=iΦαj(tj,tj+1)+|κ1|mi=1|Hi1(x)Hi1(y)|2L1xy|κ1|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ1||λ|xyραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ1|mi=1(2L1Φβi1(ti1,ti)+M1)mj=iΦαj(tj,tj+1)xy+|κ1|mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)xy[2L1(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))+|λ|(m+1i=1Φαi1(ti1,ti))+M1(mi=1mj=iΦαj(tj,tj+1))+mM1]|κ1|xy=(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|xy, (3.20)
    |R(x,Fx)R(y,Fy)||κ2|tmIβm,ρ,ψm|Fx(s)Fy(s)|(T)+|κ2||λ|tmIαm+βm,ρ,ψm|Fx(s)Fy(s)|(T)+|κ2|λ2tmIαm,ρ,ψm|x(s)y(s)|(T)+|κ2||λ|mi=1|Hi1(x)Hi1(y)|+|κ2|mi=1|Gi1(x)Gi1(y)|(1+|λ|mj=iΦαj(tj,tj+1))2L1xy|κ2|ρβmΓ(βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))βm1ψm(s)ds+2L1xy|κ2||λ|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ2|λ2xyραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ2||λ|mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)xy+|κ2|mi=1(2L1Φβi1(ti1,ti)+M1)(1+|λ|mj=iΦαj(tj,tj+1))xy[2L1(|λ|(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))+m+1i=1Φβi1(ti1,ti))+M1(|λ|(mi=1mj=iΦαj(tj,tj+1))+mg)+λ2(m+1i=1Φαi1(ti1,ti))+m|λ|M1]|κ2|xy=(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|xy. (3.21)

    Substituting (3.18), (3.19), (3.20) and (3.21) into (3.17), it follows that

    |(Qx)(t)(Qy)(t)|2L1xyραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|λ|xyραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+{mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)xymj=ieρ1ρ(ψj(tj+1)ψj(tj))+mi=1(2L1Φβi1(ti1,ti)+M1)xymj=iΦαj(tj,tj+1)mj=ieρ1ρ(ψj(tj+1)ψj(tj))+[|Ω1|(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|xy.+|Ω3|(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|xy]1|Ω5|m+1i=1Φαi1(ti1,ti)m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))+[|Ω4|(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|xy+|Ω2|(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|xy]1|Ω5|m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψm(T)ψm(tm))2L1Φαm+βm(tm,T)xy+|λ|Φαm(tm,T)xy+mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)xy+mi=1(2L1Φβi1(ti1,ti)+M1)xymj=iΦαj(tj,tj+1)+Λ2|Ω1||Ω5|(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|xy+Λ2|Ω3||Ω5|(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|xy+|Ω4||Ω5|(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|xy+|Ω2||Ω5|(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|xy=(2L1[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+(mM1+|λ|Λ2)[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|κ2||λ|(Λ2|Ω1|+|Ω2|))1|Ω5|]+M1[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|])xy=(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3)xy,

    which implies that QxQy(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3)xy. Clearly (2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3)<1, thus, by the Banach's contraction principle (Theorem 2.12), the operator Q is a contraction, hence, the operator Q has a unique fixed point that is the unique solution of the problem (1.1) on J. This completes the proof.

    The second existence result is based on Schaefer's fixed point theorem.

    Theorem 3.2. Let ψkC2(J) with ψk(t)>0 for tJ, k=0,1,2,,m. Assume that f:J×R2R, φk:RR and φk:RR are continuous functions, k=1,2,,m satisfy the following assumptions:

    (H3) There exist nonnegative continuous functions h1, h2, h3C(J,R+) such that, for every tJ and x, yR, such that

    |f(t,x,y)|h1(t)+h2(t)(|x|+|y|),

    with h1=suptJ{h1(t)} and h2=suptJ{h2(t)}.

    (H4) There exist positive constants k1, k1, for any xR, such that

    |φk(x)|k1,|φk(x)|k1,k=1,2,,m.

    Then, the problem (1.1) has at least one solution on J.

    Proof. We apply Schaefer's fixed point theorem. The proof is given in the following four steps.

    Step I. We prove that the operator Q is continuous.

    Let xn be a sequence such that xnx in E. Then, for any tJ, we get

    |(Qxn)(t)(Qx)(t)|tmIαm+βm,ρ,ψm|Fxn(s)Fx(s)|(t)+|λ|tmIαm,ρ,ψm|xn(s)x(s)|(t)+mi=1|Hi1(xn)Hi1(x)|+mi=1|Gi1(xn)Gi1(x)|mj=iΦαj(tj,tj+1)+Λ2|Ω5|[|Ω1||R(xn,Fxn)R(x,Fx)|+|Ω3||K(xn,Fxn)K(x,Fx)|]+1Ω5[|Ω4||K(xn,Fxn)K(x,Fx)|+|Ω2||R(xn,Fxn)R(x,Fx)|]1ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1|Fxn(s)Fx(s)|ψm(s)ds+|λ|ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1|xn(s)x(s)|ψm(s)ds+mi=1(1ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11×|Fxn(s)Fx(s)|ψi1(s)ds+|λ|ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11×|xn(s)x(s)|ψi1(s)ds+M1|xn(ti)x(ti)|)+mi=1(1ρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))βi11|Fxn(s)Fx(s)|ψi1(s)ds+M1|xn(ti1)x(ti1)|)mj=iΦαj(tj,tj+1)
    +Λ2|Ω5|{|Ω1|[|κ2|ρβmΓ(βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))βm1|Fxn(s)Fx(s)|ψm(s)ds+|κ2||λ|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1|Fxn(s)Fx(s)|ψm(s)ds+|κ2|λ2ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1|xn(s)x(s)|ψm(s)ds+|κ2||λ|mi=1(1ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11×|Fxn(s)Fx(s)|ψi1(s)ds+|λ|ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11×|xn(s)x(s)|ψi1(s)ds+M1|xn(ti1)x(ti1)|)+|κ2|mi=1(1ρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))βi11|Fxn(s)Fx(s)|ψi1(s)ds+M1|xn(ti1)x(ti1)|)]+|Ω3|[|κ1|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1|Fxn(s)Fx(s)|ψm(s)ds+|κ1||λ|ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1|xn(s)x(s)|ψm(s)ds+|κ1|mi=1(1ρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11|Fxn(s)Fx(s)|ψi1(s)ds+M1|xn(ti1)x(ti1)|)mj=iΦαj(tj,tj+1)+|κ1|mi=1(1ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))αi1+βi11|Fxn(s)Fx(s)|ψi1(s)ds+|λ|ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))αi11|xn(s)x(s)|ψi1(s)ds+M1|xn(ti1)x(ti1)|)]}+1Ω5{|Ω4|×(|κ1|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1|Fxn(s)Fx(s)|ψm(s)ds+|κ1||λ|ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1|xn(s)x(s)|ψm(s)ds+|κ1|mi=1(1ρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11|Fxn(s)Fx(s)|ψi1(s)ds+M1|xn(ti1)x(ti1)|)mj=iΦαj(tj,tj+1)+|κ1|mi=1(1ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))αi1+βi11|Fxn(s)Fx(s)|ψi1(s)ds+|λ|ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))αi11|xn(s)x(s)|ψi1(s)ds+M1|xn(ti1)x(ti1)|)+|Ω2|[|κ2|ρβmΓ(βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))βm1|Fxn(s)Fx(s)|ψm(s)ds+|κ2||λ|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1|Fxn(s)Fx(s)|ψm(s)ds+|κ2|λ2ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1|xn(s)x(s)|ψm(s)ds+|κ2||λ|mi=1(1ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11×|Fxn(s)Fx(s)|ψi1(s)ds+|λ|ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11×|xn(s)x(s)|ψi1(s)ds+M1|xn(ti1)x(ti1)|)+|κ2|mi=1(1ρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))βi11|Fxn(s)Fx(s)|ψi1(s)ds+M1|xn(ti1)x(ti1)|)]}.

    By using the fact of 0<eρ1ρ(ψa(u)ψa(s))1 for 0suT with the notations (2.6), (2.11)–(2.15) and (3.2)–(3.5), we obtain

    |(Qxn)(t)(Qx)(t)|FxnFxραm+βmΓ(αm+βm)Ttm(ψm(T)ψm(s))αm+βm1ψm(s)ds+|λ|xnxραmΓ(αm)Ttm(ψm(T)ψm(s))αm1ψm(s)ds+mi=1(FxnFxραi1+βi1Γ(αi1+βi1)×titi1(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds+|λ|xnxραi1Γ(αi1)titi1(ψi1(ti)ψi1(s))αi11ψi1(s)ds+M1xnx)+mi=1(FxnFxρβi1Γ(βi1)titi1(ψi1(ti)ψi1(s))βi11ψi1(s)ds+M1xnx)
    ×mj=iΦαj(tj,tj+1)+Λ2|Ω5|{|Ω1|[|κ2|FxnFxρβmΓ(βm)Ttm(ψm(T)ψm(s))βm1ψm(s)ds+|κ2||λ|FxnFxραm+βmΓ(αm+βm)Ttm(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ2|λ2xnxραmΓ(αm)Ttm(ψm(T)ψm(s))αm1×ψm(s)ds+|κ2||λ|mi=1(FxnFxραi1+βi1Γ(αi1+βi1)titi1(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds+|λ|xnxραi1Γ(αi1)titi1(ψi1(ti)ψi1(s))αi11ψi1(s)ds+M1xnx)+|κ2|mi=1(FxnFxρβi1Γ(βi1)titi1(ψi1(ti)ψi1(s))βi11ψi1(s)ds+M1xnx)]+|Ω3|[|κ1|FxnFxραm+βmΓ(αm+βm)Ttm(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ1||λ|xnxραmΓ(αm)×Ttm(ψm(T)ψm(s))αm1ψm(s)ds+|κ1|mi=1(FxnFxρβi1Γ(βi1)titi1(ψi1(ti)ψi1(s))βi11ψi1(s)ds+M1xnx)mj=iΦαj(tj,tj+1)+|κ1|mi=1(FxnFxραi1+βi1Γ(αi1+βi1)titi1(ψi1(ti)ψi1(s))αi1+βi11×ψi1(s)ds+|λ|xnxραi1Γ(αi1)titi1(ψi1(ti)ψi1(s))αi11ψi1(s)ds+M1xnx)]}
    +1Ω5{|Ω4|(|κ1|FxnFxραm+βmΓ(αm+βm)Ttm(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ1||λ|xnxραmΓ(αm)×Ttm(ψm(T)ψm(s))αm1ψm(s)ds+|κ1|mi=1(FxnFxρβi1Γ(βi1)titi1(ψi1(ti)ψi1(s))βi11ψi1(s)ds+M1xnx)mj=iΦαj(tj,tj+1)+|κ1|mi=1(FxnFxραi1+βi1Γ(αi1+βi1)titi1(ψi1(ti)ψi1(s))αi1+βi11×ψi1(s)ds+|λ|xnxραi1Γ(αi1)titi1(ψi1(ti)ψi1(s))αi11ψi1(s)ds+M1xnx)
    +|Ω2|[|κ2|FxnFxρβmΓ(βm)Ttm(ψm(T)ψm(s))βm1ψm(s)ds+|κ2||λ|FxnFxραm+βmΓ(αm+βm)×Ttm(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ2|λ2xnxραmΓ(αm)Ttm(ψm(T)ψm(s))αm1ψm(s)ds+|κ2||λ|mi=1(FxnFxραi1+βi1Γ(αi1+βi1)titi1(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds+|λ|xnxραi1Γ(αi1)titi1(ψi1(ti)ψi1(s))αi11ψi1(s)ds+M1xnx)+|κ2|mi=1(FxnFxρβi1Γ(βi1)titi1(ψi1(ti)ψi1(s))βi11ψi1(s)ds+M1xnx)]}.Φαm+βm(tm,T)FxnFx+|λ|Φαm(tm,T)xnx+mi=1(Φαi1+βi1(ti1,ti)FxnFx+|λ|Φαi1(ti1,ti)xnx+φk(xn)φk(x))+mi=1(Φβi1(ti1,ti)FxnFx+φk(xn)φk(x))mj=iΦαj(tj,tj+1)+Λ2|Ω5|[|Ω1|(|κ2|Φβm(tm,T)FxnFx+|κ2||λ|Φαm+βm(tm,T)FxnFx+|κ2|λ2Φαm(tm,T)xnx+|κ2||λ|mi=1(Φαi1+βi1(ti1,ti)FxnFx+|λ|Φαi1(ti1,ti)xnx+φk(xn)φk(x))+|κ2|mi=1(Φβi1(ti1,ti)FxnFx+φk(xn)φk(x))(1+|λ|mj=iΦαj(tj,tj+1)))+|Ω3|(|κ1|Φαm+βm(tm,T)FxnFx+|κ1||λ|Φαm(tm,T)xnx+|κ1|mi=1(Φβi1(ti1,ti)FxnFx+φk(xn)φk(x))mj=iΦαj(tj,tj+1)+|κ1|mi=1(Φαi1+βi1(ti1,ti)FxnFx+|λ|Φαi1(ti1,ti)xnx+φk(xn)φk(x)))]+1Ω5[|Ω4|(|κ1|Φαm+βm(tm,T)FxnFx+|κ1||λ|Φαm(tm,T)xnx+|κ1|mi=1(Φβi1(ti1,ti)FxnFx+φk(xn)φk(x))mj=iΦαj(tj,tj+1)+|κ1|mi=1(Φαi1+βi1(ti1,ti)FxnFx+|λ|Φαi1(ti1,ti)xnx+φk(xn)φk(x)))+|Ω2|(|κ2|Φβm(tm,T)FxnFx+|κ2||λ|Φαm+βm(tm,T)FxnFx+|κ2|λ2Φαm(tm,T)xnx+|κ2||λ|mi=1(Φαi1+βi1(ti1,ti)FxnFx+|λ|Φαi1(ti1,ti)xnx+φk(xn)φk(x))+|κ2|mi=1(Φβi1(ti1,ti)FxnFx+φk(xn)φk(x))(1+|λ|mj=iΦαj(tj,tj+1)))]=[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]FxnFx+|λ|Λ2[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1Ω5]xnx+[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|]φk(xn)φk(x)=Θ1FxnFx+Θ2xnx+Θ3φk(xn)φk(x).

    Since f, λ, φk and φk are continuous, this implies that Q is also continuous. Then, FxnFx0, and xnx0, as n, andφk(xn)φk(x)0, and φk(xn)φk(x)0 as n.

    Step II. We prove that the operator Q maps a bounded set into a bounded set in E.

    For r2>0, there exists a constant N>0 such that, for each xBr2={xE:xr2}, then QxN. Then, for any tJ and xBr2, we have

    |(Qx)(t)|tmIαm+βm,ρ,ψm|Fx(s)|(T)+|λ|tmIαm,ρ,ψm|x(s)|(T)+mi=1|Hi1(x)|+mi=1|Gi1(x)|mj=iΦαj(tj,tj+1)+|Ω1||R(x,Fx)|+|Ω3||K(x,Fx)||Ω5|m+1i=1Φαi1(ti1,ti)+|Ω4||K(x,Fx)|+|Ω2||R(x,Fx)||Ω5|. (3.22)

    It follows from (H3) and (H4), that

    |Fx(t)|h1+2h2r2,|φk(x)|k1,|φk(x)|k1,k=1,2,,m. (3.23)

    Then by substituting (3.23) into (3.22) with the notations (2.6), (2.11)–(2.15) and (3.2)–(3.5), we have

    |(Qx)(t)|h1+2h2r2ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|λ|r2ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+mi=1[h1+2h2r2ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds|λ|r2ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11ψi1(s)ds+k1]+mi=1[h1+2h2r2ρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11ψi1(s)ds+h1+2h2r2ρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11ψi1(s)ds+k1]mj=iΦαj(tj,tj+1)+{|Ω1|(|ξ2|+|κ2|(h1+2h2r2)ρβmΓ(βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))βm1ψm(s)ds+|κ2||λ|(h1+2h2r2)ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ2|λ2r2ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ2|mi=1[h1+2h2r2ρβi1Γ(βi1)×titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11ψi1(s)ds+k1][1+|λ|mj=iΦαj(tj,tj+1)]+|κ2||λ|mi=1[h1+2h2r2ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11×ψi1(s)ds+|λ|r2ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11ψi1(s)ds+k1])+|Ω3|(|ξ1|+|κ1||λ|r2ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds
    |κ1|(h1+2h2r2)ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ1|mi=1[h1+2h2r2ρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11ψi1(s)ds+k1]×mj=iΦαj(tj,tj+1)+|κ1|mi=1[h1+2h2r2ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds+|λ|r2ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))αi11ψi1(s)ds+k1])}Λ2|Ω5|+1|Ω5|{|Ω4|(|ξ1|+|κ1||λ|r2ραmΓ(αm)×Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ1|(h1+2h2r2)ραm+βmΓ(αm+βm)×Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ1|mi=1[h1+2h2r2ρβi1Γ(βi1)×titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11ψi1(s)ds+k1]mj=iΦαj(tj,tj+1)+|κ1|mi=1[h1+2h2r2ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11×ψi1(s)ds+|λ|r2ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11ψi1(s)ds+k1])+|Ω2|(|ξ2|+|κ2|(h1+2h2r2)ρβmΓ(βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))βm1ψm(s)ds+|κ2||λ|(h1+2h2r2)ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ2|λ2r2)ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ2|mi=1[h1+2h2r2ρβi1Γ(βi1)×titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11ψi1(s)ds+k1][1+|λ|mj=iΦαj(tj,tj+1)]+|κ2||λ|mi=1[h1+2h2r2ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11×ψi1(s)ds+|λ|r2ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11ψi1(s)ds+k1])}[Λ1+(|κ1|Λ1(|Ω3|Λ2+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(|Ω1|Λ2+|Ω2|))1|Ω5|](h1+2h2r2)+|λ|Λ2[1+(|κ1|(Λ2|Ω3|+Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]r2+m[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]k1+[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|]k1+(|ξ1|(Λ2|Ω3|+|Ω4|)+|ξ2|(Λ2|Ω1|+|Ω2|))1|Ω5|,

    we estimate QxΘ1(h1+2h2r2)+(|λ|Λ2r2+mk1)Θ2+Θ3k1+Θ4:=N, which implies that QxN. Hence, the set QBr2 is uniformly bounded.

    Step III. We prove that Q maps a bounded set into an equicontinuous set of E.

    Let τ1, τ2Jk for some k{0,1,2,,m} with τ1<τ2. Then, for any xBr2, where Br2 is as defined in Step II, by using the property of f is bounded on the compact set J×Br2, we have

    |(Qx)(τ2)(Qx)(τ1)|{mi=1(Φαi1+βi1(ti1,ti)(h1+2h2r2)+|λ|Φαi1(ti1,ti)r2+k1)+mi=1(Φβi1(ti1,ti)(h1+2h2r2)+k1)k1j=i(Φαj(tj,tj+1)+|Φαk(tk,τ2)Φαk(tk,τ1)|)+|Ω1||R(x,Fx)|+|Ω3||K(x,Fx)||Ω5|ki=1(Φαi1(ti1,ti)+|Φαk(tk,τ2)Φαk(tk,τ1)|)+|Ω4||K(x,Fx)|+|Ω2||R(x,Fx)||Ω5|}g|eρ1ρ(ψk(τ2)ψk(tk))eρ1ρ(ψk(τ1)ψk(tk))g|+h1+2h2r2ραk+βkΓ(αk+βk)(τ2τ1eρ1ρ(ψk(τ2)ψk(s))(ψk(τ2)ψk(s))αk+βk1ψk(s)ds+τ1tkg|eρ1ρ(ψk(τ2)ψk(s))(ψk(τ2)ψk(s))αk+βk1eρ1ρ(ψk(τ1)ψk(s))(ψk(τ1)ψk(s))αk+βk1g|ψk(s)dsg)+|λ|r2Γ(αk)(τ2τ1eρ1ρ(ψk(τ2)ψk(s))(ψk(τ2)ψk(s))αk1ψk(s)ds+τ1tkg|eρ1ρ(ψk(τ2)ψk(s))(ψk(τ2)ψk(s))αk1eρ1ρ(ψk(τ1)ψk(s))(ψk(τ1)ψk(s))αk1g|ψk(s)ds).

    By using the notations (2.6), (2.11)–(2.15) and (3.2)–(3.5), we obtain that

    |(Qx)(τ2)(Qx)(τ1)|{mi=1(Φαi1+βi1(ti1,ti)(h1+2h2r2)+|λ|Φαi1(ti1,ti)r2+k1)+mi=1(Φβi1(ti1,ti)(h1+2h2r2)+k1)k1j=i(Φαj(tj,tj+1)+|Φαk(tk,τ2)Φαk(tk,τ1)|)+[(|κ1|Λ1|Ω3|+|κ2||Ω1|(|λ|Λ1+Λ4))(h1+2h2r2)+|λ|Λ2(|κ1||Ω3|+|κ2||λ||Ω1|)r2+m(|κ1||Ω3|+|κ2||λ||Ω1|)k1+(|κ1|Λ3|Ω3|+|κ2||Ω1|(|λ|Λ3+m))k1+|ξ1||Ω3|+|ξ2||Ω1|]×1|Ω5|mi=1(Φαi1(ti1,ti)+|Φαk(tk,τ2)Φαk(tk,τ1)|)+[|λ|Λ2(|κ1||Ω4|+|κ2||λ||Ω2|)r2+(|κ1|Λ1|Ω4|+|κ2||Ω2|(|λ|Λ1+Λ4))(h1+2h2r2)+m(|κ1||Ω4|+|κ2||λ||Ω2|)k1+(|κ1|Λ3|Ω4|+|κ2||Ω2|(|λ|Λ3+m))k1+|ξ1||Ω4|+|ξ2||Ω2|]1|Ω5|}g|eρ1ρ(ψk(τ2)ψk(tk))eρ1ρ(ψk(τ1)ψk(tk))g|+h1+2h2r2ραk+βkΓ(αk+βk+1)(2|ψk(τ2)ψk(τ1)|αk+βk+|(ψk(τ2)ψk(tk))αk+βk(ψk(τ1)ψk(tk))αk+βk|)+|λ|r2Γ(αk+1)(2|ψk(τ2)ψk(τ1)|αk+|(ψk(τ2)ψk(tk))αk(ψk(τ1)ψk(tk))αk|).

    From the above inequality, we get that , and as , where . This inequality is independent of unknown variable and tends to zero as , which} implies that as . Therefore by the Arzelá-Ascoli theorem, we can conclude that the operator is completely continuous.

    Step IV. The set is bounded (a priori bounds).

    Let , then for some . From and , for each , we get the result by using the same process in Step II,

    Then, This implies that the set is bounded. By all the assumptions of Theorem , we conclude that there exists a positive constant such that . By applying Schaefer's fixed point theorem (Theorem ), the operator has at least one fixed point which is a solution of problem (1.1). The proof is completed.

    This section is discussed the different type of Ulam's stability such as stable, generalized stable, stable and generalized stable of the problem (1.1).

    Now, we introduce Ulam's stability concepts for the problem (1.1). Let be a nondecreasing function, , , such that, for , , the following sets of inequalities are satisfied:

    (4.1)
    (4.2)
    (4.3)

    Definition 4.1. If for there exists a constant such that, for any solution of inequality (4.1), there is a unique solution of system (1.1) that satisfies

    then system (1.1) is stable.

    Definition 4.2. If for and set of positive real numbers there exists , with such that, for any solution of inequality (4.2), there exist and a unique solution of system (1.1) that satisfies

    then system (1.1) is generalized stable.

    Definition 4.3. If for there exists a real number such that, for any solution of inequality (4.3), there is a unique solution of system (1.1) that satisfies

    then system (1.1) is stable with respect to .

    Definition 4.4. If there exists a real number such that, for any solution of inequality (4.2), there is a unique solution of system (1.1) that satisfies

    then system (1.1) is generalized stable with respect to .

    Remark 4.5. It is clear that: Definition Definition ; Definition Definition ; Definition for Definition .

    Remark 4.6. The function is called a solution for inequality (4.1) if there exists a function together with a sequence , (which depends on ) such that

    , , ,

    , ,

    , ,

    , .

    Remark 4.7. The function is called a solution for inequality (4.2) if there exists a function together with a sequence , (which depends on ) such that

    , , ,

    , ,

    , ,

    , .

    Remark 4.8. The function is called a solution for inequality (4.3) if there exists a function together with a sequence , (which depends on ) such that

    , , ,

    , ,

    , ,

    , .

    In this subsection, we establish the results related to stability of system (1.1).

    Theorem 4.9. Assume that , is continuous functions. If assumptions , and the inequality

    (4.4)

    are satiafied, then system (1.1) is stable.

    Proof. Let be any solution of inequality (4.1). Then, by Remark , we have

    (4.5)

    By Lemma , the solution of (4.5) is given by

    From Remark with , and the fact of for , it follows that

    This implies that

    with . By setting

    we end up with . Hence, the system (1.1) is stable. The proof is completed.

    Corollary 4.10. In Theorem , if we set such that , then the system (1.1) is generalized stable.

    For the proof of our next result, we assume the following assumption

    There eixsts a nondecreasing function and constants , such that the following inequality holds:

    Theorem 4.11. Assume that , is continuous functions. If assumptions , , and the inequality

    (4.6)

    are satiafied, then system (1.1) is stable with respect to . where is a nondecreasing function and .

    Proof. Let be any solution of the inequality (4.3) and be the unique solution of the system (1.1). Then, for , we have

    By using Remark with , , and the fact of for , we obtain the following inequality

    which implies that

    with . By setting

    we end up with . Therefore, the system (1.1) is stable. This completes the proof.

    Corollary 4.12. In Theorem , if we set then the system (1.1) is generalized stable.

    This section give an example which illustrate the validity and applicability of main results.

    Example 5.1. Consider the following an impulsive boundary value problem is given by:

    (5.1)

    Here , , , , , , , , , , , , , , , . Using the all datas, we find that , , , , , , , , , , , and . Let , , be the functions defined by

    By , for any , , , and , we have , , and, for . The are satisfied with , and . Therefore, we get that

    Thus, all the assumptions of Theorem are fulfilled, which implies that the problem (5.1) has a unique solution on . Also holds with , , where , and , . So, all the assumptions of Theorem are satisfied, then the problem (5.1) has at least one solution on .

    Moreover, we also calculate that

    Hence, by Theorem is both stable and also generalized stable. Further, by setting and , for any , then

    From the inequality in is satisfy with , we have

    Consequently, by all the assumptions in Theorem , the problem (5.1) is stable and generalized stable with respect to .

    In this paper, we have studied the existence, uniqueness, and stability of solutions for a new class of impulsive fractional differential equation augmented by non-separated boundary conditions involving Caputo proportional derivative of a function with respect to another function. The uniqueness of solutions is obtained by using Banach's contraction mapping principle, whereas the existence result is established via Schaefer's fixed point theorem. Moreover, by the application of qualitative theory and nonlinear functional analysis, we investigated results concerning to different kinds of Ulam-Hyers stability such as, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability. The concerned results have been examined by a suitable example to illustrate the main results.

    Further, our results are interesting special cases for different values of the parameters involved in the considered problem. For instance, our results correspond to a considered problem with

    periodic boundary conditions:

    for , and

    anti-periodic boundary conditions:

    for and .

    The first author was financially supported by Navamindradhiraj University through the Navamindradhiraj University Research Fund (NURF). The second author would like to thank for funding this work through the King Mongkut's University of Technology North Bangkok and the Center of Excellence in Mathematics (CEM), CHE, Sri Ayutthaya Rd., Bangkok, 10400, Thailand for support this work.

    On behalf of all authors, the corresponding author states that there is no conflict of interest.



    [1] M. W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974.
    [2] M. M. Freitas, M. L. Santos, J. A. Langa, Porous elastic system with nonlinear damping and sources terms, J. Differ. Equations, 264 (2018), 2970–3051. https://doi.org/10.1016/j.jde.2017.11.006 doi: 10.1016/j.jde.2017.11.006
    [3] L. E. Payne, B. Straughan, Structural stability for the Darcy equations of flow in porous media, Proc. R. Soc. A, 454 (1998), 1691–1698. https://doi.org/10.1098/rspa.1998.0227 doi: 10.1098/rspa.1998.0227
    [4] N. L. Scott, Continuous dependence on boundary reaction terms in a porous medium of Darcy type, J. Math. Anal. Appl., 399 (2013), 667–675. https://doi.org/10.1016/j.jmaa.2012.10.054 doi: 10.1016/j.jmaa.2012.10.054
    [5] Y. F. Li, X. J. Chen, J. C. Shi, Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid, Appl. Math. Optim., 84 (2021), 979–999. https://doi.org/10.1007/s00245-021-09791-7 doi: 10.1007/s00245-021-09791-7
    [6] Y. Liu, Continuous dependence for a thermal convection model with temperaturedependent solubitity, Appl. Math. Comput., 308 (2017), 18–30. https://doi.org/10.1016/j.amc.2017.03.004 doi: 10.1016/j.amc.2017.03.004
    [7] Y. Liu, S. Z. Xiao, Y. W. Lin, Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain, Math. Comput. Simul., 150 (2018), 66–82. https://doi.org/10.1016/j.matcom.2018.02.009 doi: 10.1016/j.matcom.2018.02.009
    [8] F. Franchi, R. Nibbi, B. Straughan, Continuous dependence on boundary and Soret coefficients in double diffusive bidispersive convection, Math. Methods Appl. Sci., 43 (2020), 8882–8893. https://doi.org/10.1002/mma.6581 doi: 10.1002/mma.6581
    [9] Y. F. Li, S. Z. Xiao, Continuous dependence of 2D large scale primitive equations on the boundary conditions in oceanic dynamics, Appl. Math., 67 (2022), 103–124. https://doi.org/10.21136/AM.2021.0076-20 doi: 10.21136/AM.2021.0076-20
    [10] J. B. Han, R. Z. Xu, C. Yang, Continuous dependence on initial data and high energy blow-up time estimate for porous elastic system, Commun. Anal. Mech., 15 (2023), 214–244. https://doi.org/10.3934/cam.2023012 doi: 10.3934/cam.2023012
    [11] Y. F. Li, C. H. Lin, Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe, Appl. Math. Comput., 244 (2014), 201–208. https://doi.org/10.1016/j.amc.2014.06.082 doi: 10.1016/j.amc.2014.06.082
    [12] Z. Q. Li, W. B. Zhang, Y. F. Li, Structural stability for Forchheimer fluid in a semi-infinite pipe, Electron. Res. Arch., 31 (2023), 1466–1484. https://doi.org/10.3934/era.2023074 doi: 10.3934/era.2023074
    [13] Y. F. Li, X. J. Chen, Structural stability for temperature-dependent bidispersive flow in a semi-infinite pipe, Lith. Math. J., 63 (2023), 337–366. https://doi.org/10.1007/s10986-023-09600-4 doi: 10.1007/s10986-023-09600-4
    [14] R. J. Knops, L. E. Payne, Continuous dependence on base data in an Elastic prismatic cylinder, J. Elast., 64 (2001), 179–190. https://doi.org/10.1023/A:1015214420596 doi: 10.1023/A:1015214420596
    [15] A. H. Nayfeh, A continuum mixture theory of heat conduction in laminated composite, ASME J. Appl. Mech., 42 (1975), 399–404. https://doi.org/10.1115/1.3423589 doi: 10.1115/1.3423589
    [16] D. Iesan, A theory of mixtures with different constituent temperatures, J. Therm. Stresses, 20 (1997), 147–167. https://doi.org/10.1080/01495739708956096 doi: 10.1080/01495739708956096
    [17] D. Iesan, R. Quintanilla, On the problem of propagation of heat in mixtures, Appl. Mech. Eng., 4 (1999), 529–551.
    [18] R. Quintanilla, Study of the solutions of the propagation of heat in mixtures, Dyn. Contin. Discrete Impulsive Syst. - Ser. B, 8 (2001), 15–28.
    [19] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1952.
  • This article has been cited by:

    1. Bounmy Khaminsou, Weerawat Sudsutad, Chatthai Thaiprayoon, Jehad Alzabut, Songkran Pleumpreedaporn, Analysis of Impulsive Boundary Value Pantograph Problems via Caputo Proportional Fractional Derivative under Mittag–Leffler Functions, 2021, 5, 2504-3110, 251, 10.3390/fractalfract5040251
    2. Ravi P. Agarwal, Snezhana Hristova, Ulam-Type Stability for a Boundary-Value Problem for Multi-Term Delay Fractional Differential Equations of Caputo Type, 2022, 11, 2075-1680, 742, 10.3390/axioms11120742
    3. Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut, On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function, 2022, 7, 2473-6988, 7817, 10.3934/math.2022438
    4. Bounmy Khaminsou, Weerawat Sudsutad, Jutarat Kongson, Somsiri Nontasawatsri, Adirek Vajrapatkul, Chatthai Thaiprayoon, Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function, 2022, 7, 2473-6988, 9549, 10.3934/math.2022531
    5. Vipin Kumar, Gani Stamov, Ivanka Stamova, Controllability Results for a Class of Piecewise Nonlinear Impulsive Fractional Dynamic Systems, 2023, 439, 00963003, 127625, 10.1016/j.amc.2022.127625
    6. Ravi P. Agarwal, Snezhana Hristova, Donal O’Regan, Ulam Stability for Boundary Value Problems of Differential Equations—Main Misunderstandings and How to Avoid Them, 2024, 12, 2227-7390, 1626, 10.3390/math12111626
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(821) PDF downloads(54) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog